

APPLICATION FOR VERIFICATION On Behalf of Shenzhen Bluetimes Technology Co., Ltd.

Wireless Charger Model No.: Q12, Q8, Q9, Q10, Q11, Q13, Q15, Q16, Q18, Q20

FCC ID: 2ADI9-BT-Q

Prepared for Address	:	Shenzhen Bluetimes Technology Co., Ltd. 5-7F, Block B, Taixinglong Industrial Zone, Hezhou, Xixiang Town, Baoan district, Shenzhen, China
Prepared by Address	:	Shenzhen Accurate Technology Co., Ltd. 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
		Tel: +86-755-26503290 Fax: +86-755-26503396

Report No.	:	ATE20180826
Date of Test	:	May 21, 2018
Date of Report	:	May 23, 2018

TABLE OF CONTENTS

Description

Page

Test R	eport Declaration	
1. T	EST RESULTS SUMMARY	4
2. G	ENERAL INFORMATION	5
2.1.	Description of Device (EUT)	5
2.2.	Special Accessory and Auxiliary Equipment	
2.3.	Description of Test Facility	6
2.4.	Measurement Uncertainty	6
3. M	IEASURING DEVICE AND TEST EQUIPMENT	
3.1.	The Equipment Used to Measure Conducted Disturbance	7
3.2.	The Equipment Used to Measure Radiated Emission	7
4. P	OWER LINE CONDUCTED MEASUREMENT	8
4.1.	Block Diagram of Test Setup	
4.2.	Power Line Conducted Emission Measurement Limits	
4.3.	Configuration of EUT on Measurement	
4.4.	Operating Condition of EUT	
4.5.	Test Procedure	9
4.6.	Data Sample	
4.7.	Power Line Conducted Emission Measurement Results	9
5. R	ADIATED EMISSION MEASUREMENT	
5.1.	Block Diagram of Test	
5.2.	Radiated Emission Limit (Class B)	
5.3.	EUT Configuration on Measurement	
5.4.	Operating Condition of EUT	
5.5.	Test Procedure	
5.6.	Data Sample	
5.7.	Radiated Emission Measurement Result	
6. A	NTENNA REQUIREMENT	
6.1.	The Requirement	
6.2.	Antenna Construction	

Test Report Declaration

Applicant Address	 Shenzhen Bluetimes Technology Co., Ltd. 5-7F, Block B, Taixinglong Industrial Zone, Hezhou, Xixiang Town, Baoan district, Shenzhen, China
Manufacturer Address	 Shenzhen Bluetimes Technology Co., Ltd. 5-7F, Block B, Taixinglong Industrial Zone, Hezhou, Xixiang Town, Baoan district, Shenzhen, China
Product	: Wireless Charger
Model No.	: Q12, Q8, Q9, Q10, Q11, Q13, Q15, Q16, Q18, Q20 (Note: These samples are same except their model name is different. So we prepare Q12 for test.)
Trade name	: Bluetimes

Measurement Procedure Used:

FCC CFR47 Part 15 Subpart C Section 15.207 and 15.209 ANSI C63.10: 2013

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both radiated and conducted emissions. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd.

Date of Test :	May 21, 2018
Date of Report :	May 23, 2018
Prepared by :	(Stav Yang (StavYang, Engever)
Approved & Authorized Signer :	(Sean Liu, Manager)

1. TEST RESULTS SUMMARY

Test Items	Test Standard	Test Results
Power Line Conducted Emission	FCC Part 15.207	Pass
Radiated Emission	FCC Part 15.209	Pass

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

		Wireless Charger
Frequency	:	110-205kHz
Modulation Type	:	ASK
Type of Antenna	:	Coil Antenna
Rating	:	Input: 5V/2A; 9V/2A (MAX) Output: 5W; 7.5W; 10W

2.2. Special Accessory and Auxiliary Equipment

AC/DC Power Adapter	:	Model:TEKA006-0502000UKU
(provided by laboratory)		Input: 100-240V~50/60Hz 0.3A
		Output: DC 5V/2A

2.3.Description of Test Facility

EMC Lab	:	Recognition of accreditation by Federal Communications Commission (FCC) The Designation Number is CN1189 The Registration Number is 708358
		Listed by Innovation, Science and Economic Development Canada (ISEDC) The Registration Number is 5077A-2
		Accredited by China National Accreditation Service for Conformity Assessment (CNAS) The Registration Number is CNAS L3193
		Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 4297.01
Name of Firm Site Location	:	Shenzhen Accurate Technology Co., Ltd 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

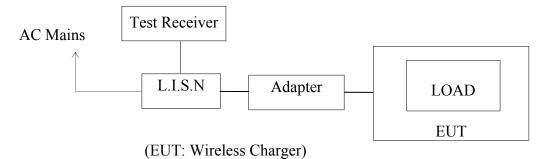
2.4. Measurement Uncertainty

Conducted emission expanded uncertainty	:	U=2.23dB, k=2
Radiated emission expanded uncertainty (9kHz-30MHz)	:	U=3.08dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	:	U=4.42dB, k=2
Radiated emission expanded uncertainty (Above 1GHz)	:	U=4.06dB, k=2

3. MEASURING DEVICE AND TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
						Interval
1.	Test Receiver	Rohde & Schwarz	ESCS30	100307	Jan. 06, 2018	1 Year
4.	L.I.S.N.	Schwarzbeck	NLSK8126	8126431	Jan. 06, 2018	1 Year
8.	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100305	Jan. 06, 2018	1 Year
12.	50Ω Coaxial	Anritsu Corp	MP59B	6200283933	Jan. 06, 2018	1 Year
12.	Switch					
17.	RF Coaxial Cable	SUHNER	N-2m	No.2	Jan. 06, 2018	1 Year

3.1. The Equipment Used to Measure Conducted Disturbance


3.2. The Equipment Used to Measure Radiated Emission

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
						Interval
2.	Spectrum Analyzer	Rohde&Schwarz	FSV40	101495	Jan. 06, 2018	1 Year
6.	Test Receiver	Rohde& Schwarz	ESR	101817	Jan. 06, 2018	1 Year
7.	Bilog Antenna	Schwarzbeck	VULB9163	9163-194	Jan. 06, 2018	1 Year
11.	Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 06, 2018	1 Year
12.	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 06, 2018	1 Year
15.	RF Switching	Compliance	RSU-M2	38322	Jan. 06, 2018	1 Year
	Unit+PreAMP	Direction				
16.	Pre-Amplifier	Agilent	8447D	294A10619	Jan. 06, 2018	1 Year
17.	Pre-Amplifier	Rohde&Schwarz	CBLU11835	3791	Jan. 06, 2018	1 Year
			40-01			
19.	50 Coaxial Switch	Anritsu Corp	MP59B	6200506474	Jan. 06, 2018	1 Year
24.	RF Coaxial Cable	RESENBERGER	N-3.5m	No.9	Jan. 06, 2018	1 Year
25.	RF Coaxial Cable	SUHNER	N-6m	No.10	Jan. 06, 2018	1 Year
26.	RF Coaxial Cable	RESENBERGER	N-12m	No.11	Jan. 06, 2018	1 Year
27.	RF Coaxial Cable	RESENBERGER	N-0.5m	No.12	Jan. 06, 2018	1 Year
28.	RF Coaxial Cable	SUHNER	N-2m	No.13	Jan. 06, 2018	1 Year
29.	RF Coaxial Cable	SUHNER	N-0.5m	No.15	Jan. 06, 2018	1 Year
30.	RF Coaxial Cable	SUHNER	N-2m	No.16	Jan. 06, 2018	1 Year
31.	RF Coaxial Cable	RESENBERGER	N-6m	No.17	Jan. 06, 2018	1 Year

4. POWER LINE CONDUCTED MEASUREMENT

4.1.Block Diagram of Test Setup

4.2. Power Line Conducted Emission Measurement Limits

Frequency	Limit dB(µV)				
(MHz)	Quasi-peak Level	Average Level			
0.15 - 0.50	66.0 - 56.0 *	56.0 - 46.0 *			
0.50 - 5.00	56.0	46.0			
5.00 - 30.00	60.0	50.0			
NOTE1: The lower limit shall apply at the transition frequencies.					
NOTE2: The limit decreases linearly with the logarithm of the frequency in the range					
0.15MHz to 0.50M	HZ.				

4.3.Configuration of EUT on Measurement

The equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

4.4.Operating Condition of EUT

4.4.1. Setup the EUT and simulator as shown as Section 4.1.

- 4.4.2. Turn on the power of all equipment.
- 4.4.3. Let the EUT work in test mode and measure it.

4.5.Test Procedure

The EUT is put on the plane 0.8 m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement. The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

4.6.Data	Sample
----------	--------

Free	quency	Transducer	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
(N	MHz)	value	Level	Level	Limit	Limit	Margin	Margin	(Pass/Fail)
		(dB)	(dBµV)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	
X	X.XX	10.6	25.3	17.0	59.0	49.0	33.7	32.0	Pass

Transducer value = Insertion loss of LISN + Cable Loss Result = Quasi-peak Level/Average Level + Transducer value Limit = Limit stated in standard

Calculation Formula:

Margin = Limit – Reading level value – Transducer value

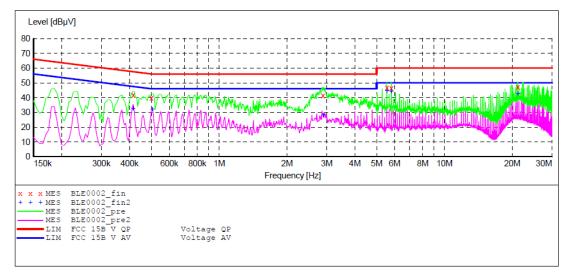
4.7. Power Line Conducted Emission Measurement Results

PASS.

The frequency range from 150kHz to 30MHz is checked.

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.



CONDUCTED EMISSION STANDARD FCC PART 15C

EUT:	Wireless Charger M/N:Q12
Manufacturer:	Bluetimes
Operating Condition:	Max load
Test Site:	1#Shielding Room
Operator:	Star
1	N 240V/60Hz
Comment:	Rerport No.:ATE20180826
Start of Test:	5/21/2018 / 9:18:09AM

SCAN TABLE: "V 9K-30MHz fin"

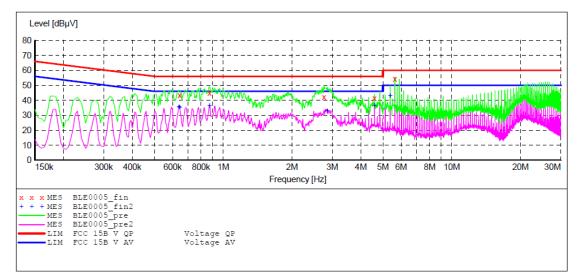
~							
	Short Desci	ription:	SI	JB STD VTE	RM2 1.70		
	Start	Stop	Step –	Detector	Meas.	IF	Transducer
	Frequency	Frequency	Width		Time	Bandw.	
	9.0 kHz -	150.0 kHz	100.0 Hz	QuasiPeak	1.0 s	200 Hz	NSLK8126 2008
				Average			
	150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak Average	1.0 s	9 kHz	NSLK8126 2008

MEASUREMENT RESULT: "BLE0002 fin"

5/21/2018 9:22AM Frequency Level Transd Limit Margin Detector Line PE MHz dBµV dB dBµV dB 15.9 QP 0.415000 41.60 10.7 58 Ν GND 0.500000 39.90 16.1 QP 10.7 56 Ν GND 2.890000 41.20 11.0 56 14.8 QP Ν GND 11.2 11.2 5.550000 47.00 60 13.0 QP Ν GND 46.50 13.5 QP 5.810000 60 GND Ν 21.160000 47.20 12.8 QP 11.4 60 Ν GND

MEASUREMENT RESULT: "BLE0002 fin2"

			_				
5/21/2018 9:2 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.415000 0.505000 2.890000 5.550000 5.810000 21.160000	32.40 31.90 28.10 44.60 44.30 42.50	10.7 10.7 11.0 11.2 11.2 11.4	48 46 50 50 50	15.1 14.1 17.9 5.4 5.7 7.5	AV AV AV AV AV AV	N N N N N	GND GND GND GND GND GND



CONDUCTED EMISSION STANDARD FCC PART 15C

EUT:	Wireless Charger M/N:Q12
Manufacturer:	Bluetimes
Operating Condition:	Max load
Test Site:	1#Shielding Room
Operator:	Star
Test Specification:	L 240V/60Hz
Comment:	Rerport No.:ATE20180826
Start of Test:	5/21/2018 / 9:37:45AM

SCAN TABLE: "V 9K-30MHz fin"

Transducer
J .
Iz NSLK8126 2008
NSLK8126 2008
ŀ

MEASUREMENT RESULT: "BLE0005 fin"

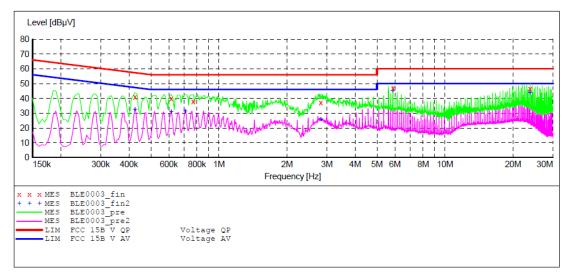
5/21/2018 9:39AM

Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE
0.645000 0.870000 2.760000 4.590000 5.640000	43.40 44.90 42.30 41.50 54.20	10.8 10.8 11.0 11.1 11.2	56 56 56 60	11.1 13.7	QP QP QP	L1 L1 L1 L1 L1	GND GND GND GND GND

MEASUREMENT RESULT: "BLE0005 fin2"

5/21/2018 9:39AM

Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.640000 0.645000 0.870000 2.850000 4.590000 5.380000	35.60 35.30 36.30 33.00 36.20 43.10	10.8 10.8 11.0 11.1 11.2	46 46 46 46 50	10.4 10.7 9.7 13.0 9.8 6.9	AV AV AV AV AV AV	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND



CONDUCTED EMISSION STANDARD FCC PART 15C

EUT:	Wireless Charger M/N:Q12
Manufacturer:	Bluetimes
Operating Condition:	Max load
Test Site:	1#Shielding Room
Operator:	Star
Test Specification:	N 120V/60Hz
Comment:	Rerport No.:ATE20180826
Start of Test:	5/21/2018 / 9:22:48AM

SCAN TABLE: "V 9K-30MHz fin"

Short Desc	ription:	S	UB STD VTE	RM2 1.70		
Start	Stop	Step –	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak	1.0 s	200 Hz	NSLK8126 2008
			Average			
150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008
			Average			

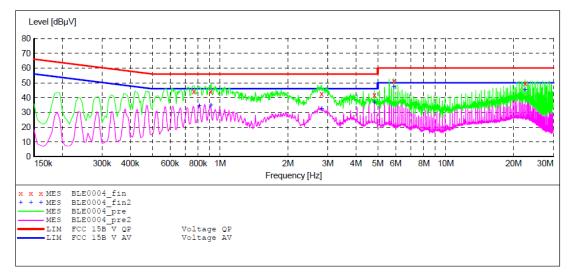
MEASUREMENT RESULT: "BLE0003_fin"

5/21/2018 9:27AM

/21/2010 0.21	/ 1 11 1						
Frequency					Detector	Line	PE
MHz	dBµV	dB	dBµV	dB			
0.425000	41.10	10.7	57	16.2	OD	Ν	GND
					QF .	IN	GND
0.615000	39.70	10.7	56	16.3	QP	Ν	GND
0.770000	38.00	10.8	56	18.0	QP	Ν	GND
2.820000	37.20	11.0	56	18.8	QP	Ν	GND
5.880000	46.80	11.2	60	13.2	QP	Ν	GND
23.770000	46.40	11.5	60	13.6	Q̃₽	Ν	GND

MEASUREMENT RESULT: "BLE0003_fin2"

5/21/2018 9:2 Frequency MHz	27AM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.425000 0.615000	32.50 30.90	10.7 10.7	47 46	14.8 15.1	AV AV	N N	GND GND
0.710000	31.30	10.8	46	14.7	AV	Ν	GND
2.820000	25.70	11.0	46	20.3	AV	Ν	GND
5.880000	45.20	11.2	50	4.8	AV	Ν	GND
23.770000	43.70	11.5	50	6.3	AV	N	GND



CONDUCTED EMISSION STANDARD FCC PART 15C

EUT:	Wireless Charger M/N:Q12
Manufacturer:	Bluetimes
Operating Condition:	Max load
Test Site:	1#Shielding Room
Operator:	Star
Test Specification:	L 120V/60Hz
Comment:	Rerport No.:ATE20180826
Start of Test:	5/21/2018 / 9:27:42AM

SCAN TABLE: "V 9K-30MHz fin"

Short Desc	ription:	S	SUB STD VTE	RM2 1.70		
Start	Stop	Step –	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak	1.0 s	200 Hz	NSLK8126 2008
			Average			
150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008
			Average			

MEASUREMENT RESULT: "BLE0004_fin"

5/21/2018 9:31AM

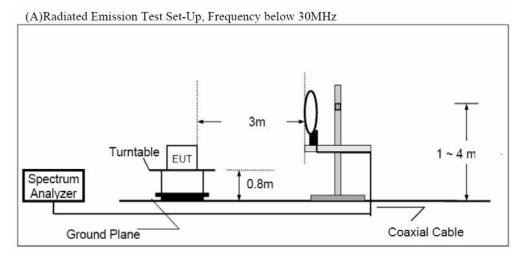
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.765000 0.910000 2.820000 4.830000 5.880000 22.465000	44.00 44.00 42.70 41.70 51.10 49.40	10.8 10.8 11.0 11.1 11.2 11.4	56 56 56 60 60	12.0 12.0 13.3 14.3 8.9 10.6	QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "BLE0004_fin2"

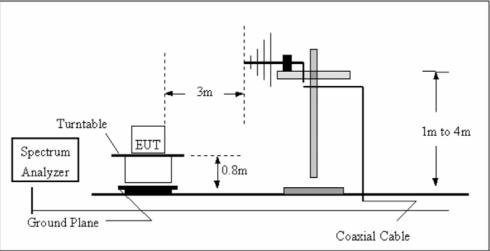
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:31AM	mare a sud	Timit	Manuala	Datastan	T	DE
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.810000	34.20	10.8	46	11.8	AV	L1	GND
0.910000	34.60	10.8	46	11.4	AV	L1	GND
2.820000	32.30	11.0	46	13.7	AV	L1	GND
4.830000	36.70	11.1	46	9.3	AV	L1	GND
5.880000	47.20	11.2	50	2.8	AV	L1	GND
22.465000	45.20	11.4	50	4.8	AV	L1	GND

5. RADIATED EMISSION MEASUREMENT

5.1.Block Diagram of Test


5.1.1.Block diagram of connection between the EUT and simulators

USB Power



(EUT: Wireless Charger)

5.1.2.Block diagram of test setup (In chamber)

(B)Radiated Emission Test Set-Up, Frequency 30-1000MHz

Frequency	Field Streng Limitation		Field Strength Limitation at 3m Measurement Dist				
(MHz)	(uV/m) Dist		(uV/m)	(dBuV/m)			
0.009 - 0.490	2400 / F(KHz) 300m 10000 * 2400/		10000 * 2400/F(KHz)	20log 2400/F(KHz) + 80			
0.490 - 1.705	05 24000 / F(KHz)		100 * 24000/F(KHz)	20log 24000/F(KHz) + 40			
1.705 - 30.00	05 – 30.00 30		100* 30	20log 30 + 40			
30.0 - 88.0	100	3m	100	20log 100			
88.0 - 216.0	150	3m	150	20log 150			
216.0 - 960.0	200	3m	200	20log 200			
Above 960.0	500	3m	500	20log 500			

5.2.Radiated Emission Limit (Class B)

Limit: <u>2400/125=19.2uV/m@300m</u>

Distance Correction Factor=40log(test distance/specific distance)

5.3.EUT Configuration on Measurement

The following equipments are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3.1. Wireless Charger (EUT)

Model Number : Q12 Manufacturer : Shenzhen Bluetimes Technology Co., Ltd.

5.4.Operating Condition of EUT

5.4.1. Setup the EUT and simulator as shown as Section 5.1.

- 5.4.2. Turn on the power of all equipment.
- 5.4.3. Let the EUT work in test mode and measure it.

5.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated emission measurement.

From 9kHz to 30MHz at distance 3m The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

From 30MHz to 1000MHz at distance 3m The measuring antenna height varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity. The measurements were performed for both vertical and horizontal antenna polarization.

The final measurement will be performed with an EMI Receiver set to Quasi Peak detector for the frequency bands 9kHz to 90kHz and 110 to 490 kHz where an average detector will be used according to Section 15.209(d)(2).

The final level, expressed in dBuV/m, is arrived at by taking the reading from the EMI receiver(Level dBuV) and adding the antenna correction factor and cable loss factor(Factor dB) to it. This result then has to be compared with the relevant FCC limit. The resolution bandwidth during the measurement is as follows: 9kHz - 150kHz: ResBW: 200Hz 150kHz - 30MHz: ResBW: 9kHz

The bandwidth of the EMI test receiver (R&S ESCS30) is set at 120kHz from 30MHz to 1000MHz.

5.6.Data Sample

Frequency(Reading	Factor	Result	Limit	Margin	Remark
MHz)	(dBµv)	(dB/m)	(dBµv/m)	(dBµv/m)	(dB)	
X.XX	49.83	-22.03	27.80	43.50	-15.70	QP

$$\label{eq:requency} \begin{split} & \text{Frequency}(\text{MHz}) = \text{Emission frequency in MHz} \\ & \text{Reading}(\text{dB}\mu\text{v}) = \text{Uncorrected Analyzer/Receiver reading} \\ & \text{Factor (dB/m)} = \text{Antenna factor + Cable Loss - Amplifier gain} \\ & \text{Result}(\text{dB}\mu\text{v/m}) = \text{Reading + Factor} \\ & \text{Limit (dB}\mu\text{v/m}) = \text{Limit stated in standard} \end{split}$$

Calculation Formula:

 $Margin(dB) = Result (dB\mu v/m) - Limit(dB\mu v/m)$

Result($dB\mu v/m$)= Reading($dB\mu v$)+ Factor(dB/m)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

5.7.Radiated Emission Measurement Result

PASS.

From 9kHz to 30MHz: TX Mode

Polarization: X

Frequency	Reading	Factor	Result	Limit @3m	Margin	Detector	Height	Degree
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBµV/m)	(dB)	Detector	(cm)	(deg.)
*0.184	50.20	11.77	61.97	102.32	-40.35	QP	124	176
0.552	40.93	3.54	44.47	72.76	-28.29	QP	150	355
0.920	35.04	0.66	35.67	68.32	-32.65	QP	202	228
1.288	29.43	-0.28	29.15	65.41	-36.26	QP	145	208
18.516	29.76	-4.86	24.90	69.54	-44.64	QP	154	35
29.594	27.60	-7.02	20.58	69.54	-48.96	QP	148	38

Polarization: Y

Frequency	Reading	Factor	Result	Limit @3m	Margin	Detector	Height	Degree
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	$(dB\mu V/m)$	(dB)	Detector	(cm)	(deg.)
*0.184	46.19	11.77	57.96	102.32	-44.36	QP	112	201
0.368	34.28	6.13	40.41	96.29	-55.88	QP	139	138
0.552	34.25	3.54	37.79	72.76	-34.97	QP	120	323
0.920	32.41	0.66	33.07	68.33	-35.26	QP	150	230
1.288	25.71	-0.28	25.43	65.41	-39.98	QP	154	193
18.802	35.22	-4.95	30.27	69.54	-39.27	QP	135	330

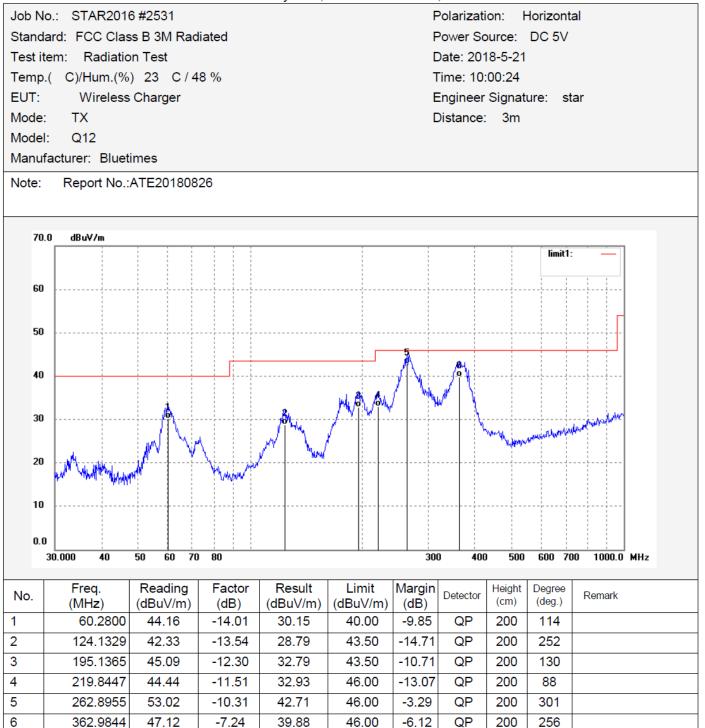
Polarization: Z

Frequency	Reading	Factor	Result	Limit @3m	Margin	Detector	Height	Degree
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	$(dB\mu V/m)$	(dB)		(cm)	(deg.)
*0.184	45.22	11.77	56.99	102.32	-45.33	QP	130	146
0.588	34.49	3.54	38.03	72.21	-34.18	QP	201	301
0.920	30.19	0.66	30.85	68.33	-37.48	QP	156	258
1.288	27.85	-0.28	27.57	65.41	-37.84	QP	200	322
18.147	23.92	-4.86	19.06	69.54	-50.48	QP	236	146
29.361	25.36	-7.02	18.34	69.54	-51.20	QP	145	198

"* ": Fundamental frequency

Part 15 Section 15.31(f)(2) (9kHz-30MHz)

Limit at 3m=Limit@300m-40*log(3(m)/300(m)) Limit at 3m=Limit@30m-40*log(3(m)/30(m))



From 30MHz to 1000MHz: TX Mode

ACCURATE TECHNOLOGY CO., LTD.

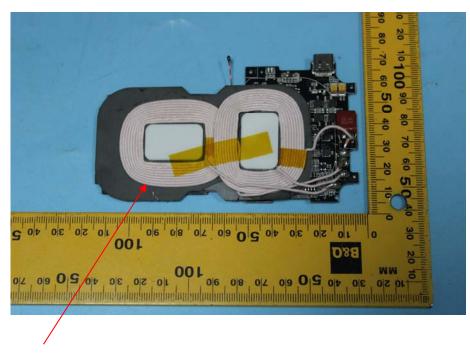
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180826

Page 20 of 21

Carl Carl		Sc	ience & Inc	ustry Park,	Nanshan Sh	nenzhen	,P.R.Chi	na	Fax	:+86-0755-2650339
Job N	lo.: STAR201	6 #2532				F	Polarizati	on: \	/ertical	
Stand	lard: FCC Clas	ss B 3M Rad	liated			F	Power So	ource:	DC 5V	
Test i	tem: Radiatio	on Test				0	Date: 201	8-5-21		
Temp	.(C)/Hum.(%) 23 C/4	8 %			7	Time: 10:	01:27		
EUT:	Wireless	Charger				E	Engineer	Signat	ure: st	tar
Mode	: TX					C	Distance:	3m		
Mode	l: Q12									
Manu	facturer: Blue	times								
Note:	Report No.:	ATE201808	26							
70	1.0 dBuV/m									
									limit1:	· · ·
60										
50										
							.E.e	-		
40	·	3								
	dela Ber	A.	8.	4		$\langle N \rangle$	met h			
30	- Anna	MY Y	o www.	my link	Mr. Anything			WILL WAR	the mound the	4 material man
20	·									
10										
0.0									000 7	
	30.000 40	50 60 7	0 80			30	0 400) 500	600 70	00 1000.0 MHz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
			-10.84	32.28	40.00	-7.72	QP	100	102	
	36.8952	A A C A P A D C P P A	-10.04				1			
		A A C A P A D C P P A	-10.84	36.13	40.00	-3.87	QP	100	145	
	36.8952	50.30	and strength for	and the second s	40.00 40.00	-3.87 -8.35	QP QP	100 100	145 32	
	36.8952 60.7043	50.30 48.13	-14.17	36.13	1202003034	and conver-	QP		0.0800-8600	
	36.8952 60.7043 73.1025	50.30 48.13 44.62	-14.17 -16.48	36.13 31.65	40.00	- <mark>8.3</mark> 5	QP	100	32	


6. ANTENNA REQUIREMENT

6.1. The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

6.2. Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The max Antenna gain of EUT is 0dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

Antenna

***** End of Test Report *****