RFID MODULE

Mifare Reader / Writer

SL030 User Manual

Version 2.6 Nov 2012 StrongLink

FCC statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference, and

(2) This device must accept any interference received, including interference that may cause undesired operation.

Please take attention that changes or modification not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Note: This product has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This product generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this product does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

-Reorient or relocate the receiving antenna.

-Increase the separation between the equipment and receiver.

-Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

-Consult the dealer or an experienced radio/TV technician for help.

Important Information:

When the FCC identification number is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording such as the following: "Contains Transmitter Module FCC ID: 2ADI8-303132" or "Contains FCC ID: 2ADI8-303132" and the information should be also contained in the devices' user manual

This is a RFID module which can read and write data from/to a tag. When a command(data) is sent to the module via its UART port, input data is bufferred in the MCU chip(LPC922). Then the data is translated and sent to RF chip(RC522) where the data is sent to the tag.

When the tag responds - it send response data back which is bufferred in the RC522, then sent to LPC922 where the data is also buffered.

The shielding should be made of matel material and the pitch of shielding grid should be smaller than 3cm. The shielding should cover every direction and the module is installed in the center. The distance between the module and the shielding should be more than 1cm. Pay attention, there should be no shielding above the top of the module and the size of the shieding vacancy should be at least the same size as the module's.Otherwise the RF signal can not reach the tag.

This module is powered via the VCC line soldered on the pin VCC of the interface port. The voltage range should be according to <User Manual>. And power supply's GND should be conneted with pin GND. The power supply should have short-circuit protection.

CONTENT

1. MAIN FEATURES 4	
2. PINNING INFORMATION 5	
3. DEVICE OPERATION 6	
3-1. Clock and Data Transitions:	ļ
3-2. Start Condition	1
3-3. Stop Condition	1
3-4. Acknowledge	1
3-5. Busy State	
3-6. Device Addressing7	
3-7. Write Operations	
3-8. Read Operations	
4. Command Description 8	
4-1. Format	
4-2. Command Overview	
4-3. Command List10	
4-3-1. Select Mifare card10	
4-3-2. Login to a sector	
4-3-3. Download Key into SL03010	
4-3-4. Login sector via stored key11	
4-3-5. Read a data block	
4-3-6. Write a data block11	
4-3-7. Read a value block	
4-3-8. Initialize a value block12	
4-3-9. Write master key (KeyA)12	,
4-3-10. Increment value	
4-3-11. Decrement value	
4-3-12. Copy value	
4-3-13. Read a data page (UltraLight & NTAG203)14	
4-3-14. Write a data Page (UltraLight & NTAG203)14	
4-3-15. Power Down	
4-3-16. Get firmware version	

1. MAIN FEATURES

- Tags supported: Mifare 1k, Mifare 4k, Mifare UltraLight and NFC NTAG203
- Auto-detecting tag
- Built-in antenna
- 0 to 400 KHz bit-wide I²C-bus communication
- 2.5 ~ 3.6V VDC operating, I/O pins are 5V tolerant
- Work current less than 40mA @3.3V
- Power down current less than 10uA
- Operating distance: Up to 50mm, depending on tag
- Storage temperature: -40 °C ~ +85 °C
- Operating temperature: -25 °C ~ +70 °C
- Dimension: $38 \times 38 \times 3$ mm
- The OUT pin at low level indicates tag in detective range, and high level indicating tag out

2. PINNING INFORMATION

Uint: mil 100 mil between two pads

PIN	SYMBOL	TYPE	DESCRIPTION	
1	VDD	PWR	Power supply, 2.5V to 3.6VDC	
2	IN	Input	Falling edge wake up SL030 from power down mode	
3	SDA	Input/Output	Serial Data Line	
4	SLC	Input	Serial Clock Line	
			Tag detect signal	
5 Out (Output	low level indicating tag in	
			high level indicating tag out	
6	GND	PWR	Ground	
7	NC			
8	NC			
9	NC			
10	NC			

3. DEVICE OPERATION

3-1. Clock and Data Transitions:

The SDA pin is normally pulled high with an external device. Data on the SDA pin may change only during SCL low time periods. Data changes during SCL high periods will indicate a start or stop condition as defined below.

3-2. Start Condition

A high-to-low transition of SDA with SCL high is a start condition which must precede any other command

3-3. Stop Condition

A low-to-high transition of SDA with SCL high is a stop condition.

3-4. Acknowledge

All addresses and data words are serially transmitted to and from the SL030 in 8-bit words. The SL030 sends a zero to acknowledge that it is not busy, and has received each word. This happens during the ninth clock cycle.

3-5. Busy State

When the SL030 has received command, then don't acknowledge IIC bus until ends with the card communication.

3-6. Device Addressing

The SL030 devices require an 8-bit device address word following a start condition to enable the chip for a read or write operation.

The device address word consists of 7 bits addressing and 1 bit operation select bit. The first 7 bits are the SL030 addressing, is 10100xx depend on JP1 and JP2 status as below table

	JP1	JP2	Address
shorted	20	20	1010000
	110	110	(default)
	no	yes	1010001
	yes	no	1010010
	yes	yes	1010011

The eighth bit of the device address is the read/write operation select bit. A read operation is initiated if this bit is high and a write operation is initiated if this bit is low.

The first byte after the START procedure.

3-7. Write Operations

The host device send a command(refer chapter 4) to SL030 via write operation, then SL030 will carry out the order that receive. Finished time according to different order

3-8. Read Operations

The host device passes to read the operation gets the order carries out the result

4. COMMAND DESCRIPTION

4-1. FORMAT

Host Write Command to SL030:

Address	Len	Command	Data	
Address:	1 b	yte, 0xA0		
Len:	1 b	yte indicating	the numb	er of bytes from Command to the end of Data
Command	1: 1 by	yte Command	code, see	e Table 3
Data:	Var	iable length de	epends or	the command type

Host Read The Result:

Address	Len	Command	Status	Data	
Address:	1 b	yte, 0xA1			
Len:	1 b	yte indicating	the numb	er of byte	es from Command to the end of Data
Command	1: 1 b	yte Command	code, see	Table 3	
Status:	1 b	yte Command	status, se	e Table 4	ļ.
Data:	Var	iable length de	epends on	the com	mand type.

4-2. Command Overview

Table 3	
Command	Description
0x01	Select Mifare card
0x02	Login to a sector
0x03	Read a data block
0x04	Write a data block
0x05	Read a value block
0x06	Initialize a value block
0x07	Write master key (key A)
0x08	Increment value
0x09	Decrement value
0x0A	Copy value
0x10	Read a data page (Ultralight & NATG203)
0x11	Write a data page (Ultralight & NTAG203)
0x12	Download Key
0x13	Login sector via stored Key
0x50	Go to Power Down mode
0xF0	Get firmware version

STATUS OVERVIEW

Table 4	
Status	Description
0x00	Operation succeed
0x01	No tag
0x02	Login succeed
0x03	Login fail
0x04	Read fail
0x05	Write fail
0x06	Unable to read after write
0x08	Address overflow
0x09	Download Key fail
0x0A	Collision occur
0x0C	Load key fail
0x0D	Not authenticate
0x0E	Not a value block

4-3. COMMAND LIST

4-3-1. Select Mifare card

Host V	Write:				
Len	0x01				
Host 1	Read:				_
Len	0x01	Status	UID	Туре	
Status	: 0x00:	Operat	ion succe	ed	
	0x01:	No tag			
UID:	The u	niquely se	erial numb	per of Mifare	card
Type:	0x01:	Mifare	1k, 4 byt	e UID	
	0x02:	Mifare	1k, 7 byt	e UID ^[1]	
	0x03:	Mifare	UltraLig	ht or NATG2	$203^{[2]}$, 7 byte UID
	0x04:	Mifare	4k, 4 byt	e UID	·
	0x05:	Mifare	4k, 7 byt	e UID ^[1]	
	0x06:	Mifare	DesFire,	7 byte UID	
	0x0A	: Other		-	

4-3-2. Login to a sector

Host Write:

Len0x02SectorTypeKeySector:Sector need to login, 0x00 – 0x27Type:Key type (0xAA: authenticate with KeyA, 0xBB: authenticate with KeyB)Key:Authenticate key, 6 bytes

Host Read:

Len 0x02 Status

- Status: 0x02: Login succeed
 - 0x01: No tag
 - 0x03: Login fail

0x08: Address overflow

4-3-3. Download Key into SL030 Host Write:

LIUSU								
Len	0x12	Sector	Туре	Key				
Sector: $0x00 - 0x27$								
Type:	Key t	ype (0xAA	A: KeyA	, 0xBB: KeyB)				
Key:	6 byte	s, stored i	nto SL03	30				
Host I	Read:							
Len	0x12	Status						
Status	Status: 0x00: Operation succeed							
0x08: Address overflow								
	0x09:	Downl	oad fail					

4-3-4. Login sector via stored key Host Write:

Len	0x13	Sector	Туре				
Sector: Sector need to login, $0x00 - 0x27$							
Type:	Type: Key type (0xAA: KeyA, 0xBB: KeyB)						
Host I	Read:						
Len	0x13	Status					
Status	: 0x02:	Login	succeed				
	0x03:	Login	fail				
	0x08:	Addres	s overflo	OW			

4-3-5. Read a data block

Host Write:

Len 0x03 Block

Block: The absolute address of block to be read, 1 byte

Host Read:

Len	0x03	Status	Data	
-----	------	--------	------	--

Status: 0x00: Operation succeed

- 0x01: No tag
- 0x04: Read fail
- 0x0D: Not authenticate
- Data: Block data returned if operation succeeds, 16 bytes.

4-3-6. Write a data block

Host Write:

Len 0x04 Block Data

Block: The absolute address of block to be written, 1 byte.

Data: The data to write, 16 bytes.

Host Read:

- Len 0x04 Status Data
- Status: 0x00: Operation succeed
 - 0x01: No tag
 - 0x05: Write fail

0x06: Unable to read after write

0x0D: Not authenticate

Data: Block data written if operation succeeds, 16 bytes.

4-3-7. Read a value block

Host Write:

Len 0x05 Block

Block: The absolute address of block to be read, 1 byte.

Host Read:

Len 0x05 Status Value

- Status: 0x00: Operation succeed
 - 0x01: No tag
 - 0x04: Read fail
 - 0x0D: Not authenticate
 - 0x0E: Not a value block
- Value: Value returned if the operation succeeds, 4 bytes.

4-3-8. Initialize a value block

Host	Write:		
Lon	$0_{\rm W}06$	Dlool	Value

	Len	UXU6	BIOCK	value				
	Block: The absolute address of block to be initialized, 1 byte							
	Value: The value to be written, 4 bytes.							
	Host I	Read:						
	Len	0x06	Status	Value				
	Status: 0x00: Operation succeed							
	0x01: No tag							
	0x05: Write fail							

- 0x06: Unable to read after write
- 0x0D: Not authenticate
- Value: Value written if the operation succeeds, 4 bytes.

4-3-9. Write master key (KeyA)

Host Write:

Len 0x07 Sector Key

Sector: The sector number to be written, 0x00 - 0x27.

Key: Authentication key, 6 bytes

Host Read:

Len

~ ~ -	~	
$\Omega_{V}\Omega_{7}$	Statuc	Kaw
0X07	Status	NEV

Status: 0x00: Operation succeed

- 0x01: No tag
- 0x05: Write fail
- 0x08: Address overflow
- 0x0D: Not authenticate

Key: Authentication key written if the operation succeeds, 6 bytes.

Attention: Be sure KeyB is readable, otherwise KeyB will be change to 00000000000 after this command.

4-3-10. Increment value

Host Write:

Len 0x08 Block Value

Block: The absolute address of block to be increased, 1 byte.

Value: The value to be increased by, 4 bytes.

Host Read:

Len	0x08	Status	Value			
Status: 0x00:		Operat	Operation succeed			
	0x01:	No tag				
	0x05:	Write f	fail			
0x06:		Unable	Unable to read after write			
	0x0D	Not au	thenticate	2		
	0x0E:	Not a v	value bloc	ck		

Value: The value after increment if the operation succeeds, 4 bytes

4-3-11. Decrement value

Host Write:

Len 0x09 Block Value

Block: The absolute address of block to be decreased, 1 byte

Value: The value to be decreased by, 4 bytes

Host Read:

Len 0x09 Status Value

Status: 0x00: Operation succeed

- 0x01: No tag
- 0x05: Write fail
- 0x06: Unable to read after write
- 0x0D: Not authenticate
- 0x0E: Not a value block

Value: The value after decrement if the operation succeeds, 4 bytes

4-3-12. Copy value

Host Write:

Len 0x0A Source Destination

Source: The source block copy from, 1 byte Destination: The destination copy to, 1 byte

The source and destination must in the same sector

Host Read:

Len	0x0A	Status	Value	
Status	: 0x00:	Operat	ion succe	ed

0x01: No tag

0x05: Write fail

0x06: Unable to read after write

- 0x0D: Not authenticate
- 0x0E: Not a value block (Source)
- Value: The value after copy if the operation succeeds, 4 bytes

4-3-13. Read a data page (UltraLight & NTAG203) Host Write:

Len	0x10	Page					
Page:	The p	age numb	per to be read, 1 byte				
Host Read:							
Len	0x10	Status	Data				
Status: 0x00: Operation succeed							
	0x01:	No tag					
	0x04:	Read f	Fail				
	0x08:	Addre	ss overflow				
D	D1 1	1	1.0				

Data: Block data returned if operation succeeds, 4 bytes.

4-3-14. Write a data Page (UltraLight & NTAG203) Host Write:

Len	0x11	Page	Data				
Page:	The p	age numb	er to be	written, 1 byte.			
Data:	Data: The data to write, 4 bytes.						
Host I	Read:			_			
Len	0x11	Status	Data				
Status	: 0x00:	Operat	tion succ	ceed			
	0x01:	No tag	5				
	0x05:	Write	fail				
	0x06:	Unable	e to read	after write			
	0x08:	Addres	ss overfl	OW			
	0xF0:	Check	sum erro	Dr			
Data:	page of	data writte	en if ope	ration succeeds, 41			

4-3-15. Power Down

Host Write:

Len 0x50

Host Read:

No response until falling edge at PIN2 or repower

4-3-16. Get firmware version

Host Write:							
Len	0xF0						
Host Read: ^[3]							
Len	0xF0	Status	Data				
Status: 0x00: Operation succeed							
Data:	firmw	are versio	on.				

Remark

^[1] In order to support 7 byte UID Mifare class, the firmware of SL030 has been updated to Ver3.2 in Mar 2011.

And older firmware version (such as Ver1.0, 2.0, 2.2, etc) only supports 4 byte UID. Please refer to NXP <u>Customer Letter UID</u> for detailed information of 4 byte & 7 byte UID of Mifare products.

^[2] To support NATG203, the firmware of SL030 has been updated to Ver3.9 in May 2012. The older firmware version only supports reading/writing data page address less than 16.

^[3] One sample of SL030 response

	Len	Command	Status	Data
				(Firmware version)
HEX	0B	F0	00	53 4C 30 33 30 2D 33 2E 32
ASCII				"SL030-3.2"