

3D Systems Corporation

ProJet® MJP 2500 FCC 15.207:2015 FCC 15.225:2015 13.56MHz Radio

Report # 3DSY0030

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report may only be duplicated in its entirety

CERTIFICATE OF TEST

Last Date of Test: August 10, 2015 3D Systems Corporation Model: ProJet® MJP 2500

Radio Equipment Testing

Standards

Specification	Method	
FCC 15.207:2015	ANSI C63.10:2013	
FCC 15.225:2015	ANSI C63.10:2013	

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.4	Field Strength of Fundamental	Yes	Pass	
6.4	Field Strength of Spurious Emissions Less Than 30 MHz	Yes	Pass	
6.5	Field Strength of Spurious Emissions Greater Than 30 MHz	Yes	Pass	
6.2 6.4 6.5 6.8	Frequency Stability	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Kyle Holgate, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number		Description	Date	Page Number
00	None			

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/accreditations/</u> http://gsi.nist.gov/global/docs/cabs/designations.html

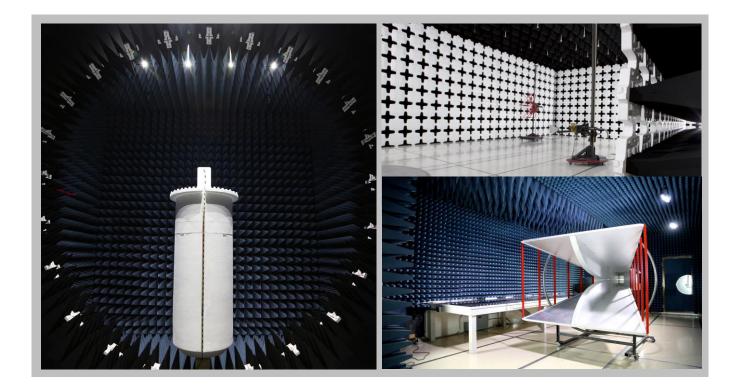
MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is on each data sheet. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


Test	+ MU	- <u>MU</u>
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

FACILITIES

California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	Ibs OC01-13 Labs MN01-08, MN10 Labs NY01-04 Labs EV01-12 41 Tesla 9349 W Broadway Ave. 4939 Jordan Rd. 22975 NW Evergreen Pkwy ne, CA 92618 Brooklyn Park, MN 55445 Elbridge, NY 13060 Hillsboro, OR 97124		Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 9801 (425)984-6600					
	NVLAP								
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0				
	Industry Canada								
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1				
		BS	МІ						
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R				
		VC	CI						
A-0029	A-0109	N/A	A-0108	A-0201	A-0110				
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA								
US0158	US0175	N/A	US0017	US0191	US0157				

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	3D Systems Corporation
Address:	26600 SW Parkway
City, State, Zip:	Wilsonville, OR 97070
Test Requested By:	Steve Wardle
Model:	ProJet® MJP 2500
First Date of Test:	August 06, 2015
Last Date of Test:	August 10, 2015
Receipt Date of Samples:	August 06, 2015
Equipment Design Stage:	Pre-Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

3D printer with a 13.56MHz RFID Radio

Testing Objective:

To demonstrate compliance to FCC Part 15.225 specifications.

CONFIGURATIONS

Configuration 3DSY0030-1

EUT								
Description	Manufacturer	Model/Part Number	Serial Number					
RFID Board (DMC)	3D Systems Corporation	310071-01	PP1-029					
RFID Reader Board Antenna Five Turn Loop	3D Systems Corporation	3100084-02	None					

Peripherals in test setup boundary							
Description Manufacturer Model/Part Number Serial Number							
Power Supply 12V	3D Systems Corporation	LS50-12	None				
Power Supply 5V 3D Systems Corporation LS75-5 None							

Remote Equipment Outside of Test Setup Boundary							
Description Manufacturer Model/Part Number Serial Number							
Laptop (Dell)	Dell	D630	KX335 A00				

Cables								
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2			
AC Power Cable	Yes	2m	No	AC Mains	AC/DC Power Adapter Set			
DC Power Cable	No	.5m	No	AC/DC Power Adapter Set	RFID Board			
Antenna Cables x4	No	.3m	No	RFID Board	RFID Antennas			
Serial Cable	No	2.5m	No	RFID Board	Laptop			

Configuration 3DSY0030-2

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
3D Printer	3D Systems Corporation	ProJet® MJP 2500	PP1-029

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power Cable	No	2m	No	3D Printer	AC Mains

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	8/6/2015	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	8/6/2015	AC Power Line Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
3	8/7/2015	Field Strength of Spurious Emissions greater than 30 MHz	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
4	8/10/2015	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
5	8/10/2015	Field Strength of Spurious Emissions less than 30 MHz	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50 Ω measuring port is terminated by a 50 Ω EMI meter or a 50 Ω resistive load. All 50 Ω measuring ports of the LISN are terminated by 50 Ω .

TEST EQUIPMENT

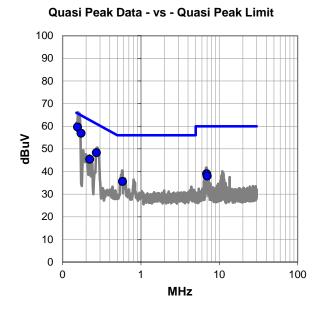
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Rohde & Schwarz	ESCI	ARH	3/11/2015	03/11/2016
LISN	Solar Electronics	9252-50-R-24-BNC	LIR	10/7/2014	10/07/2015
High Pass Filter	TTE	H97-100K-50-720B	HHD	1/5/2015	01/05/2016
Attenuator, BNC 10 Watt	Fairview Microwave	SA6B10W-20	TQQ	11/20/2014	11/20/2015
Conducted Emissions Cable Assembly	Northwest EMC	EVG, HHD, TQQ	EVGA	5/12/2015	05/12/2016

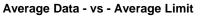
MEASUREMENT UNCERTAINTY

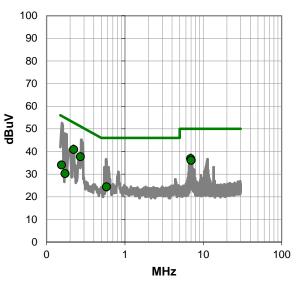
Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

3DSY0030-2


MODES INVESTIGATED


On, 13.56MHz continuous Tx



EUT:	ProJet® MJF	2500 °			Work Order:	3DSY0030			
Serial Number:	PP1-029				Date:	08/06/2015			
Customer:	3D Systems,	Inc.			Temperature:	23.6°C			
Attendees:	Steve Wardle	e			Relative Humidity:	42.2%			
Customer Project:	None				Bar. Pressure:	1019.6 mb			
Tested By:	Brandon Hot	obs			Job Site:	EV07			
Power:	110VAC/60H	lz			Configuration:	3DSY0030-2			
TEST SPECIFIC	CATIONS								
Specification:				Method:					
FCC 15.207:2015				ANSI C6	ANSI C63.10:2013				
TEST PARAME	TERS								
Run #: 2		Line:	Neutral		Add. Ext. Attenuation (dB	3): 0			
COMMENTS None									
EUT OPERATIN	IG MODES								
On, 13.56MHz cont	inuous Tx								
DEVIATIONS F	ROM TEST	STAND	ARD						
None									

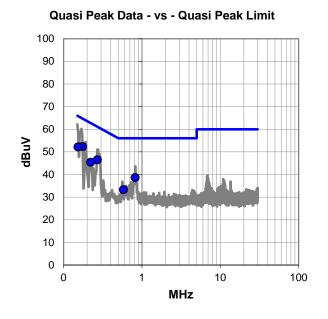
None

RESULTS - Run #2

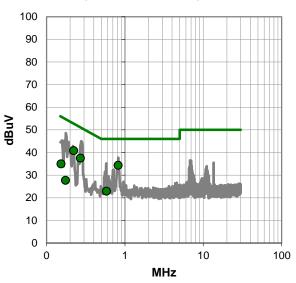
Quasi Peak Data - vs - Quasi Peak Limit											
Freq (MHz)											
0.155	39.6	20.1	59.7	65.7	-6.0						
0.172	36.9	20.0	56.9	64.8	-7.9						
0.271	28.4	19.9	48.3	61.1	-12.8						
0.222	25.4	20.0	45.4	62.7	-17.3						
0.582	15.7	19.9	35.6	56.0	-20.4						
6.910	18.7	20.3	39.0	60.0	-21.0						
7.010	17.7	20.3	38.0	60.0	-22.0						

Average Data - vs - Average Limit											
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)						
0.222	20.9	20.0	40.9	52.7	-11.8						
6.910	16.6	20.3	36.9	50.0	-13.1						
0.271	17.8	19.9	37.7	51.1	-13.4						
7.010	15.8	20.3	36.1	50.0	-13.9						
0.582	4.5	19.9	24.4	46.0	-21.6						
0.155	14.0	20.1	34.1	55.7	-21.6						
0.172	10.2	20.0	30.2	54.8	-24.6						

CONCLUSION


Pass

Tested By



EUT:	ProJet® MJP	2500			Work Order:	3DSY0030			
Serial Number:	PP1-029	2000			Date:	08/06/2015			
Customer:	3D Systems,	Inc.			Temperature:	23.6°C			
Attendees:	Steve Wardle				Relative Humidity:	42.2%			
Customer Project:	None				Bar. Pressure:	1019.6 mb			
Tested By:	Brandon Hob	bs			Job Site:	EV07			
Power:	110VAC/60H	z			Configuration:	3DSY0030-2			
TEST SPECIFIC	ATIONS			Mothese	I				
Specification:					Method:				
FCC 15.207:2015				ANSIC	ANSI C63.10:2013				
TEST PARAME	TERS								
Run #: 3		Line:	High Line		Add. Ext. Attenuation (dB): 0				
COMMENTS None									
EUT OPERATIN	IG MODES								
On, 13.56MHz cont	inuous Tx								
DEVIATIONS F	ROM TEST	STAND	ARD						
None		<u> </u>							

None

0.822

0.222

0.271

0.153

0.583

0.175

-11.9

-13.6

-20.9

-23.1

-27.0

RESULTS - Run #3

Quasi Peak Data - vs - Quasi Peak Limit										
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)					
0.175	32.3	20.0	52.3	64.7	-12.4					
0.153	32.1	20.1	52.2	65.8	-13.7					
0.271	26.6	19.9	46.5	61.1	-14.6					
0.222	25.4	20.0	45.4	62.7	-17.3					
0.822	18.7	19.9	38.6	56.0	-17.4					
0.583	13.4	19.9	33.3	56.0	-22.7					

Average Data - vs - Average Limit										
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)					
22	14.4	19.9	34.3	46.0	-11.7					

20.0

19.9

20.1

19.9

20.0

20.8

17.6

14.9

3.0

7.7

CONCLUSION

Pass

40.8

37.5

35.0

22.9

27.7

52.7

51.1

55.8

46.0

54.7

Tested By

ENC

FIELD STRENGTH OF FUNDAMENTAL

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

On, 13.56MHz continuous Tx

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

3DSY0030 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency 12.5 MHz

Stop Frequency 15 MHz

SAMPLE CALCULATIONS

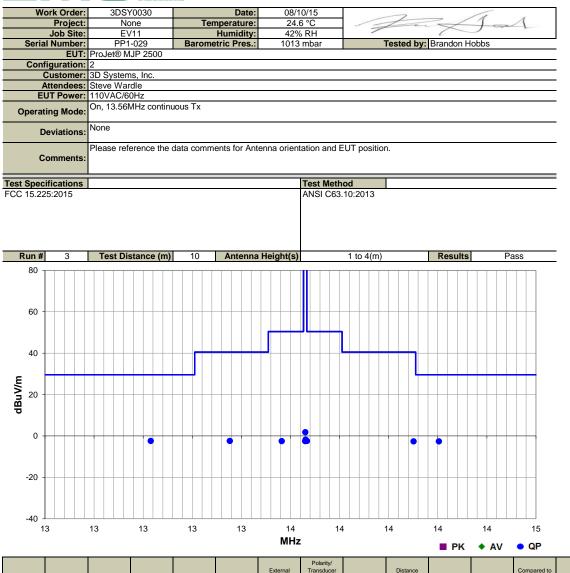
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Analyzer - Spectrum Analyzer	Agilent	E4443A	AFB	3/17/2015	12 mo
Cable	None	10m Test Distance Cable	EVL	5/11/2015	12 mo
Antenna, Loop	EMCO	6502	AOA	6/24/2014	24 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.


While scanning, fundamental carrier from the EUT was maximized by rotating the EUT, adjusting the measurement antenna height and orientation in 3 orthogonal planes, the EUT and/or associated antenna is positioned in 3 orthogonal planes (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

As outlined in 15.209(e) and 15.31(f)(2), measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2015.03.03 EmiR5 2015.05.29

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
12.931	5.9	10.8	1.0	259.0	10.0	0.0	Horz	QP	-19.1	-2.4	29.5	-31.9	Ant perp to GND, Ant perp to EUT, EUT Normal
14.105	5.7	10.8	1.0	343.0	10.0	0.0	Horz	QP	-19.1	-2.6	29.5	-32.1	Ant perp to GND, Ant perp to EUT, EUT Normal
13.253	5.9	10.8	1.0	64.0	10.0	0.0	Horz	QP	-19.1	-2.4	40.5	-42.9	Ant perp to GND, Ant perp to EUT, EUT Normal
14.002	5.7	10.8	1.0	237.0	10.0	0.0	Horz	QP	-19.1	-2.6	40.5	-43.1	Ant perp to GND, Ant perp to EUT, EUT Normal
13.567	5.9	10.8	1.0	96.0	10.0	0.0	Horz	QP	-19.1	-2.4	50.5	-52.9	Ant perp to GND, Ant perp to EUT, EUT Normal
13.464	5.8	10.8	1.0	317.0	10.0	0.0	Horz	QP	-19.1	-2.5	50.5	-53.0	Ant perp to GND, Ant perp to EUT, EUT Normal
13.560	10.1	10.8	1.0	23.0	10.0	0.0	Horz	QP	-19.1	1.8	84.0	-82.2	Ant perp to GND, Ant perp to EUT, EUT Normal
13.562	6.5	10.8	1.0	331.0	10.0	0.0	Horz	QP	-19.1	-1.8	84.0	-85.8	Ant prp to GND, Ant para to EUT, EUT Normal
13.560	5.8	10.8	1.0	11.0	10.0	0.0	Vert	QP	-19.1	-2.5	84.0	-86.5	Ant para to GND, Ant perp to EUT, EUT Normal

FIELD STRENGTH OF SPURIOUS EMISSIONS LESS THAN 30 MHz

PSA-ESCI 2015.03.03

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

On, 13.56MHz continuous Tx

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

3DSY0030 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency 9 kHz

Stop Frequency 30 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Loop	EMCO	6502	AOA	6/24/2014	24 mo
Cable	None	3m Test Distance Cable	EVM	5/11/2015	12 mo
Analyzer - Spectrum Analyzer	Agilent	E4443A	AFB	3/17/2015	12 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and orientation in 3 orthogonal planes, the EUT and/or associated antenna is positioned in 3 orthogonal planes (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

As outlined in 15.209(e) and 15.31(f)(2), measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

FIELD STRENGTH OF SPURIOUS EMISSIONS LESS THAN 30 MHz

PSA-ESCI 2015.03.03

EmiR5 2015.05.29

3DSY0030 08/11/15 Date: Work Order: 7 Project: Job Site: Temperature: Humidity: 26.4 °C 37.9% RH None 1 1 EV11 PP1-029 Serial Number: Barometric Pres.: Tested by: Brandon Hobbs 1013 mbar EUT: ProJet® MJP 2500 Configuration: 2 3D Systems, Inc. Steve Wardle Customer: Attendees: EUT Power: 110VAC/60Hz On, 13.56MHz continuous Tx Operating Mode None Deviations: Please reference the data comments for Antenna orientation and EUT position. Comments Test Method Test Specifications FCC 15.225:2015 ANSI C63.10:2013 Test Distance (m) Antenna Height(s) Run # 1 to 4(m) Results Pass 8 3 70 50 30 **m//ngp** 10 -10 • -30 -50 10 100 MHz • QP

							MHZ				PK	◆ AV	QP	
	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
	27.125	6.2	9.2	1.0	197.0	3.0	0.0	Horz	QP	-40.0	-24.6	29.5	-54.1	ANT prep to GND, ANT perp to EUT, EUT Normal
:	27.118	5.4	9.2	1.0	173.0	3.0	0.0	Horz	QP	-40.0	-25.4	29.5	-54.9	ANT prep to GND, ANT para to EUT, EUT Normal
:	27.117	5.3	9.2	1.0	204.0	3.0	0.0	Vert	QP	-40.0	-25.5	29.5	-55.0	ANT para to GND, ANT perp to EUT, EUT Normal

FIELD STRENGTH OF SPURIOUS EMISSIONS GREATER THAN 30 MHz

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

On, 13.56MHz continuous Tx

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

3DSY0030 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

Stop Frequency 1000 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Keysight	N9010A	AFN	2/10/2015	12 mo
Cable	N/A	Bilog Cables	EVA	2/10/2015	12 mo
Pre-Amplifier	Miteq	AM-1616-1000	AOL	2/10/2015	12 mo
Antenna, Biconilog	EMCO	3141	AXE	8/29/2014	24 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting while set at the operating channel.

While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and mantaining the EUT antenna oriented in the fixed normally operating position (per ANSI C63.10:2013).

EMC

FIELD STRENGTH OF SPURIOUS EMISSIONS GREATER THAN 30 MHz

					•••=								
Wo	ork Order:	3DS	Y0030		Date:		08/0)7/15				<i>_</i>	
	Project:	N	lone	Te	mperature:		24.	7 °C	/-	1	2/	1-	1
	Job Site:	E	V01		Humidity:		41.9	% RH	/		~		1
Serial	Number:		1-029	Barom	etric Pres.:		1012.	8 mbar		Tested by:	Brandon H	lobbs	
		ProJet® N	MJP 2500										
Conf	iguration:	2											
<u> </u>	Sustomer:	3D Syster	ms, Inc.										
<u> </u>	ttendees:	Steve Wa	ardle										
EL	JT Power:												
Operati	ing Mode:		MHz continu	JOUS IX									
D	eviations:	None											
Co	omments:	The EUT	is in the nor	mal orienta	tion for regu	ular u	ise.						
st Speci	fications							Test Meth	od				_
C 15.22		1						ANSI C63.					
Run #	1	Test D	istance (m)	3	Antenna	a Hei	ght(s)		1 to 4(m)		Results	P	ass
°U T													
70 +													
60 +						_							
50													
50 +													
E													
₩/Au													
B													
σ													
30 +													
20 +													
10 -				•	•								
o +													
10							100						1000
							MHz				PK	◆ AV	o QF
								Polarity/					
Freq	Amplitude	Factor	Antenna Height	Azimuth	Test Distance		ternal nuation	Transducer Type	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compare Spec
Freq (MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)		(dB)	Type	Detector	(dB)	(dBuV/m)	(dBuV/m)	(dB)
							· · ·						
54.368	30.7	-10.1	1.0	165.0	3.0		0.0	Vert	QP	0.0	20.6	40.0	-19.
40.684	24.0	-6.4	1.0	333.0	3.0		0.0	Vert	QP	0.0	17.6 11.5	40.0	-22.

17.9

20.9

-6.4

-10.0

3.7

3.8

76.0

360.0

3.0

3.0

0.0

0.0

QP

QP

Horz

Horz

0.0

0.0

11.5

10.9

40.0

40.0

40.680

54.182

-28.5

-29.1

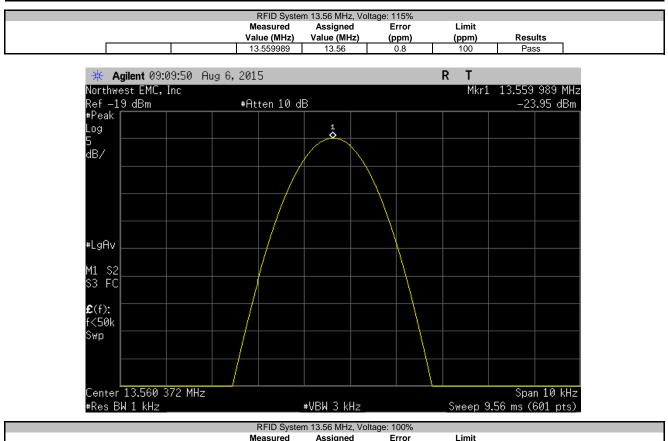
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

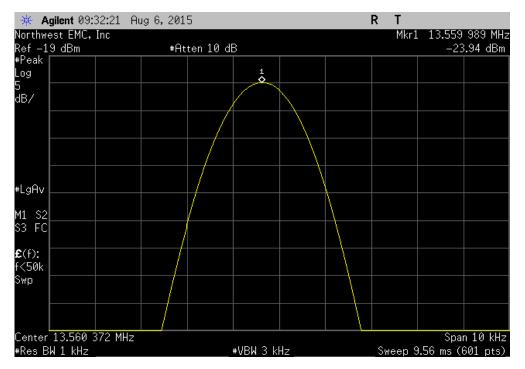
					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
Thermometer	Omegaette	HH311	DTY	1/21/2015	36
Multimeter	Tektronix	DMM912	MMH	2/5/2013	36
Humidity and Temperature Chamber	Cincinnati Sub Zero (CSZ)	ZPH-8-2-SCT/AC	TBI	NCR	0
Near Field Probe	EMCO	7405	IPD	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/14/2015	12
Spectrum Analyzer	Agilent	E4446A	AAQ	3/10/2015	12

TEST DESCRIPTION

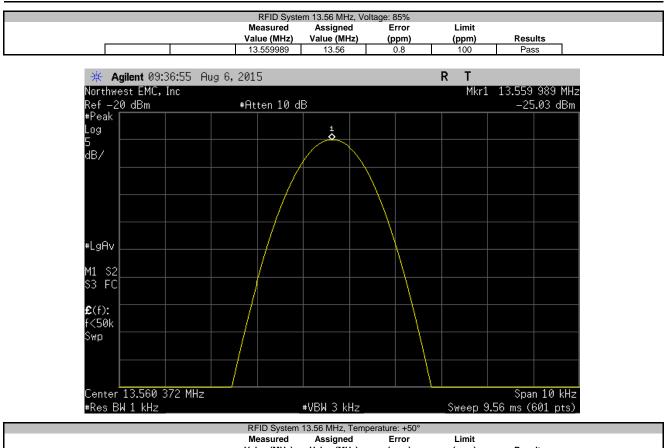
A direct connect measurement was made between the EUT's antenna cable and a spectrum analyzer. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

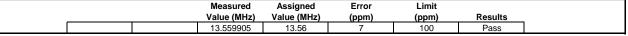

Measurements were made at the edges of the main transmit bands as called out on the data sheets. Testing was done with an absence of modulation in a CW mode of operation.

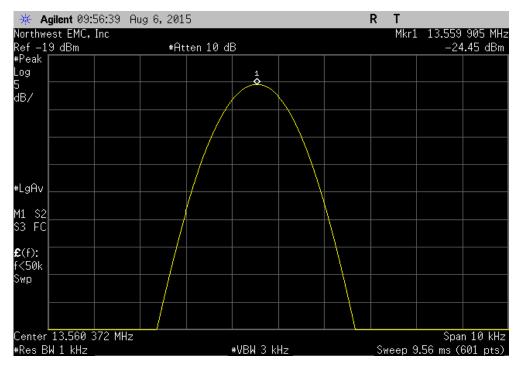
The primary supply voltage was varied from 85 % to 115% of the nominal voltage Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-30 ° to +50° C) and at 10°C intervals.

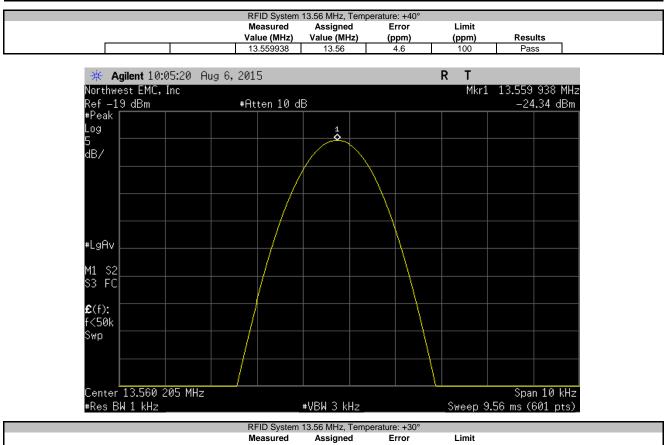


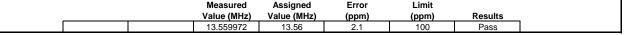
EUT:	ProJet® MJP 2500								Work Order:		
Serial Number:	: PP1-029								Date:	08/06/15	
Customer:	: 3D Systems, Inc.								Temperature:	23.6°C	
Attendees:	Steve Wardle								Humidity:	42%	
Project:	None							E	Barometric Pres.:	1019.9	
Tested by:	Brandon Hobbs				Power:	110VAC/60Hz			Job Site:	EV06	
TEST SPECIFICAT						Test Method					
FCC 15.225:2015					1	ANSI C63.10:2013					
COMMENTS				_							
The DC voltages to	o the RFID board was varie	ed via the spec	c for testing.								
DEVIATIONS FROM	M TEST STANDARD										
None											
	1		Signature	14	Zing	Jar					
None Configuration #	· · · ·		Signature	14	Zuy	Jal	Measured Value (MHz)	Assigned Value (MHz)	Error (ppm)	Limit (ppm)	Results
None Configuration #	MHz		Signature	4	Ziry	Jan	Value (MHz)	Value (MHz)	(ppm)	(ppm)	
None Configuration #	MHz Voltage: 115%		Signature	14	Zny	Jar	Value (MHz) 13.559989	Value (MHz) 13.56	(ppm) 0.8	(ppm) 100	Pass
None Configuration #	MHz Voltage: 115% Voltage: 100%		Signature	14	2 y	Jar	Value (MHz) 13.559989 13.559989	Value (MHz) 13.56 13.56	(ppm) 0.8 0.8	(ppm) 100 100	Pass Pass
None Configuration #	MHz Voltage: 115% Voltage: 100% Voltage: 85%		Signature	14	2 ay	Gar	Value (MHz) 13.559989 13.559989 13.559989	Value (MHz) 13.56 13.56 13.56 13.56	(ppm) 0.8 0.8 0.8 0.8	(ppm) 100 100 100	Pass Pass Pass
None Configuration #	MHz Voltage: 115% Voltage: 100% Voltage: 85% Temperature: +50°		Signature	14	2. y	Gal	Value (MHz) 13.559989 13.559989 13.559989 13.559905	Value (MHz) 13.56 13.56 13.56 13.56 13.56	(ppm) 0.8 0.8 0.8 7	(ppm) 100 100 100 100 100	Pass Pass Pass Pass
None Configuration #	MHz Voltage: 115% Voltage: 100% Voltage: 85% Temperature: +50° Temperature: +40°		Signature	1	2. y	G-1	Value (MHz) 13.559989 13.559989 13.559989 13.559905 13.559938	Value (MHz) 13.56 13.56 13.56 13.56 13.56 13.56	(ppm) 0.8 0.8 0.8 7 4.6	(ppm) 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass
None Configuration #	MHz Voltage: 115% Voltage: 100% Voltage: 85% Temperature: +50° Temperature: +40° Temperature: +30°		Signature	4	Z. Z	G-1	Value (MHz) 13.559989 13.559989 13.559989 13.559905 13.559938 13.559938 13.559972	Value (MHz) 13.56 13.56 13.56 13.56 13.56 13.56 13.56	(ppm) 0.8 0.8 0.8 7 4.6 2.1	(ppm) 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass
None Configuration #	MHz Voltage: 115% Voltage: 100% Voltage: 85% Temperature: +50° Temperature: +30° Temperature: +30°		Signature	14	the y	Jar	Value (MHz) 13.559989 13.559989 13.559989 13.559905 13.559938 13.559972 13.56002	Value (MHz) 13.56 13.56 13.56 13.56 13.56 13.56 13.56 13.56 13.56	(ppm) 0.8 0.8 7 4.6 2.1 1.5	(ppm) 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass
None Configuration #	MHz Voltage: 115% Voltage: 100% Voltage: 85% Temperature: +50° Temperature: +40° Temperature: +20° Temperature: +10°		Signature	4	Zan y	G-1	Value (MHz) 13.559989 13.559989 13.559989 13.559905 13.559938 13.559972 13.56002 13.56002	Value (MHz) 13.56 13.56 13.56 13.56 13.56 13.56 13.56 13.56 13.56	(ppm) 0.8 0.8 0.8 7 4.6 2.1 1.5 3.9	(ppm) 100 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass Pass
None Configuration #	MHz Voltage: 115% Voltage: 100% Voltage: 85% Temperature: +50° Temperature: +30° Temperature: +30°		Signature	1	Z	Jar	Value (MHz) 13.559989 13.559989 13.559989 13.559905 13.559938 13.559972 13.56002	Value (MHz) 13.56 13.56 13.56 13.56 13.56 13.56 13.56 13.56 13.56	(ppm) 0.8 0.8 7 4.6 2.1 1.5	(ppm) 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass
None Configuration #	MHz Voltage: 115% Voltage: 100% Voltage: 85% Temperature: +50° Temperature: +40° Temperature: +20° Temperature: +10°		Signature	1	Zaz	Jar	Value (MHz) 13.559989 13.559989 13.559989 13.559905 13.559938 13.559972 13.56002 13.56002	Value (MHz) 13.56 13.56 13.56 13.56 13.56 13.56 13.56 13.56 13.56	(ppm) 0.8 0.8 0.8 7 4.6 2.1 1.5 3.9	(ppm) 100 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass Pass
None	MHz Voltage: 115% Voltage: 100% Voltage: 85% Temperature: +50° Temperature: +40° Temperature: +30° Temperature: +10° Temperature: 0°		Signature	4	Z	J-1	Value (MHz) 13.559989 13.559989 13.559989 13.559905 13.559938 13.559972 13.56002 13.560053 13.560072	Value (MHz) 13.56 13.56 13.56 13.56 13.56 13.56 13.56 13.56 13.56 13.56	(ppm) 0.8 0.8 0.8 7 4.6 2.1 1.5 3.9 5.3	(ppm) 100 100 100 100 100 100 100 10	Pass Pass Pass Pass Pass Pass Pass Pass

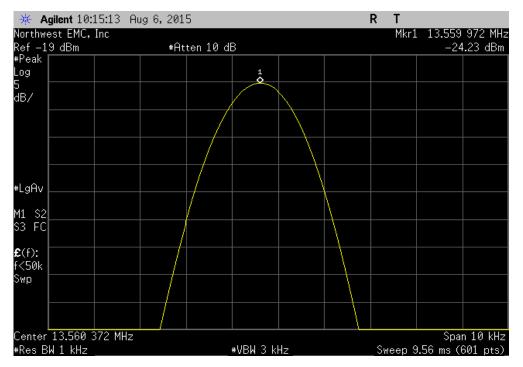


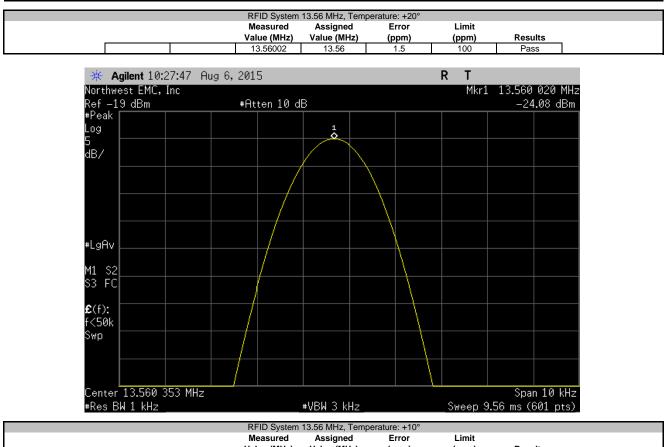


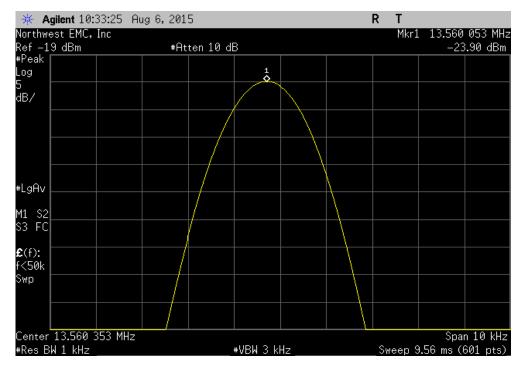

	weasured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.559989	13.56	0.8	100	Pass

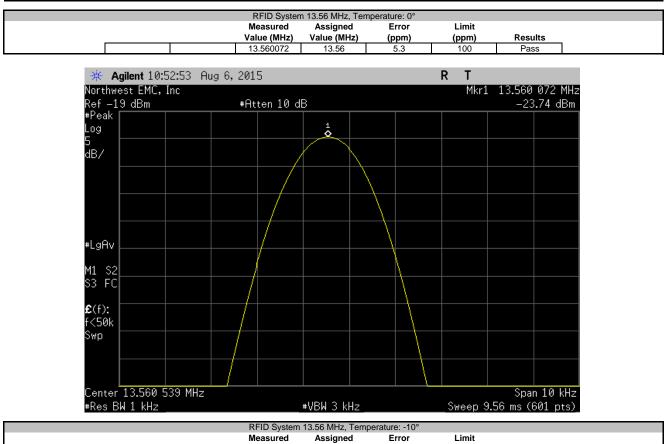


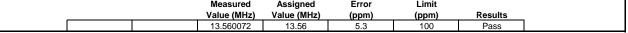


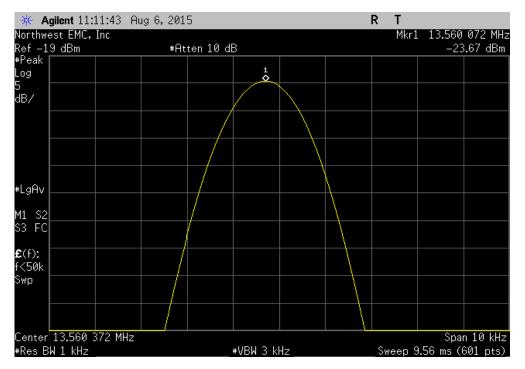











	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.560053	13.56	3.9	100	Pass

