

SAR TEST REPORT

For

Winner Wave Limited

4F-5, No.736, Jhongjheng Road, Jhonghe Dist., New Taipei City Taiwan

FCC ID: 2ADFS-U01

Report Type: Original Report		Product Quattro	t Type: Pod USB
Report Number:	RSZ200904009-S	SA	
Report Date:	2020-12-09		
Deviewed Dev	Alvin Huang		Firm Muand
Reviewed By:	Lab Manager		V
Prepared By:	6/F., West Wing,	Third Phas Road, Futi dong, Chir 20018 320008	ratories Corp. (Shenzhen) se of Wanli Industrial an Free Trade Zone, na

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "★".

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

	A	ttestation of Test Results	
	EUT Description	QuattroPod USB	
	Tested Model	QuattroPod U01	
EUT Information	EUT FCC ID 2ADFS-U01		
	Serial Number	RSZ200904009-SA-S1	
	Test Date	2020/09/20	
MOI	DE	Max. SAR Level(s) Reported(W/kg)	Limit (W/kg)
WLAN 5.8G	1g Body SAR	1.40	1.6

	FCC 47 CFR part 2.1093 Radiofrequency radiation exposure evaluation: portable devices
	IEEE1528:2013 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
Applicable Standards	IEC 62209-1:2016 Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz)
	KDB procedures KDB 447498 D01 General RF Exposure Guidance v06 KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r02 KDB 248227 D01 802.11 Wi-Fi SAR v02r02
General Population/Unc	ce has been shown to be capable of compliance for localized specific absorption rate (SAR) for ontrolled Exposure limits specified in FCC 47 CFR part 2.1093 and has been tested in surement procedures specified in IEEE 1528-2013 and RF exposure KDB procedures.
The results and statem	ents contained in this report pertain only to the device(s) evaluated.

TABLE OF CONTENTS

EUT DESCRIPTION 5 TECHNICAL SPECIFICATION 5 REFERENCE, STANDARDS, AND GUIDELINES 6 SAR LIMITS 7 FACILITIES 8 DESCRIPTION OF TEST SYSTEM 9 FQUIPMENT LIST AND CALIBRATION 15 EQUIPMENTS LIST & CALIBRATION INFORMATION 15 EQUIPMENT SYSTEM VERIFICATION 16 LiQUID VERIFICATION 16 SYSTEM ACCURACY VERIFICATION 16 SYSTEM ACCURACY VERIFICATION 17 SAR EVALUATION DATA 18 EUT TEST STRATEGY AND METHODOLOGY 19 EUT TEST STRATEGY AND METHODOLOGY 19 TEST DISTANCE FOR SAR EVALUATION 20 SAR EVALUATION POCREMENT 22 PROVISION APPLICABLE 22 MAXIMUM TARGET OUTPUT POWER MEASUREMENT 22 TEST RESULTS 23 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS 24 SAR MEASUREMENT RESULTS 26 SAR MEASUREMENT RESULTS 26 SAR SIMULTANEOUS TRANSMISSION DESCRIPTION 29 NOTE: WLAN TRANSMISE WITH A SAME ANTENNA. SAR PLOTS 29 SAR PL	DOCUMENT REVISION HISTORY	
REFERENCE, STANDARDS, AND GUIDELINES. 6 SAR LIMITS 7 FACILITIES. 8 DESCRIPTION OF TEST SYSTEM. 9 EQUIPMENT LIST AND CALIBRATION. 15 EQUIPMENT LIST & CALIBRATION INFORMATION 15 SAR MEASUREMENT SYSTEM VERIFICATION 16 LiQUUD VERIFICATION 16 SYSTEM VALIDATION DATA 18 EUT TEST STRATEGY AND METHODOLOGY. 19 EUT TEST STRATEGY AND METHODOLOGY. 19 TEST DISTANCE FOR SAR EVALUATION 20 SAR EVALUATION PROCEDURE 21 CONDUCTED OUTPUT POWER MEASUREMENT 22 PROVISION APPLICABLE 22 TEST DISTANCE TO EDUPE 21 CONDUCTED OUTPUT POWER MEASUREMENT 22 TEST DISTANCE TO EDUPE 21 CONDUCTED OUTPUT POWER 22 TEST EXCLUSION CONSIDERATIONS 24 ANTENNA DISTANCE TO EDGE 24 SAR TEST EXCLUSION CONSIDERATIONS RESULT 25 SAR MEASUREMENT RESULTS 26 SAR TEST EXCLUSION CONSIDERATIONS 29 SAR SIMULTANEOUS TRANSMISSION DESCRIPTION 29	EUT DESCRIPTION	5
SAR LIMITS 7 FACILITIES 8 DESCRIPTION OF TEST SYSTEM 9 EQUIPMENT LIST AND CALIBRATION 15 EQUIPMENTS LIST & CALIBRATION INFORMATION 15 SAR MEASUREMENT SYSTEM VERIFICATION 16 LiQUID VERIFICATION 16 SYSTEM ACCURACY VERIFICATION 16 SYSTEM VALIDATION DATA 18 EUT TEST STRATEGY AND METHODOLOGY. 19 EUT TEST STRATEGY AND METHODOLOGY. 19 TEST DISTANCE FOR SAR EVALUATION 20 SAR EVALUATION PROCEDURE 21 CONDUCTED OUTPUT POWER MEASUREMENT 22 PROVISION APPLICABLE 22 MAXIMUM TARGET OUTPUT POWER 22 TEST EXCLUSION CONSIDERATIONS 24 ANTENNA DISTANCE TO EDGE 24 SAR TEST EXCLUSION CONSIDERATIONS RESULT 25 SAR MEASUREMENT RESULTS 26 SAR TEST DATA 26 SAR SIMULTANEOUS TRANSMISSION DESCRIPTION 29 SAR SIMULTANEOUS TRANSMISSION DESCRIPTION 29 SAR REASUREMENT VARIABILITY 35 SAR PENDIX & MEASUREMENT UNCERTAINTY 35	TECHNICAL SPECIFICATION	
FACILITIES 8 DESCRIPTION OF TEST SYSTEM 9 EQUIPMENT LIST AND CALIBRATION 15 EQUIPMENT LIST & CALIBRATION INFORMATION 15 SAR MEASUREMENT SYSTEM VERIFICATION 16 Liouto Verification 16 SYSTEM ACCURACY VERIFICATION 16 EUT TEST STRATEGY AND METHODOLOGY. 19 EUT TEST STRATEGY AND METHODOLOGY. 19 EUT TEST STRATEGY AND METHODOLOGY. 19 TEST DISTANCE FOR SAR EVALUATION 20 SAR EVALUATION PROCEDURE 21 CONDUCTED OUTPUT POWER MEASUREMENT 22 PROVISION APPLICABLE 22 MAXIMUM TARGET OUTPUT POWER 22 TEST RESULTS 23 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS 24 SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT 25 SAR MEASUREMENT RESULTS 26 SAR TEST DATA 26 SAR TEST DATA 26 SAR TEST DATA 26 SAR MEASUREMENT VARIABILITY 26 SAR MEASUREMENT VARIABILITY 28 SAR SIMULTANEOUS TRANSMISSION DESCRIPTION 29	REFERENCE, STANDARDS, AND GUIDELINES	6
DESCRIPTION OF TEST SYSTEM	SAR LIMITS	7
EQUIPMENT LIST AND CALIBRATION	FACILITIES	
EQUIPMENTS LIST & CALIBRATION INFORMATION 15 SAR MEASUREMENT SYSTEM VERIFICATION 16 LiQUID VERIFICATION 16 SYSTEM ACCURACY VERIFICATION 17 SAR SYSTEM VALIDATION DATA 18 EUT TEST STRATEGY AND METHODOLOGY. 19 EUT TEST STRATEGY AND METHODOLOGY. 19 TEST DISTANCE FOR SAR EVALUATION 20 SAR EVALUATION PROCEDURE 21 CONDUCTED OUTPUT POWER MEASUREMENT 22 PROVISION APPLICABLE 22 MAXIMUM TARGET OUTPUT POWER 22 TEST RESULTS: 23 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS 24 ANTENNA DISTANCE TO EDGE 24 SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT. 25 SAR MEASUREMENT RESULTS 26 SAR TEST DATA 26 SAR TEST DATA 26 SAR SIMULTANEOUS TRANSMISSION DESCRIPTION 29 NOTE: WLAN TRANSMITE WITH A SAME ANTENNA. SAR PLOTS 29 SAR PLOTS 37 BODY LORY 38 BODY TON (OMM)SETUP PHOTO 37 BODY TEST POSITION PHOTOS 37 <t< td=""><td></td><td></td></t<>		
SAR MEASUREMENT SYSTEM VERIFICATION 16 LQUID VERIFICATION 17 SAR MEASUREMENT SYSTEM VALIDATION DATA 18 EUT TEST STRATEGY AND METHODOLOGY. 19 EUT TEST STRATEGY AND METHODOLOGY. 19 TEST DISTANCE FOR SAR EVALUATION 20 SAR EVALUATION PROCEDURE 21 CONDUCTED OUTPUT POWER MEASUREMENT 22 PROVISION APPLICABLE 22 MAXIMUM TARGET OUTPUT POWER MEASUREMENT 22 TEST REST EXCLUSION CONSIDERATIONS 24 SAR TEST EXCLUSION CONSIDERATIONS 24 ANTENNA DISTANCE TO EDGE 24 SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT 25 SAR MEASUREMENT RESULTS 26 SAR TEST DATA 26 SAR TEST DATA 26 SAR MEASUREMENT VARIABILITY 28 SAR SIMULTANEOUS TRANSMISSION DESCRIPTION 29 NOTE: WLAN TRANSMISTEM WITH A SAME ANTENNA. SAR PLOTS 29 SAR PLOTS 37 BODY LOTY DEPHOTO 37 BODY LOTY DEPHOTO 38 BODY LOTY (OMM)SETUP PHOTO 38 BODY NOT (OMM)SETUP PHOTO 39 <td></td> <td></td>		
Liquid Verification 16 System Accuracy Verification 17 SAR SYSTEM VALIDATION DATA 18 EUT TEST STRATEGY AND METHODOLOGY. 19 EUT TEST STRATEGY AND METHODOLOGY. 19 Test Distance For SAR Evaluation 20 SAR Evaluation Procedure 21 CONDUCTED OUTPUT POWER MEASUREMENT 22 Provision Applicable 22 MAXIMUM TARGET OUTPUT POWER 23 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS 24 ANTENNA DISTANCE TO EDGE 24 SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT. 25 SAR MEASUREMENT RESULTS 26 SAR TEST DATA 26 SAR MEASUREMENT VARIABILITY. 28 SAR SIMULTANEOUS TRANSMISSION DESCRIPTION 29 NOTE: WLAN TRANSMITE WITH A SAME ANTENNA. SAR PLOTS 29 SAR PLOTS 30 APPENDIX A MEASUREMENT UNCERTAINTY 35 BODY TOTS 37 BODY FRONT (MM)SETUP PHOT		
SYSTEM ACCURACY VERIFICATION 17 SAR SYSTEM VALIDATION DATA 18 EUT TEST STRATEGY AND METHODOLOGY 19 EUT TEST STRATEGY AND METHODOLOGY 19 TEST DISTANCE FOR SAR EVALUATION 20 SAR EVALUATION PROCEDURE 21 CONDUCTED OUTPUT POWER MEASUREMENT 22 PROVISION APPLICABLE 22 MAXIMUM TARGET OUTPUT POWER 22 TEST DISTANCE TO EDGE 23 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS 24 ANTENNA DISTANCE TO EDGE 24 SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT 25 SAR MEASUREMENT RESULTS 26 SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT 26 SAR TEST DATA 26 SAR TEST DATA 26 SAR MEASUREMENT VARIABILITY. 28 SAR MEASUREMENT VARIABILITY. 28 SAR PLOTS 30 APPENDIX A MEASUREMENT UNCERTAINTY 35 APPENDIX B EUT TEST POSITION PHOTOS. 37 LIQUID DEPTH ≥ 15CM 37 BODY FRONT (MM)SETUP PHOTO 38 BODY TRONT (MM)SETUP PHOTO 38		
EUT TEST STRATEGY AND METHODOLOGY. 19 Test DISTANCE FOR SAR EVALUATION 20 SAR EVALUATION PROCEDURE 21 CONDUCTED OUTPUT POWER MEASUREMENT 22 PROVISION APPLICABLE 22 MAXIMUM TARGET OUTPUT POWER 22 TEST RESULTS 23 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS 24 ANTENNA DISTANCE TO EDGE 24 SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT 25 SAR MEASUREMENT RESULTS 26 SAR TEST DATA 26 SAR TEST DATA 26 SAR TEST DATA 26 SAR MEASUREMENT RESULTS 28 SAR SIMULTANEOUS TRANSMISSION DESCRIPTION 29 NOTE: WLAN TRANSMISSION DESCRIPTION 29 NOTE: WLAN TRANSMITE WITH A SAME ANTENNA. SAR PLOTS 29 SAR PLOTS 30 APPENDIX A MEASUREMENT UNCERTAINTY 35 APPENDIX B EUT TEST POSITION PHOTOS 37 LQUID DEPTH ≥ 15CM 37 BODY FRONT (0MM)SETUP PHOTO 38 BODY LEFT (0MM)SETUP PHOTO 38 BODY LEFT (0MM)SETUP PHOTO 38	SYSTEM ACCURACY VERIFICATION	
Test Distance For SAR Evaluation 20 SAR Evaluation Procedure 21 CONDUCTED OUTPUT POWER MEASUREMENT 22 PROVISION APPLICABLE 22 MAXIMUM TARGET OUTPUT POWER 22 Test RESULTS: 23 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS 24 ANTENNA DISTANCE TO EDGE 24 SAR Test exclusion for the EUT edge considerations Result 25 SAR MEASUREMENT RESULTS 26 SAR Test DATA 26 SAR Test DATA 26 SAR Test DATA 26 SAR MEASUREMENT VARIABILITY 28 SAR SIMULTANEOUS TRANSMISSION DESCRIPTION 29 NOTE: WLAN TRANSMITE WITH A SAME ANTENNA. SAR PLOTS 29 NOTE: WLAN TRANSMITE WITH A SAME ANTENNA. SAR PLOTS 30 APPENDIX A MEASUREMENT UNCERTAINTY 35 APPENDIX B EUT TEST POSITION PHOTOS 37 Liquid Depth ≥ 15CM 37 BODY FRONT (0MM)SETUP PHOTO 38 BODY RENT (0MM)SETUP PHOTO 38 BODY RENT (0MM)SETUP PHOTO 38 BODY RENT (0MM)SETUP PHOTO 39 BODY RONT (0MM)SETUP PHOTO	EUT TEST STRATEGY AND METHODOLOGY	
SAR Evaluation Procedure 21 CONDUCTED OUTPUT POWER MEASUREMENT 22 PROVISION APPLICABLE 22 MAXIMUM TARGET OUTPUT POWER 22 TEST RESULTS: 23 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS 24 ANTENNA DISTANCE TO EDGE 24 ANTENNA DISTANCE TO EDGE 26 SAR MEASUREMENT RESULTS 25 SAR MEASUREMENT RESULTS 26 SAR TEST DATA 26 SAR TEST DATA 26 SAR MEASUREMENT VARIABILITY 28 SAR SIMULTANEOUS TRANSMISSION DESCRIPTION 29 NOTE: WLAN TRANSMISE WITH A SAME ANTENNA. SAR PLOTS 29 SAR PLOTS 30 APPENDIX A MEASUREMENT UNCERTAINTY 35 APPENDIX B EUT TEST POSITION PHOTOS 37 LiQUID DEPTH ≥ 15CM 37 BODY FRONT (0MM)SETUP PHOTO 38 BODY RONT (0MM)SETUP PHOTO 38 BODY TOP (0MM)SETUP PHOTO 39 BODY TOP (0MM)SETUP PHOTO <	EUT TEST STRATEGY AND METHODOLOGY	
PROVISION APPLICABLE22MAXIMUM TARGET OUTPUT POWER22TEST RESULTS:23STANDALONE SAR TEST EXCLUSION CONSIDERATIONS24ANTENNA DISTANCE TO EDGE24SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT25SAR MEASUREMENT RESULTS26SAR TEST DATA26SAR TEST DATA26SAR TEST DATA26SAR MEASUREMENT VARIABILITY28SAR SIMULTANEOUS TRANSMISSION DESCRIPTION29NOTE: WLAN TRANSMITE WITH A SAME ANTENNA. SAR PLOTS29SAR PLOTS30APPENDIX A MEASUREMENT UNCERTAINTY35APPENDIX B EUT TEST POSITION PHOTOS37LIQUID DEPTH ≥ 15CM37BODY FRONT (0MM)SETUP PHOTO38BODY RIGHT (0MM)SETUP PHOTO38BODY RIGHT (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39BODY BOTTOM(0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39BODY BOTTOM(0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39<		
MAXIMUM TARGET OUTPUT POWER.22TEST RESULTS:23STANDALONE SAR TEST EXCLUSION CONSIDERATIONS.24ANTENNA DISTANCE TO EDGE.24SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT.25SAR MEASUREMENT RESULTS26SAR TEST DATA26SAR MEASUREMENT VARIABILITY.28SAR SIMULTANEOUS TRANSMISSION DESCRIPTION.29NOTE: WLAN TRANSMITE WITH A SAME ANTENNA. SAR PLOTS29SAR PLOTS30APPENDIX A MEASUREMENT UNCERTAINTY35APPENDIX B EUT TEST POSITION PHOTOS37Liquid DEPTH ≥ 15CM37BODY FRONT (0MM)SETUP PHOTO38BODY RIGHT (0MM)SETUP PHOTO38BODY RIGHT (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39BODY RONT (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39BODY BOTTOM(0MM)SETUP PHOTO39BODY COPE CALIBRATION CERTIFICATES	CONDUCTED OUTPUT POWER MEASUREMENT	
ANTENNA DISTANCE TO EDGE24SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT25SAR MEASUREMENT RESULTS26SAR TEST DATA26SAR MEASUREMENT VARIABILITY28SAR SIMULTANEOUS TRANSMISSION DESCRIPTION29NOTE: WLAN TRANSMITE WITH A SAME ANTENNA. SAR PLOTS29SAR PLOTS30APPENDIX A MEASUREMENT UNCERTAINTY35APPENDIX B EUT TEST POSITION PHOTOS37LIQUID DEPTH ≥ 15CM37BODY FRONT (0MM)SETUP PHOTO38BODY LEFT (0MM)SETUP PHOTO38BODY RIGHT (0MM)SETUP PHOTO39BODY BOTTOM(0MM)SETUP PHOTO40APPENDIX C PROBE CALIBRATION CERTIFICATES41	MAXIMUM TARGET OUTPUT POWER	
SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT. 25 SAR MEASUREMENT RESULTS 26 SAR TEST DATA 26 SAR MEASUREMENT VARIABILITY. 28 SAR SIMULTANEOUS TRANSMISSION DESCRIPTION 29 NOTE: WLAN TRANSMITE WITH A SAME ANTENNA. SAR PLOTS 29 SAR PLOTS 30 APPENDIX A MEASUREMENT UNCERTAINTY 35 APPENDIX B EUT TEST POSITION PHOTOS 37 Liquid DEPTH ≥ 15CM 37 BODY FRONT (0MM)SETUP PHOTO 38 BODY LEFT (0MM)SETUP PHOTO 38 BODY LEFT (0MM)SETUP PHOTO 38 BODY RIGHT (0MM)SETUP PHOTO 39 BODY RONT (0MM)SETUP PHOTO 39 BODY BOTOM (0MM)SETUP PHOTO 39	STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	
SAR TEST DATA26SAR MEASUREMENT VARIABILITY28SAR SIMULTANEOUS TRANSMISSION DESCRIPTION29NOTE: WLAN TRANSMITE WITH A SAME ANTENNA. SAR PLOTS29SAR PLOTS30APPENDIX A MEASUREMENT UNCERTAINTY35APPENDIX B EUT TEST POSITION PHOTOS37LIQUID DEPTH ≥ 15CM37BODY FRONT (0MM)SETUP PHOTO38BODY LEFT (0MM)SETUP PHOTO38BODY LEFT (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39BODY BOTTOM (0MM)SETUP PHOTO40APPENDIX C PROBE CALIBRATION CERTIFICATES41		
SAR MEASUREMENT VARIABILITY.28SAR SIMULTANEOUS TRANSMISSION DESCRIPTION29NOTE: WLAN TRANSMITE WITH A SAME ANTENNA. SAR PLOTS29SAR PLOTS30APPENDIX A MEASUREMENT UNCERTAINTY35APPENDIX B EUT TEST POSITION PHOTOS37LIQUID DEPTH ≥ 15CM37BODY FRONT (0MM)SETUP PHOTO37BODY LEFT (0MM)SETUP PHOTO38BODY LEFT (0MM)SETUP PHOTO38BODY TOP (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO40APPENDIX C PROBE CALIBRATION CERTIFICATES41	SAR MEASUREMENT RESULTS	
SAR SIMULTANEOUS TRANSMISSION DESCRIPTION.29NOTE: WLAN TRANSMITE WITH A SAME ANTENNA. SAR PLOTS29SAR PLOTS30APPENDIX A MEASUREMENT UNCERTAINTY35APPENDIX B EUT TEST POSITION PHOTOS37LIQUID DEPTH ≥ 15CM37BODY FRONT (0MM)SETUP PHOTO37BODY BACK (0MM)SETUP PHOTO38BODY LEFT (0MM)SETUP PHOTO38BODY TOP (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39BODY BOTTOM(0MM)SETUP PHOTO39BODY BOTTOM(0MM)SETUP PHOTO40APPENDIX C PROBE CALIBRATION CERTIFICATES41	SAR TEST DATA	
NOTE: WLAN TRANSMITE WITH A SAME ANTENNA. SAR PLOTS29SAR PLOTS30APPENDIX A MEASUREMENT UNCERTAINTY35APPENDIX B EUT TEST POSITION PHOTOS37Liquid depth ≥ 15cm37Body Front (0MM)Setup Photo37Body Back (0MM)Setup Photo38Body Left (0MM)Setup Photo38Body Right (0MM)Setup Photo39Body Right (0MM)Setup Photo39Body Top (0MM)Setup Photo39Body Top (0MM)Setup Photo39Body Top (0MM)Setup Photo39Body Bottom (0MM)Setup Photo39Body Bottom (0MM)Setup Photo39Body Bottom (0MM)Setup Photo39Body Bottom (0MM)Setup Photo40APPENDIX C PROBE CALIBRATION CERTIFICATES41	SAR MEASUREMENT VARIABILITY	
SAR PLOTS30APPENDIX A MEASUREMENT UNCERTAINTY35APPENDIX B EUT TEST POSITION PHOTOS37Liquid depth ≥ 15cm37Body Front (0mm)Setup Photo37Body Setup Photo38Body Left (0mm)Setup Photo38Body Right (0mm)Setup Photo38Body Right (0mm)Setup Photo39Body Top (0mm)Setup Photo39Body Top (0mm)Setup Photo39Body Top (0mm)Setup Photo39Body Top (0mm)Setup Photo40APPENDIX C PROBE CALIBRATION CERTIFICATES41	SAR SIMULTANEOUS TRANSMISSION DESCRIPTION	
APPENDIX A MEASUREMENT UNCERTAINTY35APPENDIX B EUT TEST POSITION PHOTOS37LiQUID DEPTH ≥ 15CM37BODY FRONT (0MM)SETUP PHOTO37BODY BACK (0MM)SETUP PHOTO38BODY LEFT (0MM)SETUP PHOTO38BODY RIGHT (0MM)SETUP PHOTO38BODY RIGHT (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO40APPENDIX C PROBE CALIBRATION CERTIFICATES41	NOTE: WLAN TRANSMITE WITH A SAME ANTENNA. SAR PLOTS	
APPENDIX B EUT TEST POSITION PHOTOS37 LIQUID DEPTH \geq 15CM37BODY FRONT (0MM)SETUP PHOTO37BODY BACK (0MM)SETUP PHOTO38BODY LEFT (0MM)SETUP PHOTO38BODY RIGHT (0MM)SETUP PHOTO38BODY RIGHT (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39BODY BOTTOM(0MM)SETUP PHOTO40 APPENDIX C PROBE CALIBRATION CERTIFICATES41	SAR PLOTS	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	APPENDIX A MEASUREMENT UNCERTAINTY	
BODY FRONT (0MM)SETUP PHOTO.37BODY BACK (0MM)SETUP PHOTO.38BODY LEFT (0MM)SETUP PHOTO.38BODY RIGHT (0MM)SETUP PHOTO.39BODY TOP (0MM)SETUP PHOTO.39BODY BOTTOM(0MM)SETUP PHOTO.39BODY BOTTOM(0MM)SETUP PHOTO.40APPENDIX C PROBE CALIBRATION CERTIFICATES.41	APPENDIX B EUT TEST POSITION PHOTOS	
BODY BACK (0MM)SETUP PHOTO38BODY LEFT (0MM)SETUP PHOTO38BODY RIGHT (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39BODY BOTTOM(0MM)SETUP PHOTO40APPENDIX C PROBE CALIBRATION CERTIFICATES41		
BODY LEFT (0MM)SETUP PHOTO38BODY RIGHT (0MM)SETUP PHOTO39BODY TOP (0MM)SETUP PHOTO39BODY BOTTOM(0MM)SETUP PHOTO40APPENDIX C PROBE CALIBRATION CERTIFICATES41		
BODY TOP (0MM)SETUP PHOTO 39 BODY BOTTOM(0MM)SETUP PHOTO 40 APPENDIX C PROBE CALIBRATION CERTIFICATES 41		
BODY BOTTOM(0MM)SETUP PHOTO		
APPENDIX C PROBE CALIBRATION CERTIFICATES		
	APPENDIX D DIPOLE CALIBRATION CERTIFICATES	50

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	RSZ200904009-SA	Original Report	2020-12-09

EUT DESCRIPTION

This report has been prepared on behalf of **Winner Wave Limited** and their product QuattroPod USB, Model: **QuattroPod U01**, FCC ID: **2ADFS-U01**; IC: **24370-A6X** or the EUT (Equipment under Test) as referred to in the rest of this report.

*All measurement and test data in this report was gathered from production sample serial number: RSZ200904009-SA-S1(Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2020-09-07.

Technical Specification

Device Type:	Portable
Exposure Category:	Population / Uncontrolled
Antenna Type(s):	Internal Antenna
Proximity sensor for SAR reduction:	None
Face-Head Accessories:	None
Operation Mode :	WLAN
Frequency Band:	WLAN (5.2G): 5180-5240 MHz WLAN (5.8G): 5745-5825 MHz
Conducted RF Power:	WLAN (5.2G): 9.13 dBm WLAN (5.8G): 13.11 dBm
Power Source:	power adapter
Normal Operation:	Body Supported

REFERENCE, STANDARDS, AND GUIDELINES

FCC:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

CE:

The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by EN62209-1 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass.

The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device.

SAR Limits

	SAR (W/kg)
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average (averaged over the whole body)	0.08	0.4
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0

CE Limit(1g Tissue)

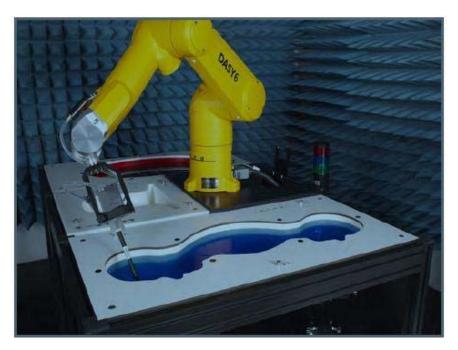
	SAR (V	W/kg)
	(General Population /	(Occupational /
EXPOSURE LIMITS	Uncontrolled Exposure	Controlled Exposure
	Environment)	Environment)
Spatial Average (averaged over the whole body)	0.08	0.4
Spatial Peak (averaged over any 10 g of tissue)	2.0	10
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

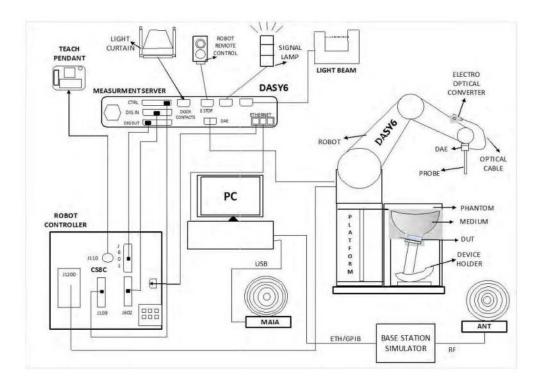
General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC) & 2 W/kg (CE) applied to the EUT.

FACILITIES


The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect data is located at 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.


DESCRIPTION OF TEST SYSTEM

These measurements were performed with the automated near-field scanning system DASY6 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter:

DASY6 System Description

The DASY6 system for performing compliance tests consists of the following items:

Report No.: RSZ200904009-SA

- A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 professional operating system and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

DASY6 Measurement Server

The DASY6 measurement server is based on a PC/104 CPU board with a 400 MHz Intel ULV Celeron, 128 MB chip-disk and 128 MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16-bit AD converter system for optical detection and digital I/O interface are contained on the DASY6 I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluations of field

measurements and surface detection, controls robot movements, and handles safety operations. The PC operating system cannot interfere with these time-critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program- controlled robot movements. Furthermore, the measurement server is equipped with an expansion port, which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Connection of devices from any other supplier could seriously damage the measurement server.

Data Acquisition Electronics

The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

EX3DV4 E-Field Probes

Frequency	10 MHz to $>$ 6 GHz Linearity: \pm 0.2 dB (30 MHz to 6 GHz)
Directivity	\pm 0.3 dB in TSL (rotation around probe axis) \pm 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

SAM Twin Phantom

The SAM Twin Phantom (shown in front of DASY6) is a fiberglass shell phantom with shell thickness 2 mm, except in the ear region where the thickness is increased to 6 mm. The phantom has three measurement areas: 1) Left Head, 2) Right Head, and 3) Flat Section. For larger devices, the use of the ELI-Phantom (shown behind DASY6) is required. For devices such as glasses with a wireless link, the Face Down Phantom is the most suitable (between the SAM Twin and ELI phantoms).

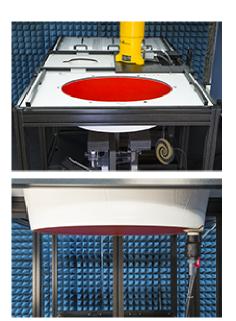
When the phantom is mounted inside allocated slot of the DASY6 platform, phantom reference points can be taught directly in the DASY5 V5.2 software. When the DASY6 platform is used to mount the

Phantom, some of the phantom teaching points cannot be reached by the robot in DASY5 V5.2. A special tool called P1a-P2aX-Former is provided to transform two of the three points, P1 and P2, to reachable locations. To use these new teaching points, a revised phantom configuration file is required.

In addition to our standard broadband liquids, the phantom can be used with the following tissue simulating liquids:

Sugar-water-based liquids can be left permanently in the phantom. Always cover the liquid when the system is not in use to prevent changes in liquid parameters due to water evaporation.

DGBE-based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom, and the phantom should be dried when the system is not in use (desirable at least once a week).


Do not use other organic solvents without previously testing the solvent resistivity of the phantom. Approximately 25 liters of liquid is required to fill the SAM Twin phantom.

ELI Phantom

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6 GHz. ELI is fully compatible with the latest draft of the standard IEC 62209-2 and the use of all known tissue simulating liquids. ELI has been optimized for performance and can be integrated into a SPEAG standard phantom table. A cover is provided to prevent evaporation of water and changes in liquid parameters. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points.

The phantom can be used with the following tissue simulating liquids:

• Sugar-water-based liquids can be left permanently in the phantom. Always cover the liquid when the system is not in use to prevent changes in liquid parameters due to water evaporation.

- DGBE-based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom, and the phantom should be dried when the system is not in use (desirable at least once a week).
- Do not use other organic solvents without previously testing the solvent resistivity of the phantom.

Approximately 25 liters of liquid is required to _fill the ELI phantom.

Robots

The DASY6 system uses the high-precision industrial robots TX60L, TX90XL, and RX160L from St aubli SA (France). The TX robot family - the successor of the well-known RX robot family - continues to offer the features important for DASY6 applications:

- High precision (repeatability 0.04mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchrony motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

The robots are controlled by the Staubli CS8c robot controllers. All information regarding the use and maintenance of the robot arm and the robot controller is provided

Calibration Frequency	Frequency	Frequency Range(MHz)		Conversion Factor		
Point(MHz)	From	То	Х	Y	Z	
750 Head	650	850	9.92	9.92	9.92	
900 Head	850	1000	9.4	9.4	9.4	
1750 Head	1650	1850	8.21	8.21	8.21	
1900 Head	1850	2000	7.95	7.95	7.95	
2300 Head	2200	2400	7.53	7.53	7.53	
2450 Head	2400	2550	7.15	7.15	7.15	
2600 Head	2550	2700	7.04	7.04	7.04	
5200 Head	5090	5250	5.2	5.2	5.2	
5300 Head	5250	5410	4.96	4.96	4.96	
5600 Head	5490	5700	4.55	4.55	4.55	
5800 Head	5700	5910	4.65	4.65	4.65	

Calibration Frequency Points for EX3DV4 E-Field Probes SN: 7522 Calibrated: 2020/04/01

Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm 2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m^3 is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm,with the side length of the 10g cube is 21.5mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis.

Tissue Dielectric Parameters for Head and Body Phantoms

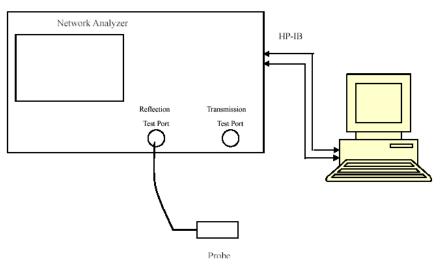
The head tissue dielectric parameters recommended by the IEC 62209-1:2016

Recommended Tissue Dielectric properties for Head liquid

Table A.3 - Dielectric properties of the head tissue-equivalent liquid

Frequency	Relative permittivity	Conductivity (a)
MHz	ε,	S/m
300	45,3	0,87
450	43,5	0,87
750	41,9	0,89
835	41,5	0,90
900	41,5	0,97
1 450	40,5	1,20
1 500	40,4	1,23
1640	40,2	1,31
1 750	40,1	1,37
1 800	40,0	1,40
1 900	40,0	1,40
2 000	40,0	1,40
2100	39,8	1,49
2 300	39,5	1,67
2 450	39,2	1,80
2 600	39,0	1,96
3 000	38,5	2,40
3 500	37,9	2,91
4 000	37,4	3,43
4 500	36,8	3,94
5 000	36,2	4,45
5 200	36,0	4,66
5 400	35,8	4,86
5 600	35,5	5,07
5 800	35,3	5,27
6 000	35,1	5,48

NOTE For convenience, permittivity and conductivity values at those frequencies which are not part of the original data provided by Drossos et al. [33] or the extension to 5 800 MHz are provided (i.e. the values shown *in italics*). These values were linearly interpolated between the values in this table that are immediately above and below these values, except the values at 6 000 MHz that were linearly extrapolated from the values at 3 000 MHz and 5 800 MHz.


EQUIPMENT LIST AND CALIBRATION

Equipments List & Calibration Information

Equipment	Model	S/N	Calibration Date	Calibration Due Date
DASY5 Test Software	DASY52 52.10.2	N/A	NCR	NCR
DASY6 Measurement Server	DASY6 6.0.31	N/A	NCR	NCR
Data Acquisition Electronics	DAE4	1562	2020/03/03	2021/03/02
E-Field Probe	EX3DV4	7522	2020/04/01	2021/03/31
Mounting Device	MD4HHTV5	SD 000 H01 KA	NCR	NCR
SAM Twin Phantom	SAM-Twin V8.0	1962	NCR	NCR
Dipole, 5GHz D5GHzV2		1301	2020/1/10	2023/1/9
Tissue Liquid Head	HBBL600-10000V6	180622-2	Each	Time
Network Analyzer	8753D	3410A08288	2020/7/31	2021/7/30
Dielectric Assessment Kit	DAK-3.5	1248	NCR	NCR
MXG Analog Signal Generator	N5181A	MY48180408	2020/7/31	2021/7/30
USB wideband power sensor	U2021XA	MY54250003	2020/7/31	2021/7/30
Power Amplifier	Power Amplifier 5S1G4		NCR	NCR
Amplifier	ZVE-8G+	558401902	NCR	NCR
Directional Coupler	Directional Coupler Oct-42		NCR	NCR
Attenuator	6dB	773-6	NCR	NCR

SAR MEASUREMENT SYSTEM VERIFICATION

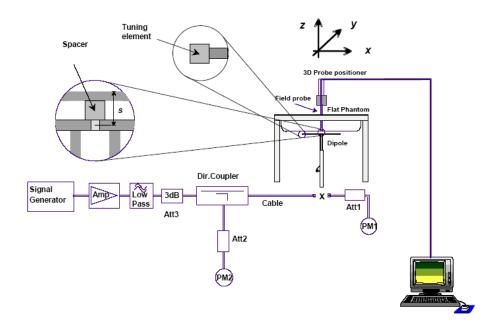
Liquid Verification

Liquid Verification Setup Block Diagram

Liquid Verification Results

Frequency	^{2y} Liquid Type –		uid neter	Target	t Value	-	lta 6)	Tolerance
(MHz)	Liquid Type	ε _r	0 (S/m)	٤ _r	0' (S/m)	$\Delta \epsilon_r$	ΔĊ	(%)
5745	Liquid Type Head	35.574	5.064	35.28	5.22	0.83	-2.99	±5
5785	Liquid Type Head	35.382	5.164	35.22	5.26	0.46	-1.83	±5
5800	Liquid Type Head	35.286	5.182	35.30	5.27	-0.04	-1.67	±5
5825	Liquid Type Head	35.501	5.231	35.28	5.30	0.63	-1.3	±5

*Liquid Verification above was performed on 2020/09/20.


System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The spacing distances in the System Verification Setup Block Diagram is given by the following:

- a) $s = 15 \text{ mm} \pm 0.2 \text{ mm}$ for 300 MHz $\leq f \leq 1$ 000 MHz;
- b) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for 1 000 MHz < f \leq 3 000 MHz;
- c) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for 3 000 MHz < f \leq 6 000 MHz.

System Verification Setup Block Diagram

System Accuracy Check Results

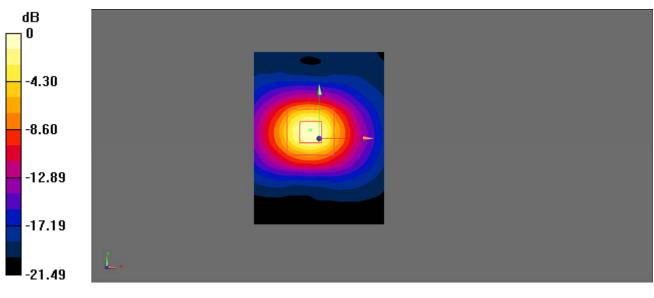
Date	Frequency Band (MHz)	Liquid Type	Input Power (mW)	wer SAR		Normalized to 1W (W/kg)	Target Value (W/Kg)	Delta (%)	Tolerance (%)
2020/09/20	5800	Head	250	1g	19.6	78.4	80.2	-2.244	±10

*The SAR values above are normalized to 1 Watt forward power.

System Performance 5800 MHz Head

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: 1301

Communication System: UID 0, CW (0); Frequency: 5800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; $\sigma = 5.182$ S/m; $\varepsilon_r = 35.286$; $\rho = 1000$ kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7522; ConvF(4.65, 4.65, 4.65) @ 5800 MHz;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1562; Calibrated: 3/3/2020
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA ; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);

Head 5800MHz Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 50.1 W/kg

Head 5800MHz Pin=250mW/Zoom Scan (8x8x15)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 74.96 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 76.6 W/kg SAR(1 g) = 19.6 W/kg; SAR(10 g) = 5.36 W/kg Maximum value of SAR (measured) = 45.8 W/kg

0 dB = 45.8 W/kg = 16.61 dBW/kg

EUT TEST STRATEGY AND METHODOLOGY

Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

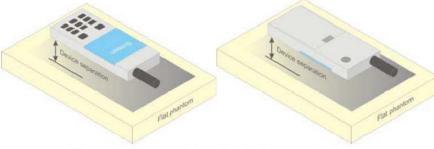
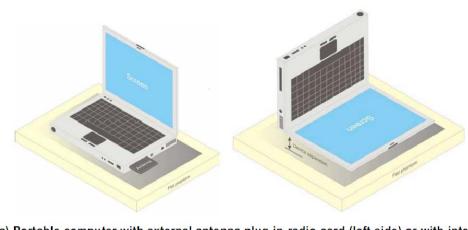


Figure 5 – Test positions for body-worn devices


Test positions for Body-supported device

A typical example of a body supported device is a wireless enabled laptop device that among other orientations may be supported on the thighs of a sitting user. To represent this orientation, the device shall be positioned with its base against the flat phantom. Other orientations may be specified by the manufacturer in the user instructions. If the intended use is not specified, the device shall be tested directly against the flat phantom in all usable orientations.

The screen portion of the device shall be in an open position at a 90° angle as seen in Figure below (left side), or at an operating angle specified for intended use by the manufacturer in the operating instructions. Where a body supported device has an integral screen required for normal operation, then the screen-side will not need to be tested if it ordinarily remains 200 mm from the body. Where a screen mounted antenna is present, this position shall be repeated with the screen against the flat phantom as shown in Figure below (right side), if this is consistent with the intended use.

Other devices that fall into this category include tablet type portable computers and credit card transaction authorisation terminals, point-of-sale and/or inventory terminals. Where these devices may be torso or limb-supported, the same principles for body-supported devices are applied.

Report No.: RSZ200904009-SA

a) Portable computer with external antenna plug-in-radio-card (left side) or with internal antenna located in screen section (right side)

Test Distance for SAR Evaluation

For this case the EUT(Equipment Under Test) is set 0mm away from the phantom, the test distance is 0mm.

SAR Evaluation Procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.

Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points ($10 \times 10 \times 10$) were interpolated to calculate the averages.

All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

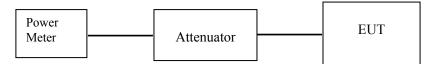
Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

CONDUCTED OUTPUT POWER MEASUREMENT

Provision Applicable

The measured peak output power should be greater and within 5% than EMI measurement.

EUT Exercise Software


The maximum peak conducted output power may be measured using a broadband peak RF power meter.

The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

1. Place the EUT on a bench and set it in transmitting mode.

2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.

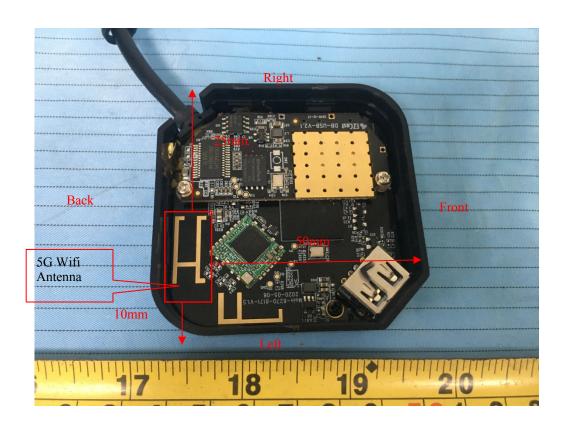
3. Add a correction factor to the display.

Maximum Target Output Power

Max Target Power(dBm)								
Mada/Dand	Channel							
Mode/Band	Low	Middle	High					
WLAN 5.2G	9.2	9.2	9.2					
WLAN 5.8G	13.2	10.9	10.7					

Test Results:

WLAN 5.2G:


Mode	Channel	Data Rate	RF Output
Moue	frequency (MHz)	Data Kate	Power(dBm)
	5180		9.00
802.11a	5200	1Mbps	9.13
	5240		9.11
	5180		7.94
802.11n20	5200	6Mbps	8.10
	5240		8.11
902.11 m 40	5190	MCS0	7.85
802.11n40	5230	MCSU	7.87
	5180		8.00
802.11ac20	5200	MCS0	8.16
	5240		8.14
202 11aa40	5190	MCSO	7.71
802.11ac40	5230	MCS0	7.82
802.11ac80	5210	MCS0	6.66

WLAN 5.8G:

Mode	Channel frequency (MHz)	Data Rate	
	5745		13.11
802.11a	5785	1Mbps	10.71
	5825		10.47
	5745		9.63
802.11n20	5785	6Mbps	9.60
	5825		9.54
902 11.40	5755	MCSO	9.29
802.11n40	5795	MCS0	9.06
	5745		9.63
802.11ac20	5785	MCS0	9.55
	5825		9.37
802.11ac40	5755	MCGO	9.27
	5795	MCS0	9.15
802.11ac80	5775	MCS0	8.34

Standalone SAR test exclusion considerations

Antennas Location:

Antenna Distance To Edge

Antenna Distance To Edge(mm)										
Antenna Front Back Left Right Bottom										
5G Wifi Antenna 10 15 10 25 <5										

Test xclusi on

Mode	Frequency (MHz)	Max P _{avg} (dBm)	Max P _{avg} (mW)	Position	Distanc e (mm)	Test exclusion Threshol d (mW)	SAR Te Exclu on
WLAN 5.2G	5200	9.2	8.318	Front	10	13.157	Yes
WLAN 5.2G	5200	9.2	8.318	Back	15	19.736	Yes
WLAN 5.2G	5200	9.2	8.318	Left	10	13.157	Yes
WLAN 5.2G	5200	9.2	8.318	Right	25	32.894	Yes
WLAN 5.2G	5200	9.2	8.318	Bottom	5	6.57	Yes
WLAN 5.8G	5745	13.2	20.893	Front	10	12.516	No
WLAN 5.8G	5745	13.2	20.893	Back	15	18.775	No
WLAN 5.8G	5745	13.2	20.893	Left	10	12.516	No
WLAN 5.8G	5745	13.2	20.893	Right	25	31.291	Yes
WLAN 5.8G	5745	13.2	20.893	Bottom	5	6.258	No

Standalone SAR test exclusion considerations (FCC)

NOTE:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

SAR test exclusion for the EUT edge considerations Result

Exclusion Result										
Mode Front Back Left Right Bottom										
WLAN 5.2G	Exclusion*	Exclusion*	Exclusion*	Exclusion*	Exclusion*					
WLAN 5.8G	Required	Required	Required	Exclusion*	Required					

Note:

Exclusion*: SAR test exclusion evaluation has been done above.

SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

SAR Test Data

Environmental Conditions

Temperature:	22.1-23.5 °C
Relative Humidity:	48-52%
ATM Pressure:	101.3 kPa
Test Date:	2020/09/20

Testing was performed by Seven Liang, Ricardo Lan.

ELTE	E	Test	Max. Meas.	Max.		1g SA	R (W/kg)	
EUT Position			Scaled Factor	Meas. SAR	Scaled SAR	Plot		
	5745	802.11a	13.11	13.2	1.021	0.189	0.19	1#
Body Front (0mm)	5785	802.11a	/	/	/	/	/	/
(01111)	5825	802.11a	/	/	/	/	/	/
	5745	802.11a	13.11	13.2	1.021	< 0.01	0.01	/
Body Back (0mm)	5785	802.11a	/	/	/	/	/	/
(01111)	5825	802.11a	/	/	/	/	/	/
	5745	802.11a	13.11	13.2	1.021	0.246	0.25	2#
Body Left (0mm)	5785	802.11a	/	/	/	/	/	/
(omin)	5825	802.11a	/	/	/	/	/	/
	5745	802.11a	13.11	13.2	1.021	1.35	1.38	3#
Body Bottom	5785	802.11a	10.71	10.9	1.045	1.34	1.40	4#
	5825	802.11a	10.47	10.7	1.054	1.24	1.31	5#

WLAN 5.8G:

Note:

- When the 1-g SAR is≤ 0.8W/Kg, testing for other channels are optional.
 When the highest *reported* SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, OFDM SAR is not required.
 When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be
- scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

SAR Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Note: The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

The Highest Measured SAR Configuration in Each Frequency Band

Body

SAR probe calibration point	Frequency		EUT Desition	Meas. SA	AR (W/kg)	Largest to
	Band	Freq.(MHz)	EUT Position	Original	Repeated	Smallest SAR Ratio
5800 MHz (5700-5910 MHz)	WLAN 5.8G	5745	Body Bottom	1.35	1.34	1.0

Note:

- 1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.
- 2. The measured SAR results **do not** have to be scaled to the maximum tune-up tolerance to determine if repeated measurements are required.

3. SAR measurement variability must be assessed for each frequency band, which is determined by the **SAR probe calibration point and tissue-equivalent medium** used for the device measurements..

SAR SIMULTANEOUS TRANSMISSION DESCRIPTION

Note: WLAN transmite with a same antenna.

SAR Plots

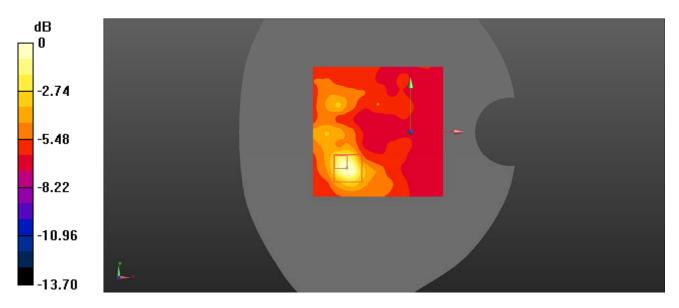
Plot 1#

DUT: QuattroPod USB; Type: QuattroPod U01; Serial: RSZ200904009-SA-S1

Communication System: UID 0, 5.8G Wi-Fi (0); Frequency: 5745 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5745 MHz; $\sigma = 5.064$ S/m; $\epsilon_r = 35.574$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7522; ConvF(4.65, 4.65, 4.65) @ 5745 MHz;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1562; Calibrated: 3/3/2020
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA ; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);


Body Front/WLAN 5.8G 802.11a Low/Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.446 W/kg

Body Front/WLAN 5.8G 802.11a Low/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 4.457 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 2.19 W/kg

SAR(1 g) = 0.189 W/kg; SAR(10 g) = 0.065 W/kg

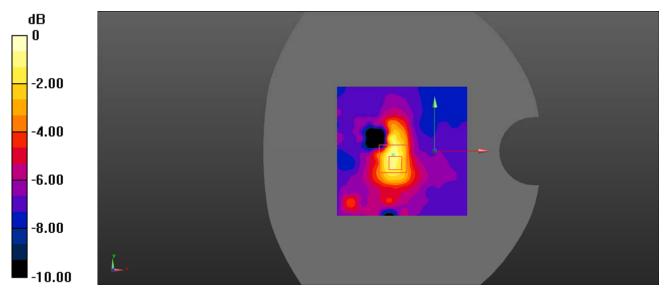
Maximum value of SAR (measured) = 0.431 W/kg

0 dB = 0.431 W/kg = -3.66 dBW/kg

Plot 2#

DUT: QuattroPod USB; Type: QuattroPod U01; Serial: RSZ200904009-SA-S1

Communication System: UID 0, 5.8G Wi-Fi (0); Frequency: 5745 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5745 MHz; $\sigma = 5.064$ S/m; $\epsilon_r = 35.574$; $\rho = 1000$ kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7522; ConvF(4.65, 4.65, 4.65) @ 5745 MHz;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1562; Calibrated: 3/3/2020
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA ; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);

Body Left/WLAN 5.8G 802.11a Low/Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.384 W/kg

Body Left/WLAN 5.8G 802.11a Low/Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.384 W/kg

Body Left/WLAN 5.8G 802.11a Low/Zoom Scan (8x8x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 5.984 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 2.92 W/kg SAR(1 g) = 0.246 W/kg; SAR(10 g) = 0.064 W/kg Maximum value of SAR (measured) = 0.440 W/kg

0 dB = 0.440 W/kg = -3.57 dBW/kg

Plot 3#

DUT: QuattroPod USB; Type: QuattroPod U01; Serial: RSZ200904009-SA-S1

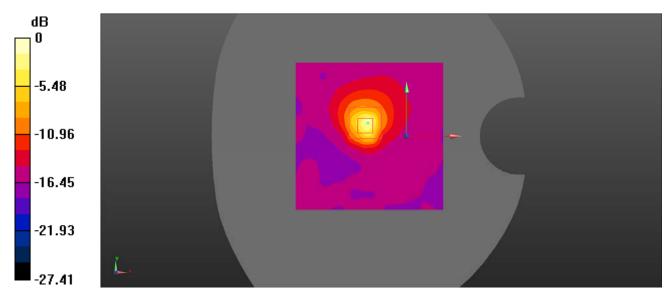
Communication System: UID 0, 5.8G Wi-Fi (0); Frequency: 5745 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5745 MHz; $\sigma = 5.064$ S/m; $\epsilon_r = 35.574$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

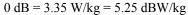
DASY5 Configuration:

- Probe: EX3DV4 SN7522; ConvF(4.65, 4.65, 4.65) @ 5745 MHz;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1562; Calibrated: 3/3/2020
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA ; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);

Body Bottom/WLAN 5.8G 802.11a Low/Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.37 W/kg

Body Bottom/WLAN 5.8G 802.11a Low/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm,


dz=2mm


Reference Value = 10.81 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 7.81 W/kg

SAR(1 g) = 1.35 W/kg; SAR(10 g) = 0.289 W/kg

Maximum value of SAR (measured) = 3.35 W/kg

Plot 4#

DUT: QuattroPod USB; Type: QuattroPod U01; Serial: RSZ200904009-SA-S1

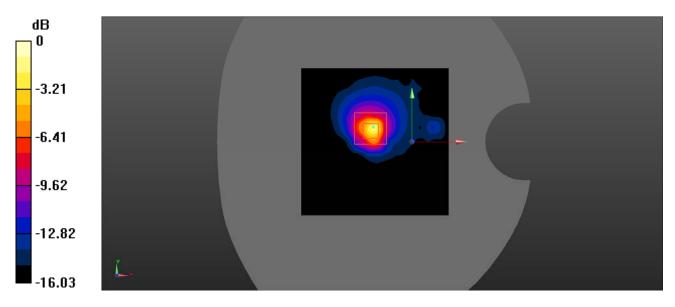
Communication System: UID 0, 5.8G Wi-Fi (0); Frequency: 5785 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5785 MHz; $\sigma = 5.164$ S/m; $\epsilon_r = 35.382$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

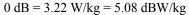
DASY5 Configuration:

- Probe: EX3DV4 SN7522; ConvF(4.65, 4.65, 4.65) @ 5785 MHz;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1562; Calibrated: 3/3/2020
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA ; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);

Body Bottom/WLAN 5.8G 802.11a Mid/Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.18 W/kg

Body Bottom/WLAN 5.8G 802.11a Mid/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm,


dz=2mm


Reference Value = 10.26 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 8.10 W/kg

SAR(1 g) = 1.34 W/kg; SAR(10 g) = 0.345 W/kg

Maximum value of SAR (measured) = 3.22 W/kg

Plot 5#

DUT: QuattroPod USB; Type: QuattroPod U01; Serial: RSZ200904009-SA-S1

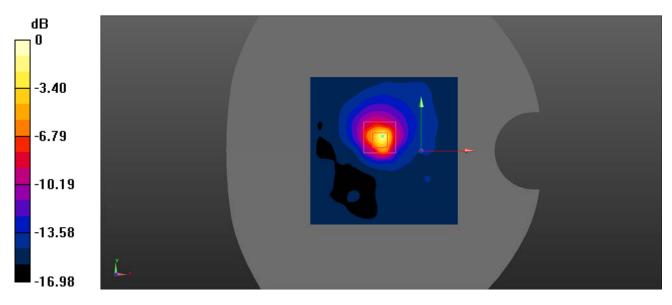
Communication System: UID 0, 5.8G Wi-Fi (0); Frequency: 5825 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5825 MHz; $\sigma = 5.231$ S/m; $\epsilon_r = 35.501$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7522; ConvF(4.65, 4.65, 4.65) @ 5825 MHz;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1562; Calibrated: 3/3/2020
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);

Body Bottom/WLAN 5.8G 802.11a High/Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.07 W/kg

Body Bottom/WLAN 5.8G 802.11a High/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm,


dz=2mm

Reference Value = 9.862 V/m; Power Drift = 0.36 dB

Peak SAR (extrapolated) = 7.34 W/kg

SAR(1 g) = 1.24 W/kg; SAR(10 g) = 0.330 W/kg

Maximum value of SAR (measured) = 3.02 W/kg

0 dB = 3.02 W/kg = 4.80 dBW/kg

APPENDIX A MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table. Measurement uncertainty evaluation for IEEE1528-2013 SAR test

Source of uncertainty	Tolerance/ uncertainty ± %	Probability distribution	Divisor	ci (1 g)	ci (10 g)	Standard uncertainty ± %, (1 g)	Standard uncertainty ± %, (10 g)					
Measurement system												
Probe calibration	6.55	Ν	1	1	1	6.6	6.6					
Axial Isotropy	4.7	R	$\sqrt{3}$	1	1	2.7	2.7					
Hemispherical Isotropy	9.6	R	$\sqrt{3}$	0	0	0.0	0.0					
Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.6	0.6					
Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7					
Detection limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6					
Readout electronics	0.3	N	1	1	1	0.3	0.3					
Response time	0.0	R	$\sqrt{3}$	1	1	0.0	0.0					
Integration time	0.0	R	$\sqrt{3}$	1	1	0.0	0.0					
RF ambient conditions – noise	1.0	R	$\sqrt{3}$	1	1	0.6	0.6					
RF ambient conditions-reflections	1.0	R	$\sqrt{3}$	1	1	0.6	0.6					
Probe positioner mech. Restrictions	0.8	R	$\sqrt{3}$	1	1	0.5	0.5					
Probe positioning with respect to phantom shell	6.7	R	$\sqrt{3}$	1	1	3.9	3.9					
Post-processing	2.0	R	$\sqrt{3}$	1	1	1.2	1.2					
		Test sample	related									
Test sample positioning	2.8	Ν	1	1	1	2.8	2.8					
Device holder uncertainty	6.3	Ν	1	1	1	6.3	6.3					
Drift of output power	5.0	R	$\sqrt{3}$	1	1	2.9	2.9					
		Phantom and	l set-up									
Phantom uncertainty (shape and thickness tolerances)	4.0	R	$\sqrt{3}$	1	1	2.3	2.3					
Liquid conductivity target)	5.0	R	√3	0.64	0.43	1.8	1.2					
Liquid conductivity meas.)	2.5	Ν	1	0.64	0.43	1.6	1.1					
Liquid permittivity target)	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4					
Liquid permittivity meas.)	2.5	Ν	1	0.6	0.49	1.5	1.2					
Combined standard uncertainty		RSS				12.2	12.0					
Expanded uncertainty 95 % confidence interval)						24.3	23.9					

Source of uncertainty	Tolerance/ uncertainty ± %	Probability distribution	Divisor	ci (1 g)	ci (10 g)	Standard uncertainty ± %, (1 g)	Standard uncertainty ± %, (10 g)
	I	Measuremen	t system	,	I	I	<u> </u>
Probe calibration	6.55	Ν	1	1	1	6.6	6.6
Axial Isotropy	4.7	R	√3	1	1	2.7	2.7
Hemispherical Isotropy	9.6	R	$\sqrt{3}$	0	0	0.0	0.0
Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7
Modulation Response	0.0	R	$\sqrt{3}$	1	1	0.0	0.0
Detection limits	1.0	R	√3	1	1	0.6	0.6
Boundary effect	1.0	R	√3	1	1	0.6	0.6
Readout electronics	0.3	Ν	1	1	1	0.3	0.3
Response time	0.0	R	$\sqrt{3}$	1	1	0.0	0.0
Integration time	0.0	R	√3	1	1	0.0	0.0
RF ambient conditions - noise	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
RF ambient conditions-reflections	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
Probe positioner mech. Restrictions	0.8	R	$\sqrt{3}$	1	1	0.5	0.5
Probe positioning with respect to phantom shell	6.7	R	$\sqrt{3}$	1	1	3.9	3.9
Post-processing	2.0	R	√3	1	1	1.2	1.2
		Test sample	related				
Device holder Uncertainty	6.3	Ν	1	1	1	6.3	6.3
Test sample positioning	2.8	Ν	1	1	1	2.8	2.8
Power scaling	4.5	R	√3	1	1	2.6	2.6
Drift of output power	5.0	R	√3	1	1	2.9	2.9
		Phantom and	l set-up				
Phantom uncertainty (shape and thickness tolerances)	4.0	R	$\sqrt{3}$	1	1	2.3	2.3
Algorithm for correcting SAR for deviations in permittivity and conductivity	1.9	Ν	1	1	0.84	1.1	0.9
Liquid conductivity (meas.)	2.5	Ν	1	0.64	0.43	1.6	1.1
Liquid permittivity (meas.)	2.5	Ν	1	0.6	0.49	1.5	1.2
Temp. unc Conductivity	1.7	R	√3	0.78	0.71	0.8	0.7
Temp. unc Permittivity	0.3	R	$\sqrt{3}$	0.23	0.26	0.0	0.0
Combined standard uncertainty		RSS				12.2	12.1
Expanded uncertainty 95 % confidence interval)						24.5	24.2

Measurement uncertainty evaluation for IEC62209-2 SAR test

APPENDIX B EUT TEST POSITION PHOTOS

Liquid depth \geq 15cm

Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA ; Serial: 1962

Body Front (0mm)Setup Photo

Body Back (0mm)Setup Photo

Body Left (0mm)Setup Photo

Body Right (0mm)Setup Photo

Body Top (0mm)Setup Photo

SAR Test Report

Body Bottom(0mm)Setup Photo

APPENDIX C PROBE CALIBRATION CERTIFICATES

		a g ABORATORY	CNAS 国际3 校准 CALIBR
Add: No.51 Xueyu Tel: +86-10-62304 E-mail: cttl@china		0-62304633-2504	CNAS
Client BACI		Certificate No:	Z20-60085
CALIBRATION C	ERTIFICAT		
Object	EX3DV4 - S	SN : 7522	100
Calibration Procedure(s)			
Calibration Procedure(s)	FF-Z11-004		
	Calibration	Procedures for Dosimetric E-field Probes	
Calibration date:	April 01, 20	20	
All calibrations have been	conducted in the	closed laboratory lacility, environment t	temperature(22±3)°C ar
All calibrations have been humidity<70%. Calibration Equipment used			temperature(22±3)℃ ar
humidity<70%. Calibration Equipment used Primary Standards			Scheduled Calibratic
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	I (M&TE critical for ca ID # 101919	libration)	
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	I (M&TE critical for ca ID # 101919 101547	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125)	Scheduled Calibratic
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	I (M&TE critical for ca ID # 101919 101547 101548	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125)	Scheduled Calibratic Jun-20 Jun-20 Jun-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuat	I (M&TE critical for ca ID # 101919 101547 101548 or 18N50W-10dB	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525)	Scheduled Calibratic Jun-20 Jun-20 Jun-20 Feb-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuat Reference 20dBAttenuat	I (M&TE critical for ca ID # 101919 101547 101548 or 18N50W-10dB or 18N50W-20dB	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526)	Scheduled Calibratic Jun-20 Jun-20 Feb-22 Feb-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuat	I (M&TE critical for ca ID # 101919 101547 101548 or 18N50W-10dB or 18N50W-20dB	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525)	Scheduled Calibratio Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 19/2) May-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuat Reference 20dBAttenuat Reference Probe EX3DV DAE4	I (M&TE critical for ca ID # 101919 101547 101548 or 18N50W-10dB or 18N50W-20dB 4 SN 7307 SN 1525	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_May 26-Aug-19(SPEAG, No.DAE4-1525_Aug	Scheduled Calibratic Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 19/2) May-20 g19) Aug-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuat Reference 20dBAttenuat Reference Probe EX3DV DAE4 Secondary Standards	I (M&TE critical for ca ID # 101919 101547 101548 or 18N50W-10dB or 18N50W-20dB /4 SN 7307 SN 1525 ID #	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_May 26-Aug-19(SPEAG, No.DAE4-1525_Aug Cal Date(Calibrated by, Certificate No.)	Scheduled Calibratio Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 19/2) May-20 g19) Aug-20 Scheduled Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuat Reference 20dBAttenuat Reference Probe EX3DV DAE4 Secondary Standards SignalGenerator MG3700	I (M&TE critical for ca ID # 101919 101547 101548 or 18N50W-10dB or 18N50W-20dB V4 SN 7307 SN 1525 ID # 0A 6201052605	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_May 26-Aug-19(SPEAG, No.DAE4-1525_Aug Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05127)	Scheduled Calibratic Jun-20 Jun-20 Jeb-22 Feb-22 Feb-22 19/2) May-20 g19) Aug-20 Scheduled Calibration Jun-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuat Reference 20dBAttenuat Reference Probe EX3DV DAE4 Secondary Standards SignalGenerator MG3700 Network Analyzer E50710	I (M&TE critical for ca ID # 101919 101547 101548 or 18N50W-10dB or 18N50W-20dB V4 SN 7307 SN 1525 ID # ID # OA 6201052605 C MY46110673	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.DAE4-1525_Aug Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05127) 10-Feb-20(CTTL, No.J20X00515)	Scheduled Calibratio Jun-20 Jun-20 Feb-22 Feb-22 19/2) May-20 g19) Aug-20 Scheduled Calibration Jun-20 Feb-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuat Reference 20dBAttenuat Reference Probe EX3DV DAE4 Secondary Standards SignalGenerator MG3700 Network Analyzer E50710	I (M&TE critical for ca ID # 101919 101547 101548 or 18N50W-10dB or 18N50W-20dB 4 SN 7307 SN 1525 ID # 0A 6201052605 C MY46110673 Name	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_May 26-Aug-19(SPEAG, No.DAE4-1525_Aug Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05127) 10-Feb-20(CTTL, No.J20X00515) Function	Scheduled Calibratic Jun-20 Jun-20 Jeb-22 Feb-22 Feb-22 19/2) May-20 g19) Aug-20 Scheduled Calibration Jun-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuat Reference 20dBAttenuat Reference Probe EX3DV DAE4 Secondary Standards SignalGenerator MG3700 Network Analyzer E50710	I (M&TE critical for ca ID # 101919 101547 101548 or 18N50W-10dB or 18N50W-20dB V4 SN 7307 SN 1525 ID # ID # OA 6201052605 C MY46110673	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.DAE4-1525_Aug Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05127) 10-Feb-20(CTTL, No.J20X00515)	Scheduled Calibratic Jun-20 Jun-20 Feb-22 Feb-22 19/2) May-20 g19) Aug-20 Scheduled Calibration Jun-20 Feb-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuat Reference 20dBAttenuat Reference Probe EX3DV DAE4 Secondary Standards SignalGenerator MG3700 Network Analyzer E50710	I (M&TE critical for ca ID # 101919 101547 101548 or 18N50W-10dB or 18N50W-20dB 4 SN 7307 SN 1525 ID # 0A 6201052605 C MY46110673 Name	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_May 26-Aug-19(SPEAG, No.DAE4-1525_Aug Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05127) 10-Feb-20(CTTL, No.J20X00515) Function	Scheduled Calibratic Jun-20 Jun-20 Feb-22 Feb-22 19/2) May-20 g19) Aug-20 Scheduled Calibration Jun-20 Feb-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuat Reference 20dBAttenuat Reference Probe EX3DV DAE4 Secondary Standards SignalGenerator MG3700 Network Analyzer E50710 Calibrated by:	I (M&TE critical for ca ID # 101919 101547 101548 or 18N50W-10dB or 18N50W-20dB 4 SN 7307 SN 1525 ID # DA 6201052605 C MY46110673 Name Yu Zongying	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_May 26-Aug-19(SPEAG, No.DAE4-1525_Aug Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05127) 10-Feb-20(CTTL, No.J20X00515) Function SAR Test Engineer	Scheduled Calibratic Jun-20 Jun-20 Feb-22 Feb-22 19/2) May-20 g19) Aug-20 Scheduled Calibration Jun-20 Feb-21

Certificate No: Z20-60085

Page 1 of 9

Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Glossarv:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane no

ormal to probe axis (at measurement center), i θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:Z20-60085

Page 2 of 9

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7522

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.43	0.44	0.51	±10.0%
DCP(mV) ^B	99.1	99.3	102.4	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0 CW	0	X	0.0	0.0	1.0	0.00	149.8	±2.7%
	Y	0.0	0.0	1.0		153.0		
		Z	0.0	0.0	1.0		174.8	1

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainly is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:Z20-60085

Page 3 of 9

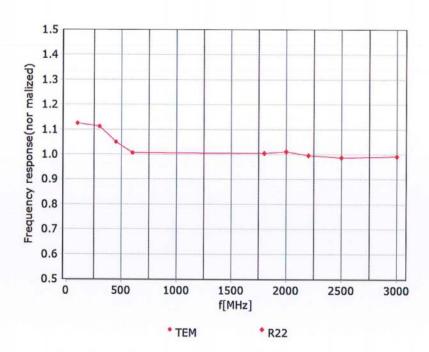
SAR Test Report

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7522

Calibration Parameter Determined in Head Tissue Simulating Media

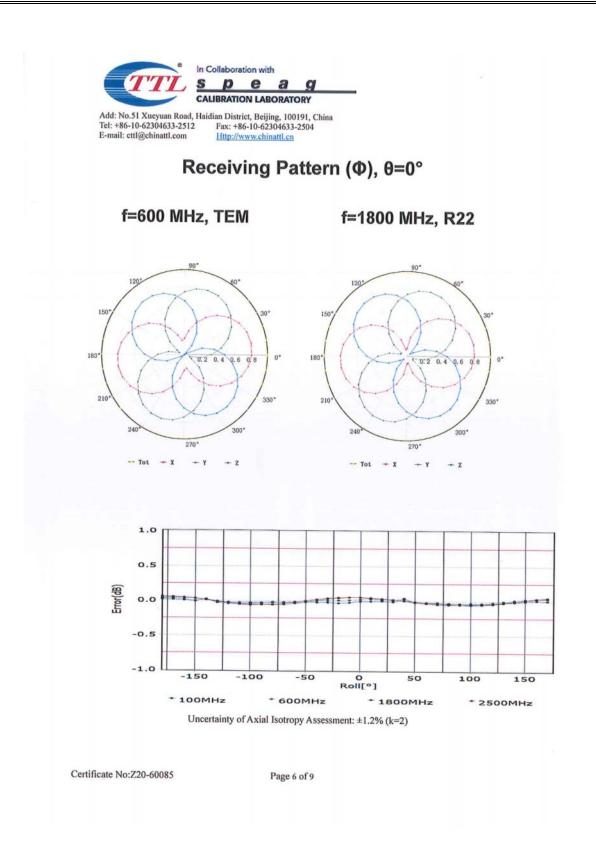
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.92	9.92	9.92	0.40	0.75	±12.1%
900	41.5	0.97	9.40	9.40	9.40	0.13	1.95	±12.1%
1750	40.1	1.37	8.21	8.21	8.21	0.22	1.08	±12.1%
1900	40.0	1.40	7.95	7.95	7.95	0.21	1.22	±12.1%
2300	39.5	1.67	7.53	7.53	7.53	0.44	0.81	±12.1%
2450	39.2	1.80	7.15	7.15	7.15	0.48	0.79	±12.1%
2600	39.0	1.96	7.04	7.04	7.04	0.59	0.72	±12.1%
5200	36.0	4.66	5.20	5.20	5.20	0.45	1.75	±13.3%
5300	35.9	4.76	4.96	4.96	4.96	0.45	1.75	±13.3%
5600	35.5	5.07	4.55	4.55	4.55	0.45	1.60	±13.3%
5800	35.3	5.27	4.65	4.65	4.65	0.45	1.65	±13.3%

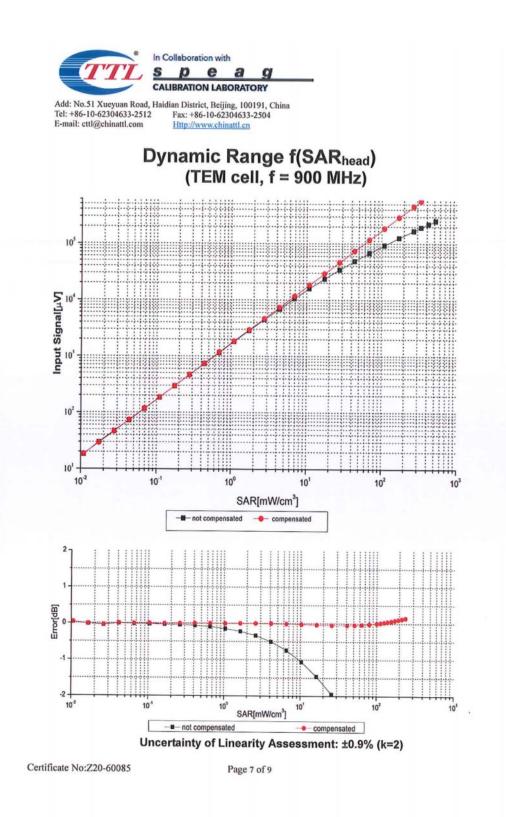
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

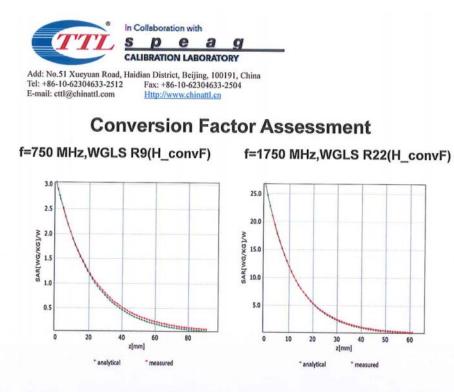

^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:Z20-60085

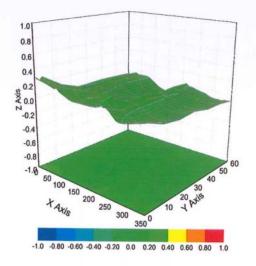
Page 4 of 9


Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)





Certificate No:Z20-60085


Page 5 of 9

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2)

Certificate No:Z20-60085

Page 8 of 9

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7522

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	31.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:Z20-60085

Page 9 of 9

APPENDIX D DIPOLE CALIBRATION CERTIFICATES

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client BACL USA

Certificate No: D5GHzV2-1301_Jan20

Accreditation No.: SCS 0108

CALIBRATION C	ERTIFICATI		
Object	D5GHzV2 - SN:	1301	
Calibration procedure(s)	QA CAL-22.v4 Calibration Proce	edure for SAR Validation Sources	between 3-6 GHz
Calibration date:	January 10, 2020	0	
The measurements and the uncert	ainties with confidence p ed in the closed laborato	ional Standards, which realize the physical un probability are given on the following pages ar any facility: environment temperature $(22 \pm 3)^{\circ}$	d are part of the certificate.
Calibration Equipment used (M&TE	,		
Primary Standards	ID # SN: 104778	Cal Date (Certificate No.)	Scheduled Calibration
ower sensor NRP-Z91	SN: 104778	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892)	Apr-20
ower sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893)	Apr-20 Apr-20
eference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	
ype-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02694) 04-Apr-19 (No. 217-02895)	Apr-20 Apr-20
eference Probe EX3DV4	SN: 3503	31-Dec-19 (No. EX3-3503 Dec19)	Dec-20
AE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20 Dec-20
econdary Standards	ID #	Check Date (in house)	Scheduled Check
ower meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
ower sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
ower sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
F generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
etwork Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	Milleles
pproved by:	Katja Pokovic	Technical Manager	ally

Certificate No: D5GHzV2-1301_Jan20

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG

s

С

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

Zeughausstrasse 43, 8004 Zurich, Switzerland

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1301_Jan20

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	4.48 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.7 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.33 W/kg

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.3 ± 6 %	4.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.1 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.1 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1301_Jan20

Page 3 of 8

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.0 ± 6 %	5.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.2 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.29 W/kg

Certificate No: D5GHzV2-1301_Jan20

Page 4 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	47.8 Ω - 3.1 jΩ
Return Loss	- 28.2 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	51.9 Ω + 1.9 jΩ
Return Loss	- 31.4 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	51.2 Ω + 3.1 jΩ
Return Loss	- 29.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.192 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D5GHzV2-1301_Jan20

Page 5 of 8

DASY5 Validation Report for Head TSL

Date: 10.01.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1301

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5250 MHz; σ = 4.48 S/m; ϵ_r = 34.8; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.83 S/m; ϵ_r = 34.3; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.03 S/m; ϵ_r = 34; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

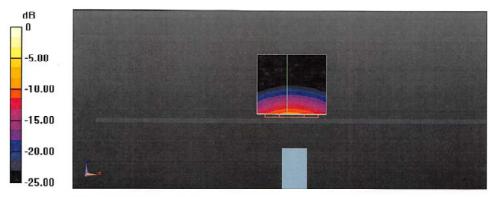
DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.45, 5.45, 5.45) @ 5250 MHz, ConvF(5, 5, 5) @ 5600 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mmReference Value = 77.91 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 8.13 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70.1% Maximum value of SAR (measured) = 18.1 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

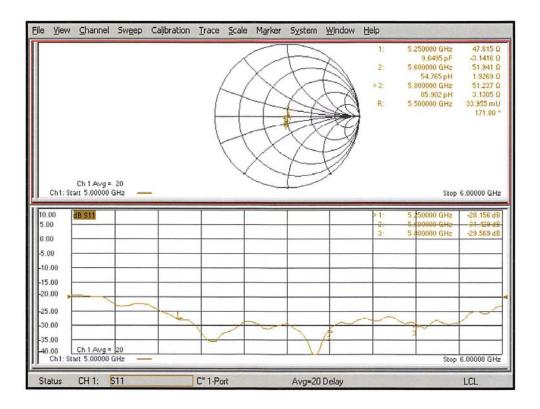

Reference Value = 78.16 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 32.2 W/kg SAR(1 g) = 8.59 W/kg; SAR(10 g) = 2.44 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.4% Maximum value of SAR (measured) = 19.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.29 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 32.5 W/kg SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 65.1% Maximum value of SAR (measured) = 19.4 W/kg

Certificate No: D5GHzV2-1301_Jan20

Page 6 of 8



0 dB = 18.1 W/kg = 12.58 dBW/kg

Certificate No: D5GHzV2-1301_Jan20

Page 7 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1301_Jan20

Page 8 of 8

***** END OF REPORT *****

SAR Test Report