

Test Report

Test Report Identifier: SC-1402-516-03

Tested Device: Wireless Bodypack Transmitter – dBtechnologies MOVING ONE-B

According to the standard(s):

FCC KDB 447498 D01 v06

Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies - General RF Exposure Guidance

> **Sicom test s.r.l.** - AREA Science Park - Padriciano 99 - I-34149 Trieste – Italy Web: www.sicomtesting.com - Tel: +39 0481 778931 - Email: sales@sicomtesting.com Accredited by Ministero dello Sviluppo Economico

1. General information

Customer	
Company name	A.E.B. Industriale s.r.l. a socio unico
V.A.T. number	IT02685631208
Address	Via G.Brodolini 8
City	Valsamoggia Loc. Crespellano (BO)
Postal Code	40053
Country	Italy
Telephone number	+39 051 969870
Contact person name	Andrea Molinari
Contact person e-mail	a.molinari@dbtechnologies-aeb.com

Product Identification	
Device type (brief	Wireless Bodypack Transmitter
description)	
Trademark / Brand	dBtechnologies
Model name	MOVING ONE-B
Hardware version	1
Software / Firmware	1
version(s)	
Antenna informations	fixed, not removable, semi-rigid linear antenna; lenght 85 mm
Accessories informations	non conductive belt clip
	microphone with MINI XLR 4P connector
Power Source	3V (2 x Alkaline battery size AA)
Battery data	Duracell ultra power 1,5V LR6 AA
FCC ID	2ADDV-MOVINGONEB
RF exposure environment	general public

Test Standard:KDB 447498 D01 v06 10/23/2015 - Mobile and Portable Devices RF Exposure
Procedures and Equipment Authorization Policies - General RF Exposure GuidanceTechnical Standards:KDB 865664 D01 v01r04 08/07/2015 - SAR Measurement for 100 MHz to 6 GHzIEEE1528: 2013 - IEEE Recommended Practice for Determining the Peak Spatial-
Average Specific Absorption Rate (SAR) in the Human Head from Wireless
Communications Devices: Measurement Techniques

The test results of this report relate only to the tested sample identified in this report.

Tested Device:

Sample A: dBtechnologies MOVING ONE-B

IMEI / Serial number: sample 1

Supported mode: FM analog (Peak deviation = ±35 kHz max)

dBtechnologies MOVING ONE-B

SC-1402-516-03

	Supported band: 518-542 MHz (frequency range 518.150 to 541.900 MHz)		
	Type of antenna: fixed, not removable, semi-rigid linear antenna; lenght 85 mm		
	Power: 26.9 mW at 541.900 MHz (max conducted).		
Date of Report:	07 December 2015		
Test headquarters:	Sicom test s.r.l - Via dell'Industria 9 (Loc. Begliano)		
	I-34075 San Canzian d'Isonzo Gorizia GO Italy		
Test site:	Sicom test s.r.I - AREA Science Park		
	Padriciano 99 - I-34149 Trieste Italy		

Total number of pages: 59

This test report includes the following sections:

- 1. General information
- 2. Photographs
- 3. Test description
- 4. Test equipment and test conditions
- 5. System validation check data
- 6. Test results
- 7. Evaluation
- 8. Uncertainty evaluation
- 9. System validation check uncertainty
- 10. Annex A: Electric field probe calibration reports
- 11. Annex B: dipoles reference SAR value and calibration

dBtechnologies MOVING ONE-B

Test Operator: Antonio Dieni

Mu ou

Technical responsible: Roberto Passini

Cherto Pon h!

SC-1402-516-03

2. Photographs

Figure 1 – The tested device, front view

Figure 2 – The tested device, rear view

dBtechnologies MOVING ONE-B

SC-1402-516-03

Page 5 of 59

Figure 3 – The tested device, top view

Figure 4 – The tested device, label

SC-1402-516-03

Page 6 of 59

Figure 5 – The tested device with its receiver

Figure 6 – The tested device during test

SC-1402-516-03

Figure 7 – The tested device during test

Figure 8 – Tested Device position: with the back side against the phantom

SC-1402-516-03

Figure 9 – Tested Device position: with the back side against the phantom (detail) Note1: DUT antenna tip distance from the shell: 13 mm

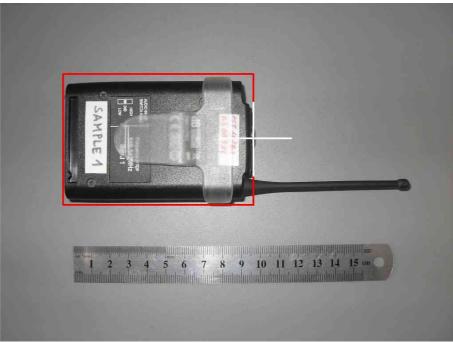


Figure 10 – Device positioning for peak SAR locations

Note2: DUT rectangle dimensions: 91 mm x 59 mm; Antenna length 85 mm Note3: DUT cross coincides with the center of the shell in all measurements

dBtechnologies MOVING ONE-B

SC-1402-516-03

3. Test description

Scope, references and evaluation of compliance to the limits

This report contains the results of the measurements performed on the DUT described in the General Information section in order to evaluate its compliance to the basic restrictions related to human exposure to radio frequency electromagnetic fields, according to the recommended test positions for body, head and/or other configurations included in the Test Standard.

The Test Standard generally require SAR evaluation for devices that have a radiating element normally operating at or below 6 GHz, with a separation distance of up to 20 cm between the user and the device and specifies measurement methods in accordance with the latest version of IEEE 1528 and/or IEC EN 62209 series technical standards. A list of accepted FCC KDB procedures and/or IC Notices for SAR measurements details for specific families of devices is also given in Technical Standard(s) paragraph.

The exposure limits are specified in the Test Condiction section and are generally referred in the Test Standard for General Public / Uncontrolled Environment exposure or in general references such as Health Canada's RF exposure guideline or European Council Recommendation 1999/519/EC.

The results of Specific Absorption Rate (SAR) measurements are compared directly to the limit and the DUT is declared to fulfill the requirements of the standard if the measured values are less than or equal to the limit.

The Dosimetric Assessment System

The SAR Dosimetric Assessment System used is able to determine the SAR distribution inside a phantom conforming to the European, Canadian and U.S. standards. It consists of a robot, a field probe calibrated for use in liquids, a twin phantom, a flat phantom, a flat ellipsoidal phantom, a tissue simulating liquid, a mobile phone holder and software. The software controls the robot and processes the measured data to compare them to the limits.

Figure 11 - SAR Dosimetric Assessment System

dBtechnologies MOVING ONE-B

SC-1402-516-03

Page 10 of 59

The twin phantom is a shell made with low loss and low permittivity material integrated in a wooden table. The shape of the shell is based on data from an anthropomorphic study and resembles the head and neck of a user, with average size and dimensions. The shell enables the dosimetric evaluation of left and right hand phone usage together with body phone usage through the flat part of the phantom. A fully flat ellipsoidal phantom made with low loss and low permittivity material is used for dosimetric evaluation of body usage of devices with bigger dimensions.

The E-field probe is a 3-axis system made of 3 distinct dipoles. It has a triangular section bar and on each face a dipole and a resistive line are located. The three orthogonal dipoles are linked to special Schottky diodes with low detection thresholds. The probe is designed to fulfill CENELEC and IEEE recommendations for the measurement of electromagnetic fields radiated by mobile phones, base stations and all radiating devices.

The mobile positioning device is made of low-loss and low permittivity material.

SAR measurement procedure

The dielectric properties of the tissue equivalent liquids are measured prior to the SAR measurements and at the same temperature with a tolerance of $\pm 2^{\circ}$ C. The measured values are the permittivity ϵ and the electric conductivity σ and they shall comply with the values defined at the specific frequencies into the standard for body simulating tissue liquids with the tolerance of $\pm 5\%$.

A performance check is made before the DUT SAR measurements in order to verify that the system operates within its specifications. It is a 1 g (or 10 g) averaged SAR measurement using a simplified set-up with a dipole source. The components and procedures in the simplified performance check are the same as those used for the compliance tests. The result of this check shall be within \pm 10% of the target value, determined during the system validation.

During all the tests is monitored ambient temperature of the laboratory and liquid, relative humidity and that the liquid depth is above 15 cm in all cases.

The tested device uses its internal transmitter; the antenna(s), battery and accessories are those specified by the manufacturer. The battery is fully charged before each measurement and there are no external connections except those required for normal operating conditions (defined by the manufacturer or by the intended use of the tested device).

The output power and frequency are controlled using a network emulator when applicable. In any case the tested device is set to transmit at its highest output peak power level on the required frequencies of each transmitting band.

For "head" measurements the device is tested in the "cheek" and "tilt" positions on left and right sides of the phantom at the required test conditions and test frequencies of each transmitting band (tipically following the IEC EN 62209-1 or IEEE 1528 provisions). If the mobile phone has a retractable antenna, all of the tests are performed both with the antenna fully extended and fully retracted.

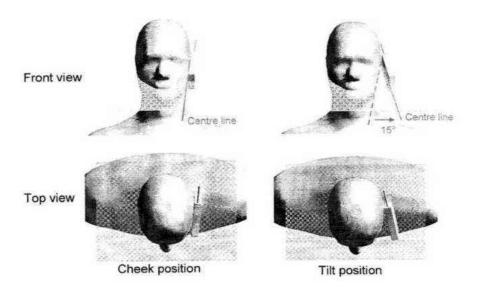


Figure 12 - "cheek" and "tilt" positions of the mobile phone on the left side

dBtechnologies MOVING ONE-B

SC-1402-516-03

For "body" measurements the device is tested in the body operating configurations (tipically following the IEC EN 62209-2 or FCC KDB or IC DRS Notices provisions), with the belt clips and holsters attached to the device and positioned against a flat phantom in normal use configuration. Devices with a headset output are tested with a headset connected to the device also.

Both the physical spacing to the body of the user as dictated by the accessory and the materials used in an accessory affect the SAR produced by the transmitting device.

When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest space to the body.

When multiple accessories that contain metallic components are supplied with the device, the device is tested with each accessory that contain a unique metallic component. If multiple accessories share an identical metallic component, only the accessory that dictates the closest spacing to the body must be tested. Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance between the back of the device and the flat phantom is used for testing body-worn SAR compliance under such circumstances stated by the standards. If the mobile phone has a retractable antenna, all of the tests are performed both with the antenna fully extended and fully retracted. Any measurement detail related to bands, channels, and configurations is enumerated in Test Condictions section.

From measured data the average SAR, in a volume in the shape of a cube and side dimension of a 1g and 10g of tissue, is calculated and compared to the limits.

Spatial Peak SAR, resolution, volume or zoom scan procedure

The system software includes all numerical procedures necessary to evaluate the spatial peak SAR values. The spatial-peak SAR can be computed over any required mass. The base for the evaluation is a "cube" measurement in a volume of 30mm³ (7x7x7 points, dx=5mm, dy=5mm, dz=5mm). The measured volume includes the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine. The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

1. Extraction of the measured data (grid and values) from the Zoom Scan

2. Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)

- 3. Generation of a high-resolution mesh within the measured volume
- 4. Interpolation of all measured values from the measurement grid to the high-resolution grid

5. Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface

6. Calculation of the averaged SAR within masses of 1g and 10g

Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is used to determinate this highest local SAR values. The extrapolation is based on a fourthorder least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

An interpolation is used to provide an array of sufficient resolution. The measured and extrapolated SAR values are interpolated on a 1 mm grid with a three dimensional thin plate spline algorithm.

SAR measurement system technical data: phantom description

The SAM phantom is delivered with a CAD CD-ROM including the 3D data of the internal shape of the shell. These data are used by the 6 axis robot control software to define movements relative to its internal surface through 5 additional CAD-linked reference points.

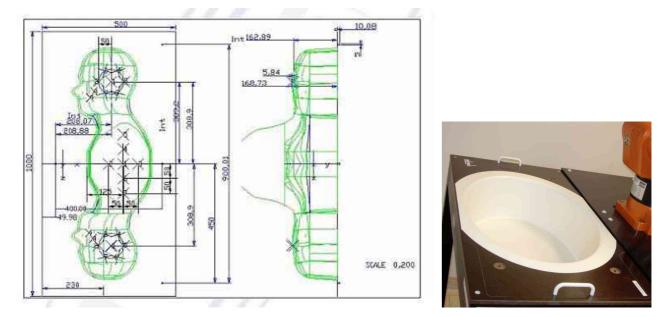
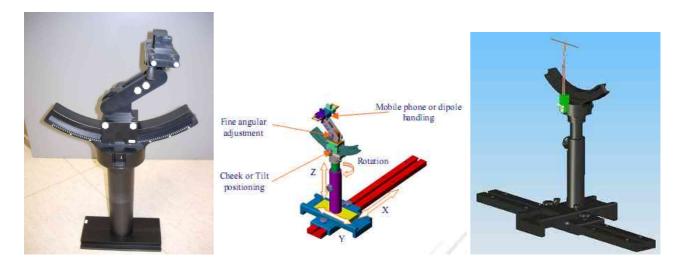


Figure 13 - SAM and ellipsoidal shell

SAM shell technical data:

Shell thickness	2 mm ± 0.2 mm
Permittivity / loss tangent	3.3 / 0.017
Filling phantom volume/ liquid depth	27 litres / 20 cm
Dimensions	1000 mm (length) x 500 mm (width) x 200 mm (height)
References	IEEE 1528, EN 50361 and IEC 62209-1

Ellipsoidal shell technical data:


Shell thickness	2 mm ± 0.2 mm
Permittivity / loss tangent	4.4 / 0.017
Filling Volume	35 litres / 20 cm
Dimensions	800 mm (length) x 500 mm (width) x 200 mm (height)
References	IEC 62209-2

SAR measurement system technical data: device holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. An accurate device positioning is therefore crucial for accurate and repeatable measurements.

SC-1402-516-03

Figure 14 - positioning holder overview

	Device holder system characteristics:				
General	Totally metal-free design. Three graduated translation and five rotation point to lock the device under test under the flat part or under the left or right ear. Ensured repeatability with fine angular adjustment. Mobile phone or dipole handling.				
Permittivity / loss tangent	3.0 / 0.017				
Material	РОМ				
X translation	700 mm				
Y translation	250 mm				
Z translation	100 mm				

SAR measurement system technical data: isotropic E-Field Probe

Probes are constructed with a triangular section bar in alumina. On each face, a dipole and a resistive line are printed. A Schottky diode is placed in the center of each dipole. Symmetrical design with triangular core. These uncoupled dipoles perform the isotropic and wide-band measurements. See Annex A for calibration.

Figure 15 - Isotropic E-Field Probe

isotropic E-Field Probe technical data:		
Frequency range	100 MHz - 30 GHz	
Length	330 mm	
Dipoles Length	4.5 mm	
Maximum external diameter	8 mm	
Probe tip external diameter	5 mm	
Distance between dipoles and the probe tip	<2.7mm	
Dipole resistance (in the connector plane)	1MΩ to 2MΩ	

dBtechnologies MOVING ONE-B

SC-1402-516-03

Axial isotropy in human-equivalent liquids	± 0.2 dB
Hemispherical Isotropy in human-equivalent liquids	± 0.3 dB
Linearity	± 0.5 dB
Maximum operating SAR	100 Watts/kg
Lower SAR detection threshold	0.0015 Watts/kg
Connectors	6 male wires (Hirose SR30)

SAR measurement system technical data: reference dipoles

The antennas are developed with a $\lambda 0/4$ balun, so that all calibration dipoles are totally symmetrical. Each validation dipole is used to check the whole SAR measurement chain in its frequency band. They are especially developed to make SAR measurements near a flat SAM phantom filled with human-equivalent liquid, according to CENELEC and IEEE standards. Each dipole has been designed to be plugged in the device holder positioning system. See Annex A for calibration.

Reference dipoles technical data:

Frequencies	450, 750, 900, 1800, 2000, 2450 MHz
Adaptation	S11 < -20dB in specified validation position.
Power	100W
Connectors	SMA
Dimensions	Height : between 200 mm and 300 mm Length : between 25 mm and 83 mm depends on the dipole frequency

4. Test equipment and test conditions

Test Equipment:

SAR Dosimetric Assessment System - Manufacturer: Satimo Model: COMOSAR TWINS

Instrument Type	Model	Manufacturer	Serial Number	Calibration periodicity	Last Calibration
Robot	KR3	Kuka	846427	N.S.	-
Robot Remote Controller	KRC3	Kuka	599	N.S.	-
Robot Control Panel	KCP2	Kuka	1438	N.S.	-
Isotropic E-field probe		Satimo	SN 46/06 EP60	15 months	27/02/2015
Dipole	450 MHz	Satimo	SN 39/05 DIPB26	24 months	21/02/2014
SAM shell	Twins phantom	Satimo	SN 39/05 SAM26	N.S.	-
Flat shell	Flat phantom	Satimo	SN 39/05 FVA11	N.S.	-
Flat ellipsoidal shell	Flat shell ellipsoidal	Satimo	SN 46/07 ELLI13	N.S.	-
Positioning system		Satimo	SN 39/05 MSH13	N.S.	-
Open coaxial probe		Satimo	SN 39/05 OCP8	36 months	26/02/2014
Tissue-simulating liquid	450 MHz 750 MHz	Satimo	-	every test session	-

N.S. = no perioc calibration required

Supporting test equipment

Instrument Type	Model	Manufacturer	Serial Number	Calibration periodicity	Last Calibration
Multimeter	Mod. 2000	Keithley	1062722	24 months	19/02/2014
Power amplifier	RF 4002000-2	RFPA	52627	N.S.	-
Signal Generator	SMIQ03B	Rohde & Schwarz	831389/028	24 months	11/03/2014
Power meter	NRVS	Rohde & Schwarz	827023/049	24 months	11/03/2014
Sensor head	NRV-Z51	Rohde & Schwarz	829759/003	24 months	11/03/2014
Directional coupler	ZFDC-20-5	Minicircuits		24 months	11/03/2014
Directional coupler	R433563000	Radiall		24 months	11/03/2014
Attenuator 20 dB	HP8941A	HP	2708A44001	24 months	11/03/2014
Vector Network Analyser	MS4622B	Anritsu	984502	24 months	24/02/2014
Digital Spectrum Analyzer / Radio Transmitter Tester	MS8609A	Anritsu	6200456808	24 months	12/03/2014
Test Fixture / Antenna Coupler	4916	Willtek	LX717852	24 months	12/01/2015

N.S. = no perioc calibration required

dBtechnologies MOVING ONE-B

SC-1402-516-03

Test Conditions:

The testing has been performed within the period:

From:	01 December 2015
То:	01 December 2015

Ambient Conditions:

Temperature:	+22°C ± 2°C
--------------	-------------

Tested device conditions:

DUT Use:	Portable bodypack transmitter.
DUT Sample:	Supplied from the manufacturer as production units.
DUT Mode:	FM analog (Peak deviation = ± 35 kHz max).
Band:	518-542 MHz (frequency range 518.150 to 541.900 MHz).
Power Source	e: Two alkaline battery (2 x 1,5V AA).
DUT Antenna	: Fixed, not removable, semi-rigid linear antenna; lenght 85 mm.
	ries: Microphone with MINI XLR 4P connector. Device can only operate with the
	accessory connected.
DUT fixings:	Device marketed with a not removable belt clip built in plastic material and positioned on the back side of the DUT.
Test mode conditions	
Test signal:	The tested device transmit continuously.
Duty factor:	CW (a 100% duty factor were used in the test).
RF power:	DUT power setting selected for highest level: "50 mW". Antenna port is not available
•	on the supplied device and is not possible arrange an RF antenna connector to
	support conducted power measurements. Power level verified separately, basing on
	the test report with the code FCCTR_151063B-0 (date 19/10/2015) supplied from the
	Customer, and also verified with spectrum analyzer and precalibrated test fixture.
Battery drift:	To minimize the battery influence the battery were changed with new and full
-	charge battery every SAR measurement. Also the battery drift was evalued, with a
	radiated E-field comparation between the first and the last measurement, and
	recorded. If the power deviation more than 5% occurred, the test was repeated.
Distance:	Separation distance between the device and the phantom = 0.0 mm
Positioning:	The device is tested in the body-worn operating configuration with a separation
C C	distance of 0.0 mm between the device and the flat phantom with the back side (belt
	clip) against the phantom. When necessary a foam spacer were used to keep the
	tested device antenna straight.
Test channels	/frequencies: 3, according to KDB 447498, high channel with the highest output power
	tested first.
	1. lowest channel 518.150 MHz (device channel N0, conducted power 11.0 mW);
	2. middle channel 529.650 MHz (device channel A4, conducted power 18.6 mW);
	3. highest channel 541.900 MHz (device channel F7, conducted power 26.9 mW).

SAR test reduction considerations: none.

Tested Configurations: Body-worn with cable/microphone connected (the operational configuration).

Exposure limit applied:

FCC Limit for General population/Uncontrolled exposure Spatial Peak (averaged over any 1g of tissue) limit: **1.6 W/Kg**

5. System validation check data

Measurement for Tissue Simulant Liquid

Tissue dielectric property measurement procedure: contact probe

The measurement is performed using a calibration kit (pre-calibrated open coaxial probe, pre-calibrated cable, and vector network analyzer as detailed in Test Equipment section of this Report) to determinate the S11 parameters of the tissue simulant liquid. The system software is able to calculate the complex permittivity (i.e. ε and σ) of the liquid in the frequency band of 300 MHz to 3 GHz. Steps of the permittivity measurement: 1) SOL (Short, Open and Load) calibration at the end of the cable; 2) measurement of the S11 parameters of known reference fluid (pure water) at known temperature; 3) measurement of the S11 parameters of Tissue Simulant Liquid. The tests were conducted on the same days as the measurement of the DUT.

Figure 16 - Open coaxial probe with the bottle cap

Dielectric properties measured:

The conductivity σ and permittivity ε r are listed in table below for the SAR measurement given in this report and were verified to be within a tolerance of +-5% from the target values:

Date of measurement: 01 December 2015;

Temperature: 22.6°C.

Band	Tissue Type	Frequency**	Values*	ε'r relative permittivity	σ conductivity (S/m)
			Target value	56.7	0.94
518-542 MHz	Body	450.000 MHz	± 5% range	53.865 - 59.535	0.893 - 0.987
			Measured	56.52	0.944
			Target value	56.43	0.945
518-542 MHz	Body	518.150 MHz	± 5% range	53.609 - 59.252	0.898 - 0.992
			Measured	56.19	0.948
			Target value	56.39	0.946
518-542 MHz	Body	529.650 MHz	± 5% range	53.571- 59.209	0.899 - 0.993
			Measured	56.15	0.950
			Target value	56.34	0.947
518-542 MHz	Body	541.900 MHz	± 5% range	53.523- 59.157	0.900 - 0.994
			Measured	56.13	0.952

dBtechnologies MOVING ONE-B

SC-1402-516-03

* target values from KDB 865664, linear interpolated. ** test frequencies from KDB 447498 § 4.1.

Tissue simulant theoretical composition of ingredients (in % by weight):

Tissue-simulating liquid	Water: 51.18 %
body 450 MHz 750 MHz	Sucrose: 46.76 %
	NaCl salt:1.48 %
	Hydroxyethil cellulose: 0.51 %
	Bactericide: 0.05%
	DGBE: Diethylenglykol-monobutylether: 0.01 %

SC-1402-516-03

SAR system verification

SAR measurement system verification procedure

The microwave circuit arrangement for system verification is showed in the bottom figure. Instruments and reference dipoles detailed in Test Equipment section of this Report. The tests were conducted daily on the same days as the measurement of the DUT. Steps of the measurement: 1) a CW power level of **1 W** at the same frequency of the reference dipole is measured in the point A; 2) this power level is input to the reference dipole positioned (through a calibrated jig) at the center of the flat section of the SAM phantom (or at the center of ellipsoidal shell) and a SAR measurement was performed to verify if the measured SAR was within +/- 10% from the target reference SAR values.

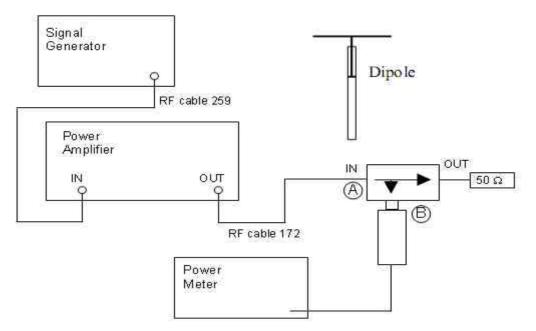


Figure 17 - System verification scheme

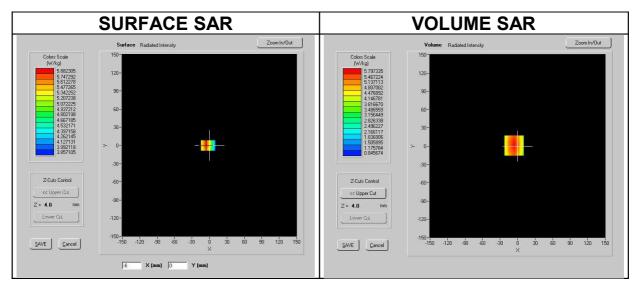
Figure 18 - Reference dipole position for system verification

dBtechnologies MOVING ONE-B

SC-1402-516-03

VALIDATION 1

Type: Dipole measurement (Complete) Date of measurement: 01/12/2015


A. Experimental conditions.

Phantom	Flat ellipsoidal shell	
Device Position	Dipole	
Band	450	
Channel	Middle	
Signal	CW (Duty Cycle: 1:1)	
Dipole input power	1 W	
Probe	EP60	
Probe Path	Adaptative 1 max	
Liquid Temperature	22.6 °C	

B. SAR Measurement Results

Frequency (MHz)	450.0
Relative permittivity (real part)	56.52
Conductivity (S/m)	0.944
Maximum location	X=-6.00, Y=0.00

SAR	SAR (W/kg)	Target value* (W/kg)	Variation (%)
SAR 1g	5.186	5.05	+2.7

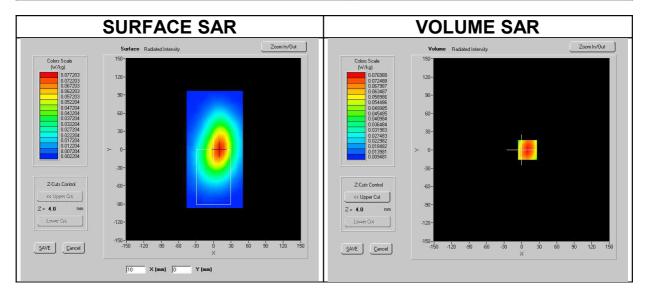
* target value from manufacturer calibration dipole reference SAR.

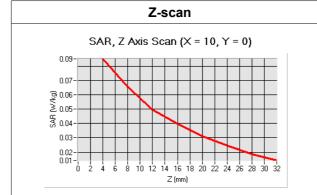
SC-1402-516-03

6. Test results

MEASUREMENT 1

Type: Phone measurement (Complete) Date of measurement: 01/12/2015 Tested device / Serial number / IMEI: sample 1


A. Experimental conditions.


Phantom	Flat ellipsoidal shell SN 46/07 ELLI13	
Device Use	Body-worn	
DUT Position	With the back side against the phantom	
Antenna Position	Fixed	
Accessories	Belt clip	
	Cable/microphone connected	
Band	518-542 MHz	
Channel	HIGH (F7)	
Frequency	541.900 MHz	
Transmission modulation	FM analog	
Signal	CW (Duty Cycle: 1:1)	
Probe Path	Flat (-46<=X<=50, -96<=Y<=96) mm	
Distance	d=0 mm	
Probe	EP60	
Liquid temperature	22.5°C ÷ 22.6°C	

B. SAR Measurement Results

Frequency (MHz)	541.900
Relative permittivity (real part)	56.13
Conductivity (S/m)	0.952
Battery Power drift	-0.24 %
Peak SAR location	X=10, Y=0

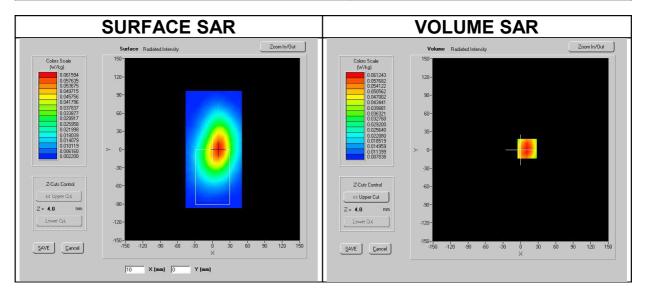
SAR	Measured SAR (W/kg)	Limit (W/kg)	Result
SAR 1g	0.082	1.6	PASS

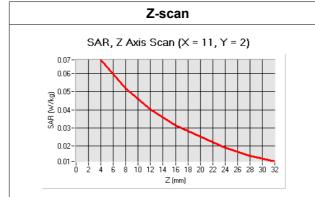
dBtechnologies MOVING ONE-B

SC-1402-516-03

MEASUREMENT 2

Type: Phone measurement (Complete) Date of measurement: 01/12/2015 Tested device / Serial number / IMEI: sample 1


A. Experimental conditions.


Phantom	Flat ellipsoidal shell SN 46/07 ELLI13	
Device Use	Body-worn	
DUT Position	With the back side against the phantom	
Antenna Position	Fixed	
Accessories	Belt clip	
	Cable/microphone connected	
Band	518-542 MHz	
Channel	MIDDLE (A4)	
Frequency	529.650 MHz	
Transmission modulation	FM analog	
Signal	CW (Duty Cycle: 1:1)	
Probe Path	Flat (-46<=X<=50, -96<=Y<=96) mm	
Distance	d=0 mm	
Probe	EP60	
Liquid temperature	22.5°C ÷ 22.6°C	

B. SAR Measurement Results

Frequency (MHz)	529.650
Relative permittivity (real part)	56.15
Conductivity (S/m)	0.950
Battery Power drift	-0.13 %
Peak SAR location	X=10, Y=0

SAR	Measured SAR (W/kg)	Limit (W/kg)	Result
SAR 1g	0.066	1.6	PASS

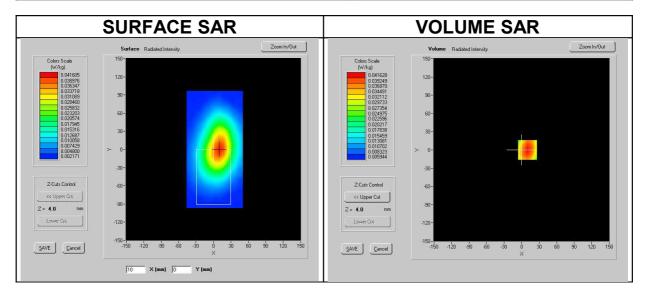
dBtechnologies MOVING ONE-B

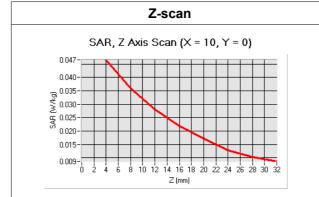
SC-1402-516-03

MEASUREMENT 3

Type: Phone measurement (Complete) Date of measurement: 01/12/2015 Tested device / Serial number / IMEI: sample 1

A. Experimental conditions.


Phantom	Flat ellipsoidal shell SN 46/07 ELLI13
Device Use	Body-worn
DUT Position	With the back side against the phantom
Antenna Position	Fixed
Accessories	Belt clip
	Cable/microphone connected
Band	518-542 MHz
Channel	LOW (N0)
Frequency	518.150 MHz
Transmission modulation	FM analog
Signal	CW (Duty Cycle: 1:1)
Probe Path	Flat (-46<=X<=50, -96<=Y<=96) mm
Distance	d=0 mm
Probe	EP60
Liquid temperature	22.5°C ÷ 22.6°C


SC-1402-516-03

B. SAR Measurement Results

Frequency (MHz)	518.150
Relative permittivity (real part)	56.19
Conductivity (S/m)	0.948
Battery Power drift	0.49 %
Peak SAR location	X=10, Y=0

SAR	Measured SAR (W/kg)	Limit (W/kg)	Result
SAR 1g	0.045	1.6	PASS

dBtechnologies MOVING ONE-B

SC-1402-516-03

7. Evaluation

In the following table the SAR results for the tested device are summarized.

Meas. #	Band	Frequency	Mode	Phantom	DUT side against the phantom	Antenna	Measured SAR 1g (W/kg)	Limit SAR 1g (W/kg)	Result
1	518-542 MHz	541.900 MHz	FM Max power setting 50 mW	flat ellipsoidal	back (belt clip)	fixed	0.082	1.6	Pass
2	518-542 MHz	529.650 MHz	FM Max power setting 50 mW	flat ellipsoidal	back (belt clip)	fixed	0.066	1.6	Pass
3	518-542 MHz	518.150 MHz	FM Max power setting 50 mW	flat ellipsoidal	back (belt clip)	fixed	0.045	1.6	Pass

The maximum Specific Absorption Rate (SAR) averaged over 1g, determined at 541.900 MHz frequency in FM mode, of the Wireless Bodypack Transmitter – dBtechnologies MOVING ONE-B portable unit, is **0.082 W/kg**.

The overall margin of uncertainty for these measurements is given at the Uncertainty evaluation section.

The SAR 1g exposure limit applied, as detailed in the FCC KDB 447498 D01 v06 "Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies - General RF Exposure Guidance" for General population/Uncontrolled exposure - Spatial Peak (averaged over any 1g of tissue)

is equal to 1.6 W/Kg.

This unit as tested is found to be **COMPLIANT** with this requirement.

SC-1402-516-03

8. Uncertainty evaluation

Below the contributions of each component of uncertainty is reported together with its name, probability distribution, sensitivity coefficient and uncertainty value. The results are recorded in a table and the combined uncertainty is given, as required by the standards.

The following table includes the uncertainty table of the IEEE 1528:2013. The values are determined by the manufacturer of SAR System.

		-	_	-		-			
а	b	C	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/e	k
Uncertainty Component	Sec.	Tol (+-%)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	Vi
Measurement System		_ ` ` 				<u> </u>	<u> </u>	<u> </u>	
Probe calibration	E.2.1	7.0	N	1	1	1	7.00	7.00	~
Axial Isotropy	E.2.2	1.5	R	√3	(1-Cp) ^{1/2}	(1-Cp) ^{1/2}	0.61	0.61	~~
Hemispherical Isotropy	E.2.2	1.7	R	√3	√Cp	$\sqrt{C_p}$	0.69	0.69	~
Boundary effect	E.2.3	1.0	R	√3	1	1	0.58	0.58	~~~
Linearity	E.2.4	4.7	R	√3	1	1	2.71	2.71	~~~
System detection limits	E.2.4	1.0	R	√3	1	1	0.58	0.58	~~
Modulation response	E.2.5	2.4	R	√3	1	1	1.39	1.39	~
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.02	~~
Reponse Time	E.2.7	3.0	R	√ 3	1	1	1.73	1.73	~
Integration Time	E.2.8	2.0	R	√3	1	1	1.15	1.15	~
RF ambient Conditions - noise	E.6.1	3.0	R	√3	1	1	1.73	1.73	~
RF ambient Conditions - reflections	E.6.1	3.0	R	√3	1	1	1.73	1.73	~
Probe positioner Mechanical Tolerance	E.6.2	2.0	R	√3	1	1	1.15	1.15	~~
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	√3	1	1	0.03	0.03	~~~
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5	5.0	R	√3	1	1	2.89	2.89	~~
Test sample Related				-	1	1			
SAR scaling / Power scaling	E.6.5	0.0	R	√3	1	1	0.0	0.0	~~
Test sample positioning	E.4.2	0.03	N	1	1	1	0.03	0.03	N-1
Device Holder Uncertainty	E.4.1	5.00	N	1	1	1	5.00	5.00	N-1
Output power Variation - SAR drift measurement	E.2.9	3.0	R	√3	1	1	1,7320	1,7320	~~

UNCERTAINTY EVALUATION FOR HANDSET SAR TEST

dBtechnologies MOVING ONE-B

Phantom and Tissue Parame	ters								
Phantom Uncertainty (Shape	E.3.1	0.05	R	√3	1	1	0.03	0.03	~~~
and thickness tolerances)									
Liquid conductivity - deviation	E.3.2	1.54	R	√3	0.64	0.43	0.57	0.38	~~
from target value				15					
Liquid conductivity -	E.3.3	5.00	N	1	0.64	0.43	3.20	2.15	М
measurement uncertainty									
Liquid permitivity - deviation	E.3.2	1.12	R	√3	0.6	0.49	0.39	0.32	
from target value				15					
Liquid permitivity -	E.3.3	10.00	Ν	1	0.6	0.49	6.00	4.90	М
measurement uncertainty									
Temp. unc Conductivity	E.3.4	1.7	R	√3	0.78	0.71	0.8	0.7	~
Temp. unc Permittivity	E.3.4	0.4	R	V3	0.23	0.26	0.05	0.06	
				15					
Combined Standard			RSS				11.90	11.42	
Uncertainty									
Expanded Uncertainty			k = 2				23.80	22.64	
(95% Confidence interval)									

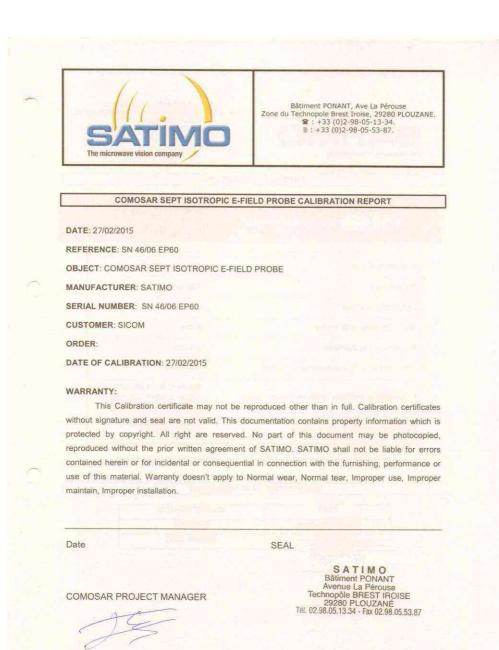
9. System validation check uncertainty

Below the contributions of each component of uncertainty is reported together with its name, probability distribution, sensitivity coefficient and uncertainty value. The results are recorded in a table and the combined uncertainty is given, as required by the standards.

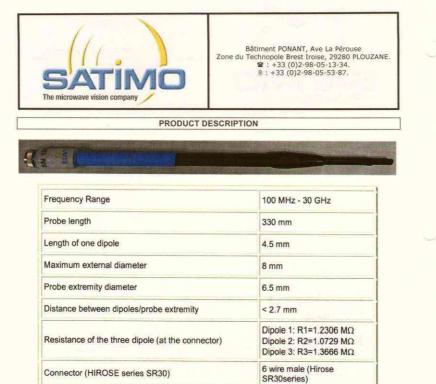
The following table includes the uncertainty table of the IEEE 1528:2013. The values are determined by the manufacturer of SAR System.

ONO				PERFORM					
а	b	С	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/e	k
Uncertainty Component	Sec.	Tol (+-%)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	Vi
Measurement System		. , , , , ,			1 (. 9/	1 (1 (, , , ,		
Probe calibration	E.2.1	7.0	N	1	1	1	7.00	7.00	~
Axial Isotropy	E.2.2	1.5	R	√3	(1-Cp) ^{1/2}	(1-Cp) ^{1/2}	0.61	0.61	~~~
Hemispherical Isotropy	E.2.2	1.7	R	√3	VCp	VCp	0.69	0.69	~
Boundary effect	E.2.3	1.0	R	√3	1	1	0.58	0.58	~~
Linearity	E.2.4	4.7	R	√3	1	1	2.71	2.71	~
System detection limits	E.2.4	1.0	R	√3	1	1	0.58	0.58	~~~
Modulation response	E.2.5	0	R	√3	1	1	0.0	0.0	~
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.02	~
Reponse Time	E.2.7	3.0	R	√3	1	1	1.73	1.73	~
Integration Time	E.2.8	2.0	R	√3	1	1	1.15	1.15	~~
RF ambient Conditions - noise	E.6.1	3.0	R	√3	1	1	1.73	1.73	~
RF ambient Conditions - reflections	E.6.1	3.0	R	√3	1	1	1.73	1.73	~
Probe positioner Mechanical Tolerance	E.6.2	2.0	R	√3	1	1	1.15	1.15	~
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	√3	1	1	0.03	0.03	~~
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5	5.0	R	V3	1	1	2.89	2.89	~
Dipole	-		-	1	-	-	-	-	
Deviation of experimental dipole from numerical dipole	E.6.4	5.0	N	1	1	1	5.0	5.0	~~
Dipole axis to liquid Distance	8,E.6.6	1.00	N	√3	1	1	0.58	0.58	N-1
Input power and SAR drift measurement	8,6.6.4	2.00	R	√3	1	1	1.1547	1,1547	~~
Phantom and Tissue Parame									
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R		1	1	0.03	0.03	~

UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK


dBtechnologies MOVING ONE-B

Liquid conductivity - deviation from target value	E.3.2	1.54	R	√3	0.64	0.43	0.57	0.38	~~
Liquid conductivity - measurement uncertainty	E.3.3	5.00	N	1	0.64	0.43	3.20	2.15	М
Liquid permitivity - deviation from target value	E.3.2	1.12	R	√3	0.6	0.49	0.39	0.32	8
Liquid permitivity - measurement uncertainty	E.3.3	10.00	N	1	0.6	0.49	6.00	4.90	М
Temp. unc Conductivity	E.3.4	1.7	R	√3	0.78	0.71	0.8	0.7	8
Temp. unc Permittivity	E.3.4	0.4	R	√3	0.23	0.26	0.05	0.06	~~
Combined Standard Uncertainty			RSS				10.005	9.985	
Expanded Uncertainty (95% Confidence interval)			k = 2				20.01	19.97	

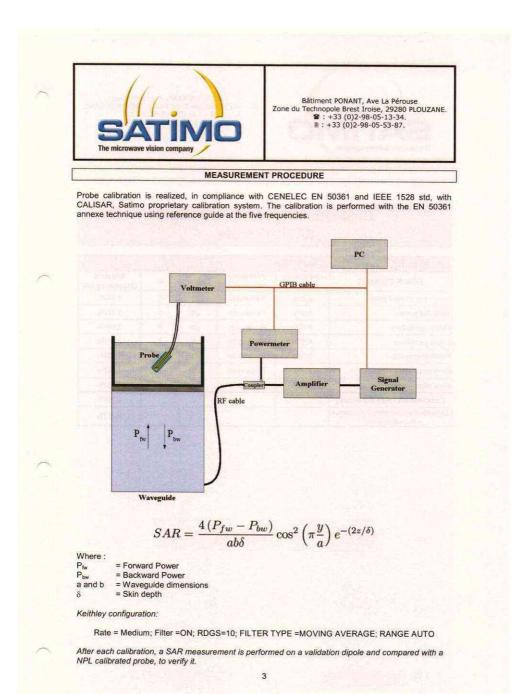

10. Annex A: Electric field probe calibration reports

dBtechnologies MOVING ONE-B

SC-1402-516-03

The probe could be checked by measuring the resistance of the three dipoles.

CALIBRATION	TEST	FOUIDMENT	


TYPE	IDENTIFICATION
Calibration bench	CALISAR
Multimeter	Keithley 2000

2

dBtechnologies MOVING ONE-B

SC-1402-516-03

SC-1402-516-03

Page 36 of 59

PROBE UNCERTAINTIES

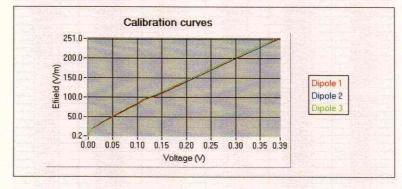
Calibration report of dosimetric SATIMO probe

ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3,00%	Rectangular	√3	1	1,732%
Reflected power	3,00%	Rectangular	√3	1	1,732%
Liquid conductivity	5,00%	Rectangular	√3	1	2,887%
Liquid permittivity	4,00%	Rectangular	√3	1	2,309%
Field homogeneity	3,00%	Rectangular	<i>√</i> 3	1	1,732%
Field probe positioning	5,00%	Rectangular	√3	1	2,887%
Field probe linearity	3,00%	Rectangular	√3	1	1,732%
Combined standard uncertainty		2.6 31.2			4,761%
Expanded uncertainty (confidence interval of 95%)			-	ang)	9,331%

dBtechnologies MOVING ONE-B

SC-1402-516-03

4



1. Calibration at 450.00 MHz

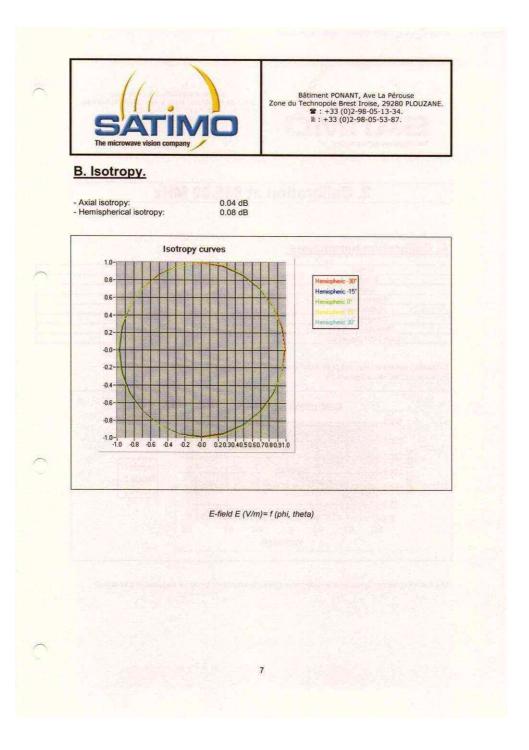
A. Calibration parameters.

Label	GSM450		
Epsilon	43.33		
Sigma	0.84 S/m		
Temperature	21°C 2.03 dB		
Antenna gain			
Antenna S11	-10.50 dB		
Low limit detection	1.66 V/m (2.31 mW/kg		

Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula: E=(e1*e1+e2*e2+e3*e3)pow(1/2)

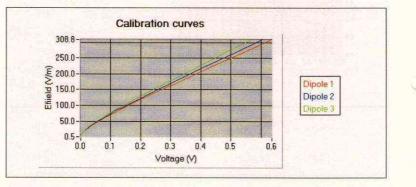
The following tables represent the calibration curves linearization by curve segment in CW signal.

5


SC-1402-516-03

Calibration coefficients for the three dipoles in CW					
v1	e1	v2	e2	v3	e3
0.390027 0.366258	251.001230 237.736292	-0.386042 -0.363554	250.695400 236.787975	-0.376740 -0.354679	250.105988 236.787975
0.339500	222.072445	-0.337008	221.186610	-0.328598	221.186610
0.311463 0.283636	205.295068 188.692124	-0.308712 -0.280417	204.712502 187.939442	-0.300644 -0.273013	204.476157 187.939442
0.256654	172.433067	-0.252967	171.745241	-0.245920	171.745241
0.230715	156.667434	-0.226695	156.042496	-0.220370	156.222813
0.206445	142.343234	-0.202087 -0.179221	141.775434	-0.196303	141.775434
0.162409	129.030238 116.557803	-0.179221	128.367222 116.092860	-0.173929 -0.153202	128.515544 116.092860
0.142655	105.047888	-0.138513	104.628858	-0.134233	104.628858
0.114926	94.238168	-0.111965	93.862257	-0.110685	93.862257
0.092836	84.638434 75.928948	-0.101130 -0.089992	84.300816 75.626072	-0.099583 -0.087196	84.398340 75.713499
0.080253	68.036895	-0.077392	67.765500	-0.074788	67.843957
0.068634	60.894908 54.439678	-0.066076	60.652001 54.222521	-0.063785	60.722110
0.049187	48.556435	-0.047203	48.362746	-0.054067 -0.045499	54.222521 48.362746
0.041377	43.358902	-0.039629	43.235904	-0.038172	43.235904
0.034626 0.028813	38.762659 34.573630	-0.033080	38.608037 34.435717	-0.031847 -0.026410	38.608037 34.475417
0.023824	30.837228	-0.022664	30.714220	-0.021789	30.749598
0.019633	27.536241	-0.018631	27.426401	-0.017892	27.426401
0.016008	24.503942 21.855528	-0.015174 -0.012358	24.406197 21.768348	-0.014559	24.406197
0.010587	19.493705	-0.012358	19.415946	-0.011849 -0.009606	21.768348 19.415946
0.008546	17.346896	-0.008093	17.297985	-0.007756	17.297985
0.006893	15.472199 13.816360	-0.006525 -0.005245	15.428528	-0.006253	15.428528
0.004448	12.308602	-0.003245	12.259504	-0.005028	13.761247 12.259504
0.003547	10.940343	-0.003371	10.909905	-0.003230	10.909905
0.002829 0.002257	9.758078	-0.002696 -0.002159	9.719153 8.658517	-0.002584 -0.002071	9.719153 8.669181
0.001800	7.753551	-0.001731	7.731915	-0.001662	7.722622
0.001430	6.916527	-0.001386	6.888937	-0.001330	6.888937
0.001139 0.000899	6.161560 5.469502	-0.001110 -0.000886	6.130303 5.447684	-0.001070	6.136982 5.447684
0.000711	4.879656	-0.000707	4.870699	-0.000681	4.864397
0.000560	4.352907	-0.000568	4.335543	-0.000548	4.340254
0.000443	3.877568 3.456781	-0.000464 -0.000369	3.867384 3.442992	-0.000441 -0.000360	3.867384 3.442992
0.000273	3.069309	-0.000298	3.060398	-0.000360	3.063727
0.000212	2.736734	-0.000242	2.725818	-0.000235	2.733280
0.000157 0.000125	2.439318 2.172484	-0.000197 -0.000171	2.433773 2.168512	-0.000194	2.433773 2.168512
0.000089	1.938165	-0.000171	1.930433	-0.000160	1,935690
0.000074	1.725784	-0.000111	1.718900	-0.000112	1.724797
0.000054	1.537689	-0.000095	1.524916 1.363407	-0.000094	1.524916
0.000025	1.218869	-0.000080	1.363407	-0.000081 -0.000072	1.363407
0.000014	1.086023	-0.000067	1.081691	-0.000062	1.081691
0.000005	0.966789	-0.000055	0.962933	-0.000053	0.962933

SC-1402-516-03



2. Calibration at 835.00 MHz

A. Calibration parameters.

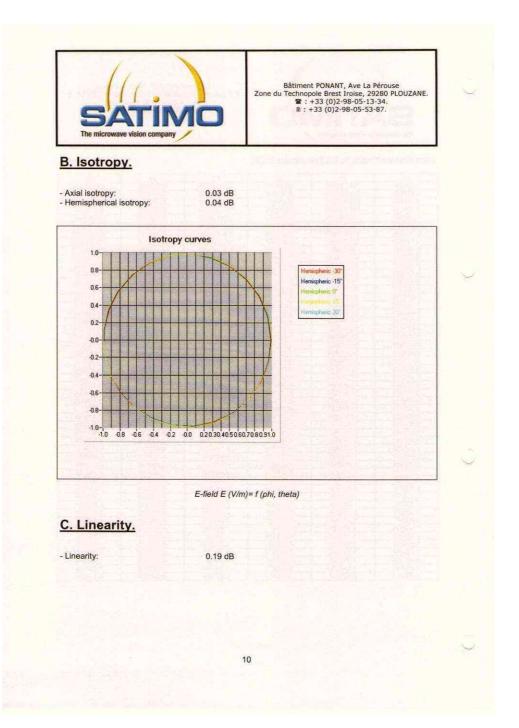
Label	GSM850
Epsilon	43.72
Sigma	0.90 S/m
Temperature	21°C
Cable loss	0.00 dB
Coupler loss	20.50 dB
Waveguide S11	-13.91 dB
Low limit detection	0.96 V/m (0.84 mW/kg)

Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula: E=(e1*e1+e2*e2+e3*e3)pow(1/2)

The following tables represent the calibration curves linearization by curve segment in CW signal.

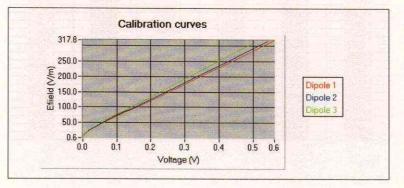
8

dBtechnologies MOVING ONE-B


SC-1402-516-03

	SATINO The microwave vision company		Bátiment PONANT, Ave La Pérouse Zone du Technopole Brest Iroise, 29280 PLOUZANE.			
Calibration coe	enticients for the three	v2	e2	v3	e3	
0.635587	308.082146	-0.604183	308.789236	-0.565402	306.584464	
0.529656	262.201294 223.967252	-0.503486 -0.419571	262.612528 224.131937	-0.471169	261.045773	
0.306514	165.119244	-0.291369	164.929254	-0.392640 -0.272667	223.096863 164.739481	
0.290555	159.146719	-0.276427	158.963600	-0.258259	158.597995	
0.268411	149.209919	-0.255467	149.038233	-0.238392	148.695455	
0.244835 0.220829	138.610998 127,731407	-0.233209	138.451509	-0.217240	138.133080	
0.196961	116.626621	-0.210592 -0.187954	127.584435 116.492427	-0.195765 -0.174452	127.144533 116.090770	
0.173928	105.876040	-0.166016	105.632534	-0.153977	105.389584	
0.151847	95.235242	-0.145092	95.125662	-0.134330	94.797676	
0.130863	85.074164	-0.116894	84.976276	-0.113424	84.683284	
0.110829 0.086907	75.213828	-0.103844 -0.083093	75.127284 62.704353	-0.097728 -0.076637	74.782106 62.560137	
0.074182	56.207943	-0.070921	56.078668	-0.065266	56.014143	
0.063386	50.442627	-0.060565	50.384586	-0.055632	50.268705	
0.054223	45.373021	-0.051774	45.373021	-0.047474	45.268666	
0.046364 0.039475	40.954129 36.965594	-0.044245 -0.037645	40.954129 36.923061	-0.040448 -0.034382	40.859937 36.838139	
0.033397	33.288765	-0.031834	33.250463	-0.028981	33.173988	
0.027920	29.839922	-0.026578	29.839922	-0.024144	29.737036	
0.022982	26.594859	-0.021858	26.594859	-0.019775	26.503163	
0.018501 0.013825	23.458362 19.874568	-0.017588	23.431370 19.851699	-0.015876 -0.011833	23.350580 19.806042	
0.011273	17.774512	-0.010688	17.754059	-0.009633	17.713227	
0.009222	15.951359	-0.008761	15.933005	-0.007862	15.896361	
0.007562	14.348209 12.950833	-0.007180 -0.005899	14.331699	-0.006464	14.315209	
0.005101	11.676097	-0.004850	12.935931 11.662663	-0.005323 -0.004328	12.906178 11.635839	
0.004155	10.502620	-0.003953	10.490535	-0.003545	10.478466	
0.003354	9.414510	-0.003197	9.403675	-0.002891	9.382049	
0.002660	8.371392 7.375607	-0.002539 -0.001985	8.371392 7.367119	-0.002271 -0.001806	8.352139	
0.001439	6.127703	-0.001390	6.120652	-0.001808	7.350176	
0.001137	5.480216	-0.001117	5.473911	-0.001022	5.467612	
0.000918	4.923769	-0.000902	4.918103	-0.000835	4.912446	
0.000734	4.428918	-0.000732	4,428918 3,992985	-0.000651 -0.000565	4.418732	
0.000475	3.599959	-0.000499	3.595818	-0.000565	3.988391 3.591681	
0.000389	3.238156	-0.000421	3.234430	-0.000388	3.230709	
0.000295	2.892662	-0.000318	2.889334	-0.000319	2.886009	
0.000226	2.566242 2.250597	-0.000286 -0.000204	2.566242	-0.000249	2.560339	
0.000107	1.946694	-0.000163	2.248006	-0.000215 -0.000132	2.242836	
0.000096	1.743001	-0.000139	1.740997	-0.000129	1.738992	
0.000068	1.567825	-0.000121	1.564218	-0.000115	1.562420	
0.000044 0.000036	1.410256	-0.000114	1.407012	-0.000087	1.407012	
		-0.000088	1.271445	-0.000066	1.269982	
0.000005	0.501457	-0.000054	0.597334	-0.000024	0.561644	
0.000023	1.142346 0.501457	-0.000071 -0.000054	0.959949 0.597334	-0.000045 -0.000024	1.132954 0.561644	

SC-1402-516-03

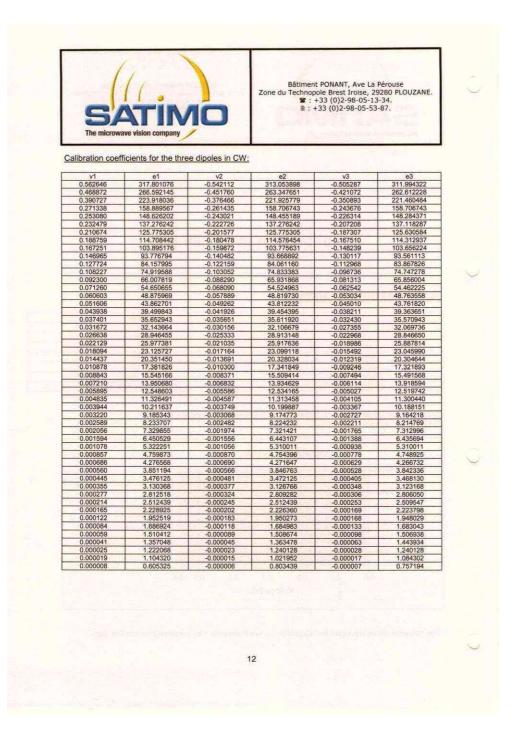


3. Calibration at 900.00 MHz

A. Calibration parameters.

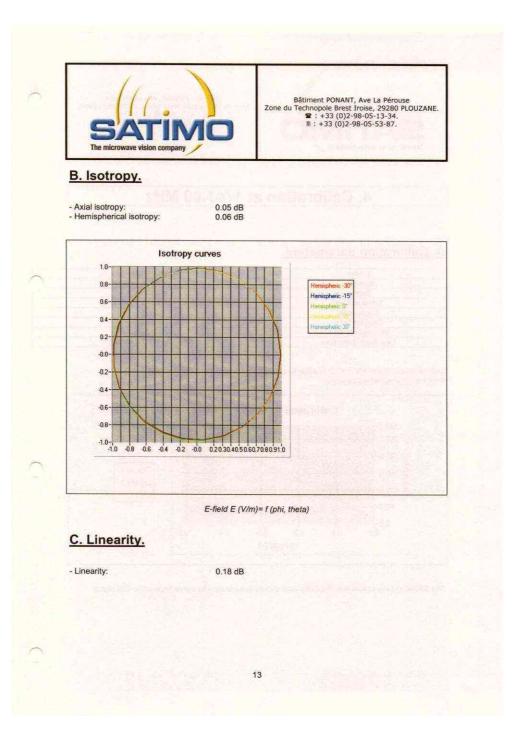
Label	GSM900
Epsilon	43.04
Sigma	0.98 S/m
Temperature	21°C
Cable loss	0.00 dB
Coupler loss	20.30 dB
Waveguide S11	-13.94 dB
Low limit detection	1.26 V/m (1.57 mW/kg)

Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula: E=(e1*e1+e2*e2+e3*e3)pow(1/2)

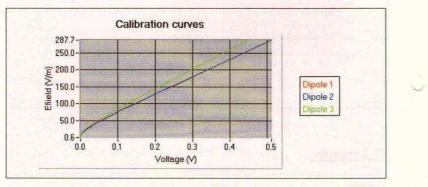


The following tables represent the calibration curves linearization by curve segment in CW signal.

11


SC-1402-516-03

SC-1402-516-03



4. Calibration at 1747.00 MHz

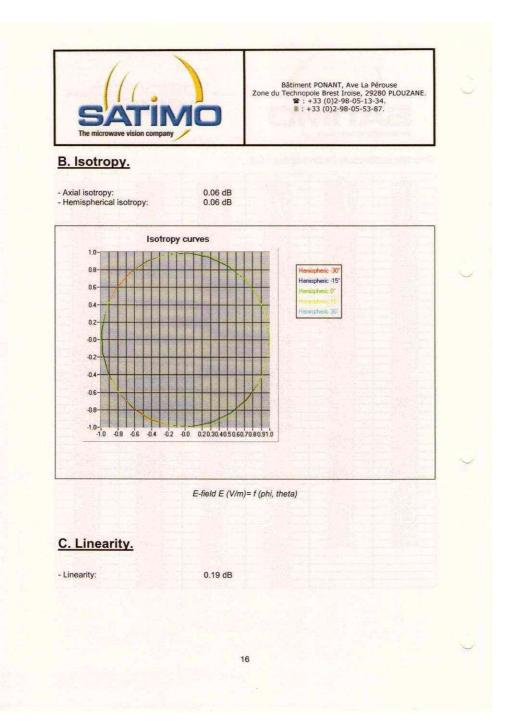
A. Calibration parameters.

Label	GSM1800
Epsilon	39.10
Sigma	1.36 S/m
Temperature	21°C
Cable loss	0.00 dB
Coupler loss	20,18 dB
Waveguide S11	-13.10 dB
Low limit detection	1.05 V/m (1.50 mW/kg)

Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula: E=(e1*e1+e2*e2+e3*e3)pow(1/2)

The following tables represent the calibration curves linearization by curve segment in CW signal.

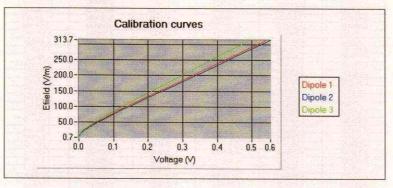
14


dBtechnologies MOVING ONE-B

SC-1402-516-03

	fficients for the thre	e dipoles in CW			And Andrews
v1	e1	v2	e2	v3	e3
0.510721 0.425601	286.851496 243.350716	-0.510995 -0.425829	287.693425 243.900692	-0.443939 -0.369949	286.309825 243.053215
0.354668	207.100067	-0.354858	207.406747	-0.308291	243.053215
0.246297	151.644785	-0.246429	151.644785	-0.214091	151.819474
0.219264 0.192454	137.983603	-0.219592	137.824835	-0.190283	138.142555
0.167259	124.258893 111.257035	-0.193001 -0.167958	124.258893 111.257035	-0.166831 -0.144922	124.402035 111.385198
0.144913	99.615629	-0.145778	99.615629	-0.125520	99.732447
0.125258	89.295070	-0.126254	89.295070	-0.107824	89.397934
0.106977	80.135967	-0.106266	80.135967	-0.093715	80.228280
0.093604 0.080853	72.082109 64.912373	-0.094642 -0.081878	71.999169 64.912373	-0.080896 -0.069798	72.165144 64.987148
0.069882	58.590537	-0.070823	58.590537	-0.069798	58.725602
0.059202	52.339248	-0.060092	52.339248	-0.050784	52.399541
0.048472	45.795993	-0.049268	45.795993	-0.041401	45.848748
0.039793 0.032772	40.302082 35.672003	-0.040486 -0.033401	40.302082 35,713095	-0.033855 -0.027786	40.348509 35.754234
0.027117	31.792705	-0.027629	31,792705	-0.022876	31.829328
0.022403	28.400598	-0.022872	28.400598	-0.018844	28.433314
0.018563 0.015394	25.458188	-0.018968	25.458188	-0.015557	25.516875
0.013394	22.873229 20.621844	-0.015716 -0.013045	22.873229 20.621844	-0.012846 -0.010627	22.925957 20.645598
0.010592	18.613477	-0.010825	18.613477	-0.008803	18.634918
0.008587	16.646675	-0.008809	16.646675	-0.007132	16.665850
0.006690	14.565570	-0.006860	14.565570	-0.005540	14.582317
0.005237 0.004144	12.818214 11.345601	-0.005410 -0.004259	12.818214 11.345601	-0.004342 -0.003442	12.832979 11.358670
0.003298	10.100142	-0.003432	10.100142	-0.002748	10.111777
0.002640	9.022513	-0.002740	9.022513	-0.002205	9.032906
0.002126 0.001712	8.087745	-0.002209	8.087745	-0.001783	8.097063
0.001391	6.543762	-0.001791 -0.001478	7.258176 6.536232	-0.001445 -0.001178	7.274820 6.551300
0.001132	5.906462	-0.001223	5.899667	-0.000970	5.913267
0.000859	5.156173	-0.000921	5.150241	-0.000749	5.162112
0.000667 0.000509	4.511568 3.974912	-0.000735 -0.000572	4.511568	-0.000578	4.516765
0.000390	3.522309	-0.000463	3.974912 3.522309	-0.000456 -0.000366	3.979490 3.526366
0.000322	3.135649	-0.000360	3.135649	-0.000285	3.139262
0.000211	2.801093	-0.000286	2.801093	-0.000240	2.807550
0.000192	2.510888 2.255939	-0.000251 -0.000205	2.510888	-0.000198	2.513781
0.000123	2.031550	-0.000205	2.255939 2.031550	-0.000171 -0.000140	2.260171 2.036558
0.000101	1.835809	-0.000132	1.833696	-0.000119	1.840042
0.000035	1.450434	-0.000124	1.628649	-0.000098	1.630525
0.000022	1.075120 0.613424	-0.000095	1.426683	-0.000078	1.429972
0.00000	0.010424	-0.000066	1.258425 1.116420	-0.000072 -0.000064	1.258217
		-0.000060	0.993866	-0.000053	0.993182
	100 B	-0.000056	0.888848	-0.000042	0.862972
1 1 1 1 1 1 1		-0.000046 -0.000036	0.794928	-0.000031 -0.000020	0.718691
	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O	-0.000036	0.622424	-0.000020	0.580812

SC-1402-516-03



5. Calibration at 1950.00 MHz

A. Calibration parameters.

Label	IMT2000
Epsilon	39.43
Sigma	1.40 S/m
Temperature	21°C
Cable loss	0.00 dB
Coupler loss	20.07 dB
Waveguide S11	-36.66 dB
Low limit detection	1.27 V/m (2.30 mW/kg)

Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula: E=(e1*e1+e2*e2+e3*e3)pow(1/2)

The following tables represent the calibration curves linearization by curve segment in CW signal.

17

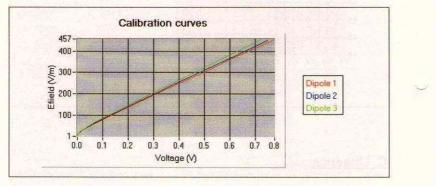
dBtechnologies MOVING ONE-B


SC-1402-516-03

	The microwave vision company Calibration coefficients for the three dipoles in CW				
v1	e1	v2	e2	v3	e3
0.538560	311.624390	-0.553261	313.722699	-0.486674	310.530862
0.448800	264.027659 224.363717	-0.461051 -0.384209	265.427130 225.180822	-0.405562	263.294326 223.930545
0.259722	163.676878	-0.266812	163.676878	-0.337968 -0.234700	163.676878
0.228065	147.057552	-0.234742	146.888343	-0.205692	147.057552
0.198097	131.216163	-0.204667	131.216163	-0.178433	131.065182
0.171141	116.677559	-0.177391	116.811965	-0.153946	116.677559
0.147777 0.127488	104.108774 92.893929	-0.153689 -0.132975	104.108774 93.000939	-0.132662	103.988984 92.893929
0.108273	83.269764	-0.115177	83.269764	-0.098330	83.173952
0.095107	74.642699	-0.099090	74.642699	-0.084669	74.642699
0.082157	67.140927	-0.086401	67.218270	-0.072924	67.140927
0.070984	60.602052	-0.074821	60.602052	-0.062842	60.532323
0.049369	54.136146 47.368249	-0.063747 -0.052337	54.136146 47.368249	-0.053232 -0.043407	54.136146 47.313746
0.040527	41.685722	-0.043073	41.685722	-0.035485	41.637757
0.033371	36.896683	-0.035550	36.854230	-0.029113	36.854230
0.027567	32.808573	-0.029424	32.808573	-0.023965	32.808573
0.022785 0.018872	29.308078 26.271649	-0.024373 -0.020203	29.308078 26.271649	-0.019748 -0.016302	29.274355 26.241420
0.015625	23.576934	-0.016768	23.576934	-0.013460	23.549805
0.012951	21.231825	-0.013913	21.231825	-0.011131	21.231825
0.010739	19.164052	-0.011576	19.164052	-0.009212	19.164052
0.008971	17.397519	-0.009676	17.397519	-0.007705	17.397519
0.006970 0.005454	15.222547 13.380961	-0.007534	15.205032 13.365565	-0.005982 -0.004673	15.205032
0.004298	11.830071	-0.004690	11.816458	-0.003690	11.816458
0.003418	10.519312	-0.003733	10.519312	-0.002948	10.507209
0.002733	9.386147	-0.003014	9.386147	-0.002366	9.375348
0.002203	8.413707	-0.002423	8.413707	-0.001915	8.404026
0.001783 0.001437	7.550702 6.799663	-0.001966 -0.001604	7.550702 6.799663	-0.001546 -0.001262	7.542013 6.791839
0.001163	6.137441	-0.001316	6.130380	-0.001202	6.123325
0.000871	5.327057	-0.001003	5.327057	-0.000779	5.320927
0.000662	4.661088	-0.000780	4.661088	-0.000618	4.661088
0.000499	4.106646	-0.000609	4.106646	-0.000483	4.101921
0.000384	3.634858 3.235843	-0.000487 -0.000391	3.634858 3.235843	-0.000381 -0.000307	3.634858 3.232120
0.000239	2.890596	-0.000316	2.887270	-0.000307	2.887270
0.000182	2.591119	-0.000265	2.588136	-0.000208	2.588136
0.000140	2.325345	-0.000217	2.325345	-0.000173	2.322669
0.000117	2.094051	-0.000191	2.094051	-0.000143	2.091642
0.000079 0.000057	1.890112 1.680689	-0.000150 -0.000137	1.890112	-0.000132	1.887936
0.000029	1.473966	-0.000101	1.472269	-0.000090	1.470575
0.000021	1.298636	-0.000084	1.298636	-0.000075	1.298636
0.000017	1.152093	-0.000080	1.152093	-0.000072	1.148120
0.000012	1.025622	-0.000069	1.025622	-0.000060	1.024442
0.000008	0.915140	-0.000064 -0.000051	0.914087 0.818440	-0.000051 -0.000048	0.914087 0.819383
	0.004000	-0.000049	0.735338	-0.000048	0.734492
					0.659154

SC-1402-516-03

SC-1402-516-03



6. Calibration at 2450.00 MHz

A. Calibration parameters.

Label	Bluetooth
Epsilon	37.79
Sigma	1.85 S/m
Temperature	21°C
Cable loss	0.00 dB
Coupler loss	21.50 dB
Waveguide S11	-15.00 dB
Low limit detection	0.92 V/m (1.51 mW/kg)

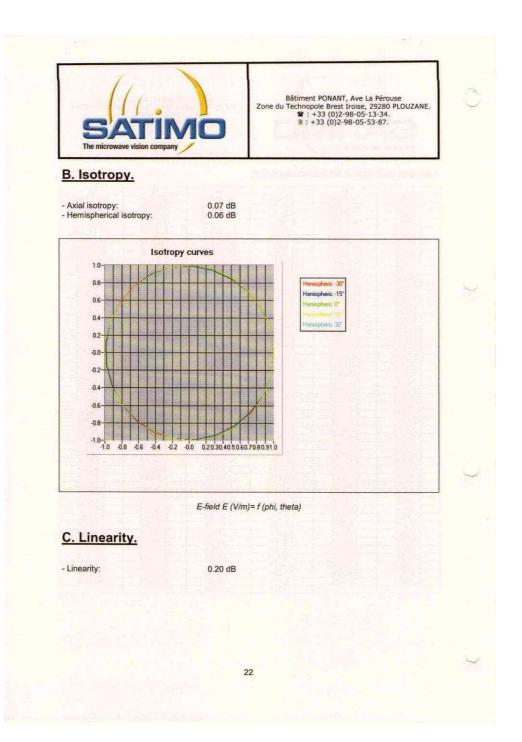
Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula: E=(e1*e1+e2*e2+e3*e3)pow(1/2)

The following tables represent the calibration curves linearization by curve segment in CW signal.

20

dBtechnologies MOVING ONE-B

SC-1402-516-03



Calibration coe	fficients for the thre				- A CONTRACT
	e1	v2	e2	v3	e3
0.775885	454.454927	-0.748460	450.440543	-0.725597	456.774143
0.620606	368.804659	-0.606912	370.466546	-0.580020	370.842348
0.499623	301.991331 245.082582	-0.482063 -0.386170	299.834178	-0.465640	303.231159
0.319389	202.162943	-0.311188	245.475034 202.849779	-0.374743 -0.297735	249.392407 203.642804
0.257308	167.598066	-0.249926	167.884910	-0.239781	169.064921
0.207152	139.527842	-0.198963	138.629007	-0.192512	140.694550
0.168348	117.658041	-0.158939	115.463102	-0.155199	118.116132
0.135618	99.035731 83.645541	-0.127146 -0.101857	96.856391 81.836550	-0.123856 -0.098522	98.937582 83.195036
0.086939	70.755962	-0.082444	70.088170	-0.079125	70.899915
0.070561	60.938992	-0.066997	60.524608	-0.063011	60.424288
0.044971	44.928910	-0.042854	44.877214	-0.040169	44.825576
0.039748 0.032394	41.497877 36.477569	-0.037893 -0.030815	41.497877 36.477569	-0.035485	41.450130
0.026448	32.212608	-0.025118	32.212608	-0.028813 -0.023444	36.435596 32.175543
0.021679	28.643487	-0.020566	28.643487	-0.019158	28.610529
0.017778	25.557942	-0.016851	25.557942	-0.015687	25.499160
0.014629	22.883681	-0.013855	22.857350	-0.012869	22.831050
0.012058	20.536475 18.472509	-0.011390 -0.009400	20.536475 18.472509	-0.010563 -0.008694	20.512844 18.451255
0.008208	16.673465	-0.007749	16.654282	-0.007181	16.635118
0.006421	14.605819	-0.006052	14.605819	-0.005596	14.589013
0.005301	13.213743	-0.005014	13.213743	-0.004624	13.198540
0.004097 0.003229	11.601814 10.245328	-0.003904 -0.003075	11.601814 10.245328	-0.003606 -0.002831	11.588464 10.233540
0.002561	9.099674	-0.002432	9.099674	-0.002831	9.089205
0.002029	8.110095	-0.001946	8.110095	-0.001810	8.100763
0.001647	7.253138	-0.001577	7.253138	-0.001453	7.244792
0.001305 0.001041	6.509174 5.854985	-0.001289 -0.001043	6.509174 5.848249	-0.001171 -0.000945	6.485386
0.000861	5.273301	-0.000842	5.278687	-0.000945	5.287375
0.000672	4.678586	-0.000677	4.645430	-0.000618	4.663597
0.000540	4.213738	-0.000541	4.197841	-0.000510	4.216921
0.000396	3.639535 3.175437	-0.000442 -0.000334	3.724311	-0.000399	3.702094
0.000295	2.982186	-0.000334	3.208253 2.841382	-0.000309 -0.000262	3.224887 2.945105
0.000166	2.458408	-0.000224	2.578572	-0.000282	2.507241
0.000151	2.360940	-0.000169	2.197068	-0.000172	2.316902
0.000104	2.025398	-0.000158	2.112516	-0.000141	2.056560
0.000072	1.669433	-0.000131 -0.000106	1.889000 1.655346	-0.000122 -0.000105	1.879253
0.000037	1.415672	-0.000087	1.452851	-0.000076	1.357225
0.000032	1.359248	-0.000081	1.382758	-0.000059	1.103480
0.000032	1.359248	-0.000061	1.117810	-0.000051	0.955439
-0.000001	0.902308	-0.000050 -0.000046	0.940804	-0.000044 -0.000039	0.810758 0.698043
-0.000013	0.658095	-0.000048	0.766146	-0.000039	0.602865
-0.000017	0.561131	-0.000034	0.595901	-0.000033	0.516890
		-0.000031	0.513790		Contraction of the second second

SC-1402-516-03

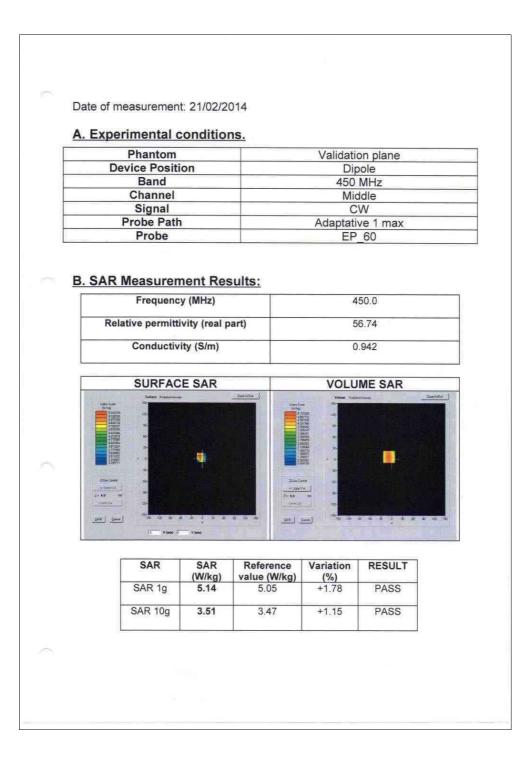
Page 54 of 59

SC-1402-516-03

11. Annex B: dipoles reference SAR value and calibration

Verifica	ation of measuring instrument
Instrument checked	REFERENCE SUPPLE
Manufacturer	ANTENNESSA / SATI MO
Model	. 450 MHE
Serial number	SN 39/05 JIPB26
Date of inspection	20/02/2014
Measured quantity (unit)) - RETURN LOSS (dB)
Measurements	
Return loss at the freque	ency of use -28,32 dB
	Dipolo 450 MHz
0.00	
-10.00	
-20.00	
8 -30.00	\sim
(81) 	
02 -40,00	
-50,00	
-60.00	400 450 500 550
	Frequenza (MHz)
Instrumentation used for	, initiation
Instrument	VECTOR NETWORK ANALYZER
Manufacturer	AN RITSU
Model	MS 46.72.B
Serial Number	98 4502
oonal Namber	·
	ements carried out the instrument
	x is not □ within the activities of SICOM.
125 0722 VI	Let Xin .
Test Operator	Antonio Siem

dBtechnologies MOVING ONE-B


SC-1402-516-03

	Dipole historical data	
Instrument checked Manufacturer Model Serial number Date of inspection Measured quantity (unit)	REFERENCE DIPOLE AUTENNESSA / SA TINO 450 MHZ SN 39/05 DIPB26 21/02/2014 SAR	

SC-1402-516-03

				Sicom
	SAR (W/Kg)	SAR REFERENCE MANUFACTURER VALUE (W/Kg)	VARIATON (%)	VERDICT
SAR 10g	3,51	3,47	+ 1,15%.	PASS
SAR 1g	5,14	5,05	+ 1,78 %.	PASS
1200 March 100				
On the b	asis of measurer	ments carried out the inst	trument	
On the b	asis of measurer is ate for the use w	ments carried out the inst Ø is not □ ithin the activities of SICC	trument OM.	
appropria	is ate for the use w	is not ithin the activities of SICC	м.	
On the b appropria Test Ope	is ate for the use w	ments carried out the inst X is not ithin the activities of SICC	trument	
appropria	is ate for the use w	is not ithin the activities of SICC	м.	
appropria	is ate for the use w	is not ithin the activities of SICC	м.	
appropria	is ate for the use w	is not ithin the activities of SICC	м.	
appropria	is ate for the use w	is not ithin the activities of SICC	м.	
appropria	is ate for the use w	is not ithin the activities of SICC	м.	
appropria	is ate for the use w	is not ithin the activities of SICC	м.	
appropria	is ate for the use w	is not ithin the activities of SICC	м.	
appropria	is ate for the use w	is not ithin the activities of SICC	м.	
appropria	is ate for the use w	is not □ ithin the activities of SICC	м.	
appropria	is ate for the use w	is not □ ithin the activities of SICC	м.	
appropria	is ate for the use w	is not □ ithin the activities of SICC	м.	
appropria	is ate for the use w	is not □ ithin the activities of SICC	м.	
appropria	is ate for the use w	is not □ ithin the activities of SICC	м.	
appropria	is ate for the use w	is not □ ithin the activities of SICC	м.	
appropria	is ate for the use w	is not □ ithin the activities of SICC	м.	
appropria	is ate for the use w	is not □ ithin the activities of SICC	м.	
appropria	is ate for the use w	is not □ ithin the activities of SICC	м.	

SC-1402-516-03