

SPECIFICATION

CT-1612UB
GPS Receiver Module

SPECIFICATION GPS MOUDLE

CT-1612UB

v1.2

General Description

The CT-1612UB module series is a family of stand-alone GPS receivers featuring the high performance u-blox positioning engine. These flexible and cost effective receivers offer numerous connectivity options in a miniature 16 x 12.2 x 2.4mm package. Their compact architecture and power and memory options make CT-1612UB modules ideal for battery operated mobile devices with very strict cost and space constraints.

The 50-channel u-blox positioning engine boasts a Time-To-First-Fix (TTFF) of under 1 second. The dedicated acquisition engine, with over 1 million correlators, is capable of massive parallel time/frequency space searches, enabling it to find satellites instantly. Innovative design and technology suppresses jamming sources and mitigates multipath effects, giving CT-1612UB GPS receivers excellent navigation performance even in the most challenging environments.

CT-1612UB modules are not designed for life saving or supporting devices or for aviation and should not be used in products that could in any way negatively impact the security or health of the user or third parties or that could cause damage to goods.

Applications

- LBS (Location Based Service)
- PND (Portable Navigation Device)
- Mobile phone
- Vehicle navigation system
- MID、UMPC、NOTEBOOK
- Car Navigation

Features

- Build on high performance, low-power UB-6010 chipset
- Ultra high sensitivity: -160dBm
- Extremely fast TTFF at low signal level
- Built in high gain LNA
- Low power consumption: Max 40mA@3.0V
- NMEA-0183 compliant protocol or custom protocol
- Operating voltage: 2.75V to 3.6V
- Operating temperature range: -40 to 85°C
- SMD type with stamp holes
- Small form factor: 16x12.2x2.4mm
- RoHS compliant (Lead-free)

Pin Assignment

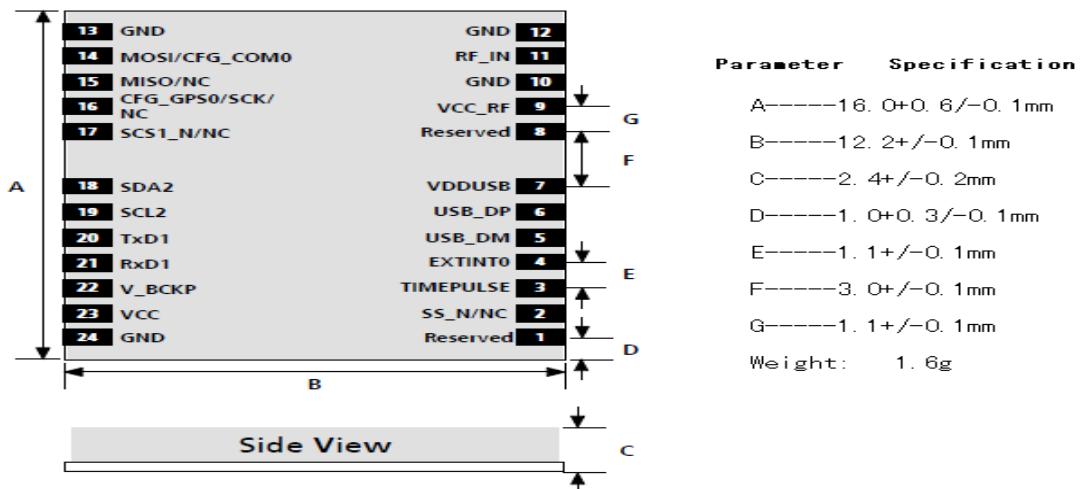


Figure 1: CT-1612UB Pin Packag

SPECIFICATION

CT-1612UB
GPS Receiver Module

Performance Specification

Parameter	Specification	
Receiver Type	L1 frequency band, C/A code, 50-channels SBAS: WAAS, EGNOS, MSAS, GAGAN	
Sensitivity	Tracking	-160dBm
	Acquisition	-160dBm
Accuracy	Position	5m CEP without SA
	Velocity	0.1m/s without SA
	Timing (PPS)	10ns RMS
Acquisition Time	Cold Start	29s
	Warm Start	28s
	Hot Start	1s
	Re-Acquisition	<1s
Power Consumption	Tracking	35mA @3V Vcc
	Acquisition	40mA
	Sleep/Standby	TBD
Navigation Data Update Rate	1Hz	
Operational Limits	Altitude	Max 18,000m
	Velocity	Max 515m/s
	Acceleration	Less than 4g

Interfaces Configuration

1.1 Assisted GPS (A-GPS)

Supply of aiding information like ephemeris, almanac, rough last position and time and satellite status and an optional time synchronization signal will reduce time to first fix significantly and improve the acquisition sensitivity. CT-1612UB modules support the u-blox AssistNow Online and AssistNow Offline A-GPS services⁸ and are OMA SUPL compliant.

1.2 SuperSense Indoor GPS

CT-1612UB modules come with SuperSense, providing ultra-fast acquisition/reacquisition and exceptional tracking sensitivity. SuperSense enables best-in-class tracking and navigation in difficult signal environments such as urban canyons or indoor locations.

1.3 KickStart / Oscillators

An available feature is KickStart. This functionality uses a TCXO to accelerate weak signal acquisition, enabling faster start and reacquisition times. KickStart is available with the YX-1612UB.

1.4 Protocols and interfaces

Protocol	Type
NMEA	Input/output, ASCII, 0183, 2.3 (compatible to 3.0)
UBX	Input/output, binary, u-blox proprietary

Table 3: Available protocols

Both protocols are available on UART, USB, DDC and SPI. For specification of the various protocols see the u-blox_5&6 Receiver Description including Protocol Specification [2].

CT-1612UB modules support a number of peripheral interfaces for serial communication. The embedded firmware uses these interfaces according to their respective protocol specifications. For specific applications, the firmware also supports the connection of peripheral devices, such as external memories, to some of the interfaces.

1.5 UART

CT-1612UB modules include one configurable UART interface for serial communication (for information about configuration see section 1.11).

SPECIFICATION

CT-1612UB
GPS Receiver Module

1.6 USB

CT-1612UB modules provide a USB version 2.0 FS (Full Speed, 12Mbit/s) interface as an alternative to the UART. The pull-up resistor on USB_DP is integrated to signal a full-speed device to the host. The VDD_USB pin supplies the USB interface, independently from the VDD_IO pin.

u-blox provides a Microsoft® certified USB driver for Windows XP and Windows Vista operating systems. Windows 7 will also be supported following certification

Operating System	Support level
Windows XP	Certified
Windows Vista	Certified
Windows 7	Certification pending

Table 4: Operating systems supported by USB driver

1.7 Serial Peripheral Interface (SPI)

An SPI interface is planned for future versions of CT-1612UB modules. The SPI interface allows for the connection of external devices with a serial interface, e.g. EEPROM or A/D converters, or to interface to a host CPU. The interface can be operated in master or slave mode. In master mode, one chip select signal is available to select external slaves. In slave mode a single chip select signal enables communication with the host.

1.8 Display Data Channel (DDC)

The I²C compatible DDC interface can be used either to access external devices with a serial interface (e.g. EEPROM or A/D converters) or to interface with a host CPU. It is capable of master and slave operation and communicates at a rate of <100kbit/s.

GPS.

1.9 Antenna

CT-1612UB modules are designed for use with passive and active antennas.

Parameter	Specification	
Antenna Type	Passive and active antenna	
Active Antenna Recommendations	Minimum gain	15 - 20 dB (to compensate signal loss in RF cable)
	Maximum noise figure	
	Maximum gain	1.5 dB

SPECIFICATION

CT-1612UB
GPS Receiver Module

	50 dB
--	-------

Table 5: Antenna Specifications for all CT-1612UB modules

2.0 Operating modes

CT-1612UB modules have 2 continuous operating modes (Maximum Performance and Eco). Maximum Performance mode freely uses the acquisition engine, resulting in the best possible TTFF, while Eco mode optimizes the use of the acquisition engine to deliver lower current consumption. At medium to strong signals, there is almost no difference for acquisition and tracking performance in these modes.

2.1 Maximum Performance mode

In Maximum Performance mode, u-blox 6 receivers use the acquisition engine at full performance to search for all possible satellites until the Almanac is completely downloaded.

As a consequence, tracking current consumption level will be achieved when:

A valid GPS position is fixed

Almanac is entirely downloaded

Ephemeris for all satellites in view are valid

2.2 Eco mode

In Eco mode, u-blox 6 receivers use the acquisition engine to search for new satellites only when needed for navigation:

In cold starts, u-blox 6 searches for enough satellites to navigate and optimizes use of the acquisition engine to download their ephemeris.

In non-cold starts, u-blox 6 focuses on searching for visible satellites whose orbits are known from the Almanac.

In Eco mode, the u-blox 6 acquisition engine limits use of its searching resources to minimize power consumption. As a consequence the time to find some satellites at weakest signal level might be slightly increased in comparison to the Max. performance mode.

u-blox 6 deactivates the acquisition engine as soon as a position is fixed and a sufficient number (at least 4) of satellites are being tracked. The tracking engine continues to search and track new satellites without orbit information.

2.3 Boot-time configuration

SPECIFICATION

CT-1612UB
GPS Receiver Module

CT-1612UB modules provide configuration pins for boot-time configuration. These become effective immediately after start-up. Once the module has started, the configuration settings may be modified with UBX configuration messages. The modified settings remain effective until power-down or reset. If these settings have been stored in battery-backup RAM, then the modified configuration will be retained, as long as the backup battery supply is not interrupted.

CT-1612UB modules include a **CFG_COM0** pin, which can be configured as seen in Table 6. Default settings in bold.

CFG_COM0	Protocol	Messages	UARTBaud rate	USB Power
1	NMEA	GSV, RMC, GSA, GGA, GLL, VTG, TXT	9600	BUS Powered
0	NMEA	GSV, RMC, GSA, GGA, GLL, VTG, TXT	38400	Self Powered

Table 6: Supported CFG_COM0 settings

CT-1612UB include both **CFG_COM0** and **CFG_COM1** pins and can be configured as seen in Table 7. Default settings in bold.

CFG_COM1	CFG_COM0	Protocol	Messages	UARTBaud rate	USB power
1	1	NMEA	GSV, RMC, GSA, GGA, GLL, VTG, TXT	9600	BUS Powered
1	0	NMEA	GSV, RMC, GSA, GGA, GLL, VTG, TXT	38400	Self Powered
0	1	NMEA	GSV10, RMC, GSA, GGA, VTG, TXT	4800	BUS Powered
0	0	UBX	NAV-SOL, NAV-STATUS, NAV-SVINFO, NAV-CLOCK,	57600	BUS Powered

SPECIFICATION

CT-1612UB
GPS Receiver Module

Table 7: Supported COM settings CT-1612UB

The CT-1612UB include a **CFG_GPS0** pin, which enables the boot-time configuration of the power mode. These settings are described in Table 8. Default settings in bold

. CFG_GPS0	Power Mode
0	Eco Mode
1	Maximum Performance Mode

Table 8: Supported CFG_GPS0 settings CT-1612UB

External serial EEPROM

CT-1612UBmodules allow an optional external serial EEPROM to be connected to the DDC interface.

This feature is only supported by modules with ROM 5.0 and above.

Pin Description

Pin No.	Pin name	I/O	Description
1	Reserved	I	Leave Open if not used
2	SS_	I	SPI Slave Select (Planned)
3	TIMEPULSE	O	Time pulse (1PPS)
4	EXTINT0	I	External Interrupt Pin
5	USB_DM	I/O	USB Data
6	USB_DP	I/O	USB Data
7	VDDUSB	I	USB Supply

SPECIFICATION

CT-1612UB
GPS Receiver Module

8	Reserved		See Hardware Integration Manual Pin 8 and 9 must be connected together.
9	VCC_RF	O	Output Voltage RF section Pin 8 and 9 must be connected together
10	GND	G	Ground
11	RF_IN	I	GPS Signal Input
12	GND	G	Ground
13	GND	G	Ground
14	MOSI/CFG_COM0	I/O	SPI MOSI / Configuration Pin (Planned)
15	MISO/CFG_COM1	I/O	SPI MISO (Planned) / Configuration Pin. Leave open if not used.
16	CFG_GPS0 SCK	I/O	Power Mode Configuration Pin SPI Clock(Planned)
17	Reserved	O	
18	SDA2	I/O	DDC Data
19	SCL2	I/O	DDC Clock
20	TXD1	O	UART Serial Data Output Pull up (75KΩ) if not used
21	RXD1	I	UART Serial Data Input Pull up (75KΩ) if not used
22	VBAT	P	Backup battery supply voltage
23	VCC	P	DC supply voltage
24	GND	G	Ground

SPECIFICATION

CT-1612UB
GPS Receiver Module

Electrical Characteristics

Absolute Maximum Rating

Parameter	Symbol	Min	Max	Units
Power Supply				
Power Supply Volt.	Vcc	-0.3	3.6	V
Input Pins				
Input Pin Voltage I/O	RXD	-0.3	3.6	V
Input Pin Voltage I/O	BOOT	-0.3	3.6	V
Backup Battery	VBAT	2.0	3.6	V
Environment				
Storage Temperature	Tstg	-40	125	°C
Peak Reflow Soldering Temperature <10s	Tpeak		260	°C
Humidity			95	%

Note: Absolute maximum ratings are stress ratings only, and functional operation at the maxims is not guaranteed. Stress beyond the limits specified in this table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the operating conditions tables as follow.

SPECIFICATION

CT-1612UB
GPS Receiver Module

Operating Conditions

Parameter	Symbol	Condition	Min	Typ	Max	Units
Power supply voltage	Vcc		2.7	3.3	3.6	V
Power supply voltage ripple	Vcc_PP	Vcc=3.0V			35	mV
Consumption current	Icc	Vcc=3.0V		40	45	mA
Input high voltage	V _{IH}		0.7xVcc		Vcc+1.0	V
Input low voltage	V _{IL}		-0.3		0.3xVcc	V
Output high voltage	V _{OH}		0.8xVcc		Vcc	V
Output low voltage	V _{OL}		0		0.2xVcc	V
Operating temperature	Topr		-40		85	°C

NMEA 0183 Protocol

The NMEA protocol is an ASCII-based protocol. Records start with a \$ and with carriage return/line feed. GPS specific messages all start with \$GPxxx where xxx is a three-letter identifier of the message data that follows. NMEA messages have a checksum, which allows detection of corrupted data transfers.

The CT-1612UB supports the following NMEA-0183 messages: GGA, GLL, GSA, GSV, RMC and VTG.

SPECIFICATION

CT-1612UB
GPS Receiver Module

Table 1: NMEA-0183 Output Messages

NMEA Record	DESCRIPTION
GGA	Global positioning system fixed data
GLL	Geographic position—latitude/longitude
GSA	GNSS DOP and active satellites
GSV	GNSS satellites in view
RMC	Recommended minimum specific GNSS data
VTG	Course over ground and ground speed

GGA-Global Positioning System Fixed Data

Table 2 contains the values of the following example:

\$GPGGA, 161229.487,3723.24751,N, 12158.34160,W, 1,07,1.0,9.0,M.0000*18

Table 2: GGA Data Format

Name	Example	Units	Description
Message ID	\$GPGGA		GGA protocol header
UTC Position	161229.487	hhmmss.sss	
Latitude	3723.24571	ddmm.mmffff	
N/S indicator	N		N=north or S=south
Longitude	12158.34160	ddmm.mmffff	
E/W Indicator	W		E=east or W=west

SPECIFICATION

CT-1612UB
GPS Receiver Module

Position Indicator	Fix	1	See Table 2-1
Satellites Used	07		Range 0 to 12
HDOP	1.0		Horizontal Dilution of Precision
MSL Altitude	9.0	meters	
Units	M	meters	
Geoids Separation		meters	
Units	M	meters	
Age of Diff.Corr.		second	Null fields when DGPS is not Used
Diff.Ref.Station ID	0000		
Checksum	*18		
<CR> <LF>			End of message termination

Table 2-1: Position Fix Indicators

Value	Description
0	Fix not available or invalid
1	GPS SPS Mode, fix valid
2	Differential GPS, SPS Mode, fix valid
3	GPS PPS Mode, fix valid

SPECIFICATION

CT-1612UB
GPS Receiver Module

GLL-Geographic Position – Latitude/Longitude

Table 3 contains the values of the following example:

\$GPGLL , 3723.24755, N,12158.34161, W,161229.487, A*2C. Table 3:

GLL Data Format

Name	Example	Units	Description
Message ID	\$GPGLL		GLL protocol header
Latitude	3723.24755		Ddmm.mmmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.34161		Ddmm.mmmmm
E/W Indicator	W		E=east or W=west
UTC Position	161229.487		Hhmmss.sss
Status	A		A=data valid or V=data not valid
Checksum	*2C		
<CR> <LF>			End of message temination

GSA-GNSS DOP and Active Satellites

Table 4 contains the values of the following example:

\$GPGSA , A, 3, 07, 02, 26,27, 09, 04,15, , , , , 1.8,1.0,1.5*33.

SPECIFICATION

CT-1612UB
GPS Receiver Module

Table 4: GSA Data Format

Name	Example	Units	Description
Message	\$GPGSA		GSA protocol header
Mode 1	A		See Table 4-2
Mode 2	3		See Table 4-1
Satellite Used	07		Sv on Channel 1
Satellite Used	02		Sv on Channel 2
...
Satellite Used			Sv on Channel 12
PDOP	1.8		Position Dilution of Precision
HDOP	1.0		Horizontal Dilution of Precision
VDOP	1.5		Vertical Dilution of Precision
Checksum	*33		
<CR> <LF>			End of message termination

Table 4-1: Mode 1

Value	Description
1	Fix not available
2	2D
3	3D

SPECIFICATION

CT-1612UB
GPS Receiver Module

Table 4-2: Mode 2

Value	Description
M	Manual-forced to operate in 2D or 3D mode
A	Automatic-allowed to automatically switch 2D/3D

GSV-GNSS Satellites in View

Table 5 contains the values of the following example:

\$GPGSV, 2, 1, 07, 07, 79,048, 42, 02, 51,062, 43, 26, 36,256, 42, 27, 27, 138,42*71

\$GPGSV, 2, 2, 07, 09, 23,313, 42, 04, 19, 159, 41, 15,12,041, 42*41.

Table 5: GGA Data Format

Nam	Example	Units	Descriptio
Message ID	\$GPGSV		GSV protocol header
Number of Message	2		Range 1 to 3
Message Number	1		Range 1 to 3
Satellites in View	07		
Satellite ID	07		Channel 1(Range 1 to 32)
Elevation	79	degrees	Channel 1(Maximum 90)
Azimuth	048	degrees	Channel 1(True, Range 0 to 359)
SNR(C/NO)	42	dBHz	Range 0 to 99,null when not tracking

SPECIFICATION

CT-1612UB
GPS Receiver Module

...			...
Satellite ID	27		Channel 4(Range 1 to 32)
Elevation	27	degrees	Channel 4(Maximum 90)
Azimuth	138	degrees	Channel 4(True, Range 0 to 359)
SNR(C/NO)	42	dBHz	Range 0 to 99, null when not tracking
Checksum	*71		
<CR> <LF>			End of message termination

Depending on the number of satellites tracked multiple messages of GSV data may be required.

RMC-Recommended Minimum Specific GNSS Data

Table 6 contains the values of the following example:

\$GPRMC, 161229.487, A, 3723.24751, N, 12158.34161, W, 0.13,309.62, 120598,, *10

Table 6: RMC Data Format

Name	Example	Units	Description
Message ID	\$GPRMC		RMC protocol header
UTS Position	161229.487		hhmmss.sss
Status	A		A=data valid or V=data not valid
Latitude	3723.24751		ddmm.mmffff
N/S Indicator	N		N=north or S=south

SPECIFICATION

CT-1612UB
GPS Receiver Module

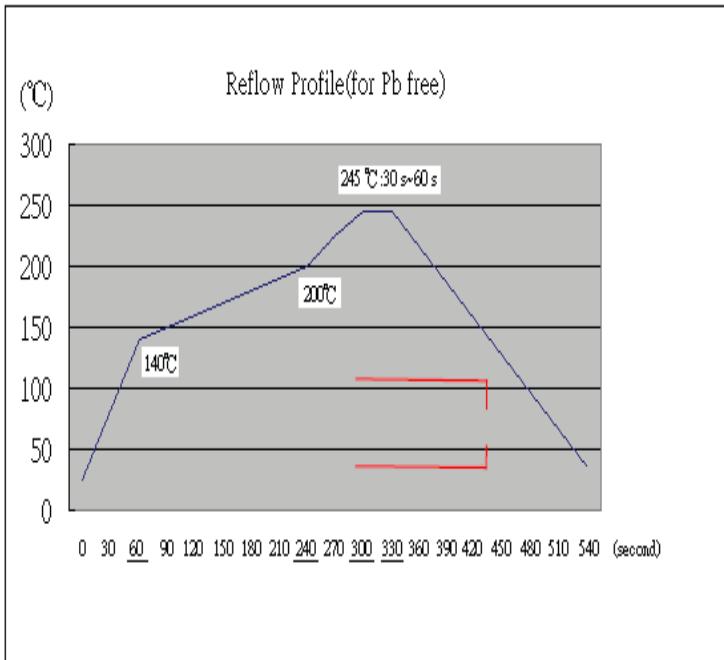
Longitude	12158.34161		Ddmm.mmmmm
E/W Indicator	W		E=east or W=west
Speed Over Ground	0.13	Knots	
Course Over	309.62	Degrees	True
Ground			
Date	120598		Dummy
Magnetic variation		Degrees	E=east or W=west
Checksum	*10		
<CR> <LF>			End of message termination

VTG-Course Over Ground and Ground Speed

Table 7 contains the values of the following example:

\$GPVTG, 309.62, T, M, 0.13, N, 0.2, K*6E

Table 7: VTG Data Format


Name	Example	Units	Description
Message ID	\$GPVTG		VTG protocol header
Course	309.62	Degrees	Measured heading
Reference	T		True
Course		Degrees	Measured heading
Reference	M		Magnetic

SPECIFICATION

CT-1612UB
GPS Receiver Module

Speed	0.13	Knots	Measured horizontal speed
Units	N		Knots
Speed	0.2	Km/hr	Measured horizontal speed
Units	K		Kilometer per hour
Checksum	*6E		
<CR> <LF>			End of message termination

RECOMMENDED REFLOW PROFILE

©Copyright 2008 CaiTong All Right Reserved