

Certification Exhibit

FCC ID: 2ADCB-RMODIT

FCC Rule Part: 47 CFR Part 2.1091

Project Number: 72151894

Manufacturer: Acuity Brands Lighting, Inc. Model: RMODIT

RF Exposure

General Information:

Applicant:	Acuity Brands Lighting, Inc.
Device Category:	Mobile
Environment:	General Population/Uncontrolled Exposure

The 904 - 926MHz transmitter is collocated and transmits simultaneously with the 2.4GHz transmitter radio.

Technical Information:

		Device 2 Details	
	Device 1 Details		
Frequency Band(s) (MHz)	904-926	2402-2480	
Antenna Type(s)	Pulse W1990XXX Dual Band Antenna	Pulse W1990XXX Dual Band Antenna	
Antenna Gain (dBi)	1.5	3.1	
Conducted Power (dBm)	19.06	9.48	
Conducted Power (mW)	80.54	8.87	

MPE Calculation:

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Transmit Frequency (MHz)	Radio Power (dBm)	Power Density Limit (mW/Cm2)	Radio Power (mW)	Antenna Gain (dBi)	Antenna Gain (mW eq.)	Distance (cm)	Power Density (mW/cm^2)	Radio
904	19.06	0.60	80.54	1.5	1.413	20	0.023	А
2480	9.48	1.00	8.87	3.1	2.042	20	0.004	В

Table 2: MPE Calculation (Including Collocated Devices)

Summation of MPE ratios – Simultaneous Transmissions

This device contains multiple transmitters which can operate simultaneously; therefore the maximum RF exposure is determined by the summation of MPE ratios. The limit is such that the summation of MPE ratios is \leq 1.0.

	Scenario 1	
Radio A	х	
Radio B	x	
Radio A MPE Ratio	0.037553721	
Radio B MPE Ratio	0.003603547	
MPE Ratio Summation:	0.041157267	

Table 3: Summation of MPE Ratios