CFR 47 FCC PART 15 SUBPART E ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

Acuity Brands – Juno Al

MODEL NUMBER: J6AIALXA DB, J6AIALXA DC, J6AISPKR DB, J6AISPKR DC

FCC ID: 2ADCB-J6AIALXA IC: 6715C-J6AIALXA

REPORT NUMBER: 4789053728.1-4

ISSUE DATE: November 06, 2019

Prepared for

Acuity Brands Lighting,Inc. One Lithonia Way, Conyers, GA 30012

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	11/06/2019	Initial Issue	

Summary of Test Results			
Clause	Test Items	FCC/IC Rules	Test Results
1	6dB/26dB Bandwidth	FCC 15.407 (a)&(e) RSS-247 Clause 6.2	PASS
2	99% Occupied Bandwidth	RSS-Gen Clause 6.6	PASS
3	Maximum Conducted Output Power	FCC 15.407 (a) RSS-247 Clause 6.2	PASS
4	Power Spectral Density	FCC 15.407 (a) RSS-247 Clause 6.2	PASS
5	Antenna Conducted Spurious Emission	FCC 15.407 (b) RSS-247 Clause 6.2	PASS
6	Radiated Bandedge and Spurious Emission	FCC 15.407 (a) FCC 15.209 FCC 15.205 RSS-247 Clause 6.2 RSS-GEN Clause 8.9	PASS
7	Conducted Emission Test For AC Power Port	FCC 15.207 RSS-GEN Clause 8.8	PASS
8	Frequency Stability	FCC 15.407 (g)	PASS
9	Dynamic Frequency Selection	FCC 15.407 (h) RSS-247 Clause 6.3	PASS
10	Antenna Requirement	FCC 15.203 RSS-GEN Clause 8.3	PASS
Note: This test report is only published to and used by the applicant, and it is not for evidence purpose in China.			

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	6
2.	TES	T METHODOLOGY	7
3.	FAC	CILITIES AND ACCREDITATIO	7
4.	CAL	IBRATION AND UNCERTAINTY	8
	4.1.	MEASURING INSTRUMENT CALIBRATION	8
	4.2.	MEASUREMENT UNCERTAINTY	8
5.	EQ	JIPMENT UNDER TEST	9
	5.1.	DESCRIPTION OF EUT	9
	5.2.	CHANNEL LIST	10
	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	12
	5.4.	TEST ENVIRONMENT	12
	5.5.	WORST-CASE CONFIGURATIONS	13
	5.6.	THE WORSE CASE POWER SETTING PARAMETER	13
	5.7.	DESCRIPTION OF TEST SETUP	14
	5.8.	MEASURING INSTRUMENT AND SOFTWARE USED	15
6.	AN	ENNA PORT TEST RESULTS	16
	6.1.	ON TIME AND DUTY CYCLE	16
	6.2.	6dB/26dB/99% OCCUPIED BANDWIDTH	20
	6.2.	1. 802.11a MODE	22
	6.2.	2. 802.11n HT20 MODE	27
	6.2.	3. 802.11n H140 MODE 4 802.11ac VHT80 MODE	32
	6.2		
	6.3.	1. UNII-1 BAND	42
	6.3.	2. UNII-2A BAND	44
	6.3.	3. UNII-2C BAND	45
	6.3.	4. UNII-3 BAND	46
	6.3.	5. STRADDLE CHANNEL	47
	6.4.	POWER SPECTRAL DENSITY	51
	6.4.	1. UNII-1 BAND	53
	0.4. 61	1. UNII-ZA ΒΑΝΟ 2. LINII 2C ΒΑΝΟ	נ 12
	6.4.	2. UNII-20 DAND	66
7.	RAI	DIATED TEST RESULTS	71

7.1. 802.11a MODE	77
7.1.1. UNII-1 BAND	77
7.1.2. UNII-2A BAND	93
7.1.3. UNII-2C BAND	109
7.1.4. STRADDLE CHANNEL 144	127
7.1.5. UNII-3 BAND	131
7.2. 802.11n HT20 MODE	
7.2.1. UNII-1 BAND	
7.2.2. UNII-2A BAND	
7.2.3. UNII-2C BAND	
7.2.4. STRADDLE CHANNEL 144	
7.2.5. UNII-3 BAND	201
7.3. 802.11n HT40 MODE	
7.3.1. UNII-1 BAND	
7.3.2. UNII-2A BAND	
7.3.3. UNII-2C BAND	
7.3.4. STRADDLE CHANNEL 142	
7.3.5. UNII-3 BAND	
7.4. 802.11ac VHT80 MODE	
7.4.1. UNII-1 BAND	
7.4.2. UNII-2A BAND	
7.4.3. UNII-2C BAND	
7.4.4. STRADDLE CHANNEL 138	
7.4.5. UNII-3 BAND	
7.5 SPURIOUS EMISSIONS 18~26GHz	315
7.5.1 802 11HT20 HIGH MODE	315
	047
7.0. SPURIOUS EIVISSIONS 20~40GHZ 7.6.1 802.11HT20 HIGH MODE	
7.7. SPURIOUS EMISSIONS 30MHz ~ 1 GHz	
7.7.1. 802.11HT20 LOW MODE	
7.8. SPURIOUS EMISSIONS BELOW 30MHz	
7.8.1. 802.11HT 20 LOW MODE	321
	224
0. AC FOWER LINE CONDUCTED EN13310N3	
8.1. 802.11n20 LOW CHANNEL MODE	
9. FREQUENCY STABILITY	
10. DYNAMIC FREQUENCY SELECTION	
11. ANTENNA REQUIREMENTS	

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	Acuity Brands Lighting, Inc.
Address:	One Lithonia Way, Conyers, GA 30012
Manufacturer Information	
Company Name:	Acuity Brands Lighting,Inc.
Address:	One Lithonia Way, Conyers, GA 30012
EUT Description	
EUT Name:	Acuity Brands – Juno Al
Model:	J6AIALXA DB
Series Model:	J6AIALXA DC, J6AISPKR DB, J6AISPKR DC
Model Difference	See section 5.1 of this report for detail
Brand Name:	Juno Al

Sample Status: Sample ID: Sample Received Date: Date of Tested:

Normal 2524327 August 30, 2019 September 5 ~ November 06,2019

APPLICABLE STANDARDS		
STANDARD TEST RESU		
CFR 47 FCC PART 15 SUBPART E	PASS	
ISED RSS-247 Issue 2	PASS	
ISED RSS-GEN Issue 5	PASS	

Prepared By:

Kebo. zhang.

Checked By: Shemmy les

Kebo Zhang **Engineer Project Associate**

Approved By:

tephentus

Stephen Guo Laboratory Manager Shawn Wen Laboratory Leader

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, CFR 47 FCC Part 2, CFR 47 FCC Part 15, KDB 789033 D02 v02r01, RSS-GEN Issue 5, RSS-247 Issue 2, KDB414788 D01 Radiated Test Site v01, KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 and 905462 C Client Without DFS New Rules v01r02.

3. FACILITIES AND ACCREDITATIO

	A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification
	rules
Accreditation	IC(Company No.: 21320)
Certificate	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Industry Canada, The Company Number is 21320.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B , the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty	
Uncertainty for Conduction emission test	3.62dB	
Uncertainty for Radiation Emission test(include Fundamental emission) (9kHz-30MHz)	2.2dB	
Uncertainty for Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.00dB	
Uncertainty for Radiation Emission test	5.78dB(1-18GHz)	
emission)	5.23dB (18GHz-26Gz)	
	5.64dB (26GHz-40Gz)	
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.		

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Acuity Brands – Juno Al	
Model J6AIALXA DB		
Series Model	J6AIALXA DC, J6AISPKR DB, J6AISPKR DC	
Model Difference The J6AIALXA DB and J6AIALXA DC are the same full function device while J6AIALXA DB have plastic baffle decorative plastic baffle d		
Radio Technology	IEEE802.11a IEEE802.11n HT20/n HT40 IEEE802.11ac VHT20/VHT40/VHT80	
Operation frequency UNII-1/UNII-2A/UNII-2C/UNII-3		
Modulation	OFDM(BPSK,QPSK,16QAM,64QAM, 256QAM only for 11 ac mode)	
Rated Input	AC 120V, 60Hz	

5.2. CHANNEL LIST

20 MHz Bandwidth Channel frequencies		
Band	Channel	Frequency (MHz)
	36	5180
UNII-1	40	5200
	44	5220
	48	5240
	52	5260
LINIII_2Δ	56	5280
	60	5300
	64	5320
	100	5500
	104	5520
	108	5540
LINII-2C	112	5560
01111 20	116	5580
	132	5660
	136	5680
	140	5700
	149	5745
	153	5765
UNII-3	157	5785
	161	5805
	165	5825

40 MHz Bandwidth Channel frequencies		
Band	Channel	Frequency (MHz)
UNII-1	38	5190
	46	5230
	54	5270
UINII-2	62	5310
	102	5510
UNII-2C	110	5550
	134	5670
UNII-3	151	5755
	159	5795

80 MHz Bandwidth Channel frequencies			
Band	Channel	Frequency (MHz)	
UNII-1	42	5210	
UNII-2A	58	5290	
UNII-2C	106	5530	
	134	5670	
UNII-3	155	5775	

Straddle Channel frequencies					
Bandwidth	Channel	Frequency (MHz)			
20MHz	144	5720			
40MHz	142	5710			
80MHz	138	5690			

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
A	5150-5825	IFA antenna	3.30

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

Test Mode	Transmit and Receive Mode	Description
802.11a	1TX, 1RX	Antenna A can be can be used as transmitting/receiving antenna.
802.11n HT20	1TX, 1RX	Antenna A can be can be used as transmitting/receiving antenna.
802.11n HT40	1TX, 1RX	Antenna A can be can be used as transmitting/receiving antenna.
802.11ac VHT20	1TX, 1RX	Antenna A can be can be used as transmitting/receiving antenna.
802.11ac VHT40	1TX, 1RX	Antenna A can be can be used as transmitting/receiving antenna.
802.11ac VHT80	1TX, 1RX	Antenna A can be can be used as transmitting/receiving antenna.

5.4. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests			
Relative Humidity	35 ~ 75%			
Atmospheric Pressure:	1025Pa			
Temperature	TN -20 ~ 40°C			
	VL	AC 102V/60Hz		
Voltage :	VN	AC 120V/60Hz		
	VH AC 138V/60Hz			

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage

TN= Normal Temperature

5.5. WORST-CASE CONFIGURATIONS

IEE Std.	Modulation	Modulation Type	Data Rate	Worst Case
802.11	Technology		(Mbps)	(Mbps)
а	OFDM	BPSK,QPSK,16QAM, 64QAM	54/48/36/24/18/12/9/6	6

IEE Std. 802.11	Modulation Technology	Modulation Type	Data Rate	Worst Case
n HT20	OFDM	BPSK, QPSK, 16QAM, 64QAM	(MCS0~MCS7)	MCS0
n HT40	OFDM	BPSK, QPSK, 16QAM, 64QAM	(MCS0~MCS7)	MCS0

IEE Std. 802.11	Modulation Technology	Modulation Type	Data Rate	Worst Case
ac VHT20	OFDM	BPSK, QPSK, 16QAM, 64QAM, 256QAM	(MCS0~MCS9)	MCS0
ac VHT40	OFDM	BPSK, QPSK, 16QAM, 64QAM, 256QAM	(MCS0~MCS9)	MCS0
ac VHT80 OFDM BPSK, QPSK, 16QAM 64QAM, 256QAM		BPSK, QPSK, 16QAM, 64QAM, 256QAM	(MCS0~MCS9)	MCS0

Note: 1.802.11ac VHT20 and VHT40 mode are different from 802.11n HT20 and HT40 only in control messages and have the same power settings, so for these 4 modes, only 802.11n HT20 and 802.11n HT40 modes data are recorded in the report.

2.All models had been evaluated, and the worst model is J6AIALXA DB, only the worst data for J6AIALXA DB recorded in the report.

5.6. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 5150 ~ 5825MHz Band						
Test Softwar	adb					
Modulation Mode	All Test Channel Power Setting					
802.11a	А	12				
802.11n HT20/HT40	А	11				
802.11ac VHT20/VHT40	11					
802.11ac VHT80	A	9				

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	PC	Dell	Vostro 3902	8KNDDB2
2	USB TO UART	/	/	/

I/O CABLES

Item	Port	Connector Type	Cable Type	Cable Length(m)	Notes
1	USB	/	/	1.0	/

ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	/		/	/

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

5.8. MEASURING INSTRUMENT AND SOFTWARE USED

	Conducted Emissions								
Used	Equipment	Manufacturer	Мо	odel	No.	Seri	al No.	Last Cal.	Next Cal.
\checkmark	EMI Test Receiver	R&S		ESR3		101961		Dec.10,2018	Dec.09,2019
V	Two-Line V- Network	R&S	E	NV	216	10	1983	Dec.10,2018	Dec.09,2019
			So	ftwa	are				
Used	Des	cription			Manu	ufactu	urer	Name	Version
\checkmark	Test Software for C	Conducted distu	rban	се		UL		Antenna port	Ver. 7.2
		Rad	iateo	d Er	nissio	ns			
Used	Equipment	Manufacturer	Мо	odel	No.	Seri	al No.	Last Cal.	Next Cal.
V	MXE EMI Receiver	KESIGHT	N	1903	38A	MY5 0	56400 36	Dec.10,2018	Dec.09,2019
V	Hybrid Log Periodic Antenna	TDK	HL	P-3	003C	130	0960	Sep.17, 2018	Sep.16, 2021
V	Preamplifier	HP	8	344	7D	2944A090 99		Dec.10,2018	Dec.09,2019
V	EMI Measurement Receiver	R&S	E	ESR	26	101377		Dec.10,2018	Dec.09,2019
\checkmark	Horn Antenna	TDK	HF	RN-(0118	8 130939		Sep.17, 2018	Sep.16, 2021
V	High Gain Horn Antenna	Schwarzbeck	BB	HA-	9170	9170 691		Sep.17, 2018	Sep.16, 2021
V	Preamplifier	TDK	PA	-02-	0118	TRS 00	8-305- 066	Dec.10,2018	Dec.09,2019
V	Preamplifier	TDK	Ρ	A-0	2-2	TRS 00	6-307- 003	Dec.10,2018	Dec.09,2019
V	Preamplifier	TDK	Ρ	A-0	2-3	TRS 00	6-308- 002	Dec.10,2018	Dec.09,2019
\checkmark	Loop antenna	Schwarzbeck		1519	9B	00	800	Jan.07, 2019	Jan.07, 2022
			So	ftwa	are				
Used	Descr	iption		Ma	Inufact	urer		Name	Version
V	Test Software for Radiated disturbance Fara			Farac	rad EZ-EMC Ver. UL-3			Ver. UL-3A1	
		Oth	ner ir	nstr	umen	ts			
Used	Equipment	Manufacturer	Model No.		Seri	al No.	Last Cal.	Next Cal.	
\checkmark	Spectrum Analyzer	Keysight	N	1903	30A	MY5 5	55410 512	Dec.10,2018	Dec.09,2019
V	Power Sensor	Keysight	Uź	202	1XA	MY5 0	57030 004	Dec.10,2018	Dec.09,2019

6. ANTENNA PORT TEST RESULTS

6.1. ON TIME AND DUTY CYCLE

<u>LIMITS</u>

None; for reporting purposes only.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.9°C	Relative Humidity	54%
Atmosphere Pressure	101kPa	Test Voltage	AC120V_60Hz

RESULTS

ANTENNA A

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (KHz)	Final setting For VBW (KHz)
11a	1.394	1.498	0.9306	93.06%	0.31	0.72	1
11n20	1.306	1.409	0.9269	92.69%	0.33	0.77	1
11n40	0.6459	0.688	0.9388	93.88%	0.27	1.55	5
11ac VHT20	1.314	1.357	0.9683	96.83%	0.14	0.76	1
11ac VHT40	0.655	0.6981	0.9383	93.83%	0.28	1.53	5
11ac VHT80	0.3231	0.3656	0.8838	88.38%	0.54	3.10	5

Note:

Duty Cycle Correction Factor=10log (1/x). Where: x is Duty Cycle (Linear) Where: T is On Time If that calculated VBW is not available on the analyzer then the next higher value should be used.

6.2. 6dB/26dB/99% OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15, Subpart E ISED RSS-247				
Test Item	Limit	Frequency Range (MHz)		
	26 dB Bandwidth	5150-5250		
	26 dB Bandwidth	5250-5350		
Bandwidth		For FCC:5470-5725		
Danuwiuth	26 dB Bandwidth	For IC:5470-5600		
		5650-5725		
	Minimum 500kHz 6dB Bandwidth	5725-5850		

ISED RSS-247 ISSUE 2				
RSS-Gen Clause 6.6	99% Occupied Bandwidth	For reporting purposes only.		

TEST PROCEDUREC

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
	For 6dB Bandwidth: RBW=100kHz
RBW/	For 26dB Bandwidth: approximately 1%~5% of the emission bandwidth.
	For 99% Occupied Bandwidth: approximately 1%~5% of the emission
	bandwidth.
	For 6dB Bandwidth : VBW=300kHz
VBW	For 26dB Bandwidth : >3RBW
	For 99% Occupied Bandwidth: >3RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6dB/26dB&99% Occupied Bandwidth relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.9°C	Relative Humidity	54%
Atmosphere Pressure	101kPa	Test Voltage	AC120V_60Hz

<u>RESULTS</u>

ANTENNA A

6.2.1. 802.11a MODE

6.2.1.1.	UNII-1 BAND
----------	-------------

Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)
36	5180	21.12	16.552
40	5200	20.93	16.574
48	5240	20.90	16.527

6.2.1.1.	UNII-2A BAND
----------	--------------

Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)	
52	5260	20.72	16.610	
56	5300	20.49	16.559	
64	5320	20.94	16.528	

6.2.1.2. UNII-2C BAND

Channel	Frequency (MHz)	26 dB BW(MHz)	99% BW(MHz)
100	5500	20.91	16.594
116	5580	20.91	16.583
140	5700	20.80	16.581
144	5720	15.20	/

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

6.2.1.3. UNII-3 BAND

Channel	Frequency (MHz)	6 dB BW (MHz)	Limit (KHz)	Result
149	5745	16.36	500	PASS
157	5785	16.38	500	PASS
165	5825	16.05	500	PASS
144	5720	3.325	500	PASS

Channel	Frequency (MHz)	99% BW
149	5745	16.853
157	5785	16.743
165	5825	16.923
144	5720	16.759

99% BW

6.2.2. 802.11n HT20 MODE

6.2.2.1.	UNII-1	BAND
----------	--------	------

Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)
36	5180	20.61	17.686
40	5200	21.17	17.731
48	5240	20.92	17.771

Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)
52	5260	21.38	17.803
56	5300	20.92	17.739
64	5320	21.34	17.779

6.2.2.3. UNII-2C BAND

Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)
100	5500	21.07	17.734
116	5580	20.65	17.688
140	5700	21.14	17.689
144	5720	15.52	/

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

6.2.2.4. UNII-3 BAND

Channel	Frequency (MHz)	6 dB BW (MHz)	Limit (KHz)	Result
149	5745	17.55	500	PASS
157	5785	17.57	500	PASS
165	5825	16.92	500	PASS
144	5720	3.535	500	PASS

Channel	Frequency (MHz)	99% BW (MHz)
149	5745	17.895
157	5785	17.906
165	5825	17.850
144	5720	17.846

99% BW

6.2.3. 802.11n HT40 MODE 6.2.3.1 UNII-1 BAND

Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)	
38	5190	40.05	36.171	
46	5230	38.99	36.185	

6.2.3.2.	UNII-2A BAND		
Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)
54	5270	38.84	36.153
62	5310	39.62	36.160

0.2.3.3.	UNII-26 DAND		
Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)
102	5510	39.26	36.243
110	5550	39.36	36.115
134	5670	38.96	36.107
142	5710	34.68	/

CHANNEL 102 CHANNEL 110 02:43:16 PM Sep 18, 201 Radio Std: None enter Freq 5.510000000 GHz enter Freq 5.590000000 GHz 02:45:07 PM S Radio Std: None INSERUT ALIGN AUTO Center Freq: 5.510000000 GHz Trig: Free Run Avg|Hold: 10/10 #Atten: 30 dB Avg|Hold: 10/10 Center Freq: 5.59 Trig: Free Run #Atten: 30 dB GHz Avg|Hold: 10/10 --Radio Device: BTS Radio Device: BTS #FGain:Los #IFGain:Los Ref Offset 21.97 dB Ref 20.00 dBm Ref Offset 21.97 dB Ref 20.00 dBm Center 5.51 GHz #Res BW 390 kHz Span 80 MHz Sweep 1.067 ms Center 5.59 GHz #Res BW 390 kHz Span 80 MHz Sweep 1.067 ms #VBW 1.2 MHz #VBW 1.2 MHz Total Power 16.2 dBm Total Power 16.9 dBm Occupied Bandwidth **Occupied Bandwidth** 36.243 MHz 36.115 MHz 62.446 kHz 70.636 kHz Transmit Freq Error % of OBW Power 99.00 % Transmit Freq Error % of OBW Power 99.00 % x dB Bandwidth 39.26 MHz x dB -26.00 dB x dB Bandwidth 39.36 MHz x dB -26.00 dB STATUS STATUS **CHANNEL 134 CHANNEL 142** 02:47:47 PM Sep 16, 201 Radio Std: None NSE:INT ALTON ALTO Center Freq: 5.670000000 GHz Trig: Free Run Avg|Hold: 10/10 #Atten: 30 dB Center Freq 5.710000000 GHz #Avg Type: RMS Center Freq 5.670000000 GHz PNO: Fas -----Trig: Free Run #Atten: 30 dB THE HOW PPPP Radio Device: BTS kr3 39.76 MH -0.35 di Ref Offset 21.97 dB Ref 20.00 dBm Ref Offset 21.97 dE Ref 20.00 dBm 02 **3**∆1 Pulling Ann Span 80 MHz Sweep 1.067 ms enter 5.67 GHz Res BW 390 kHz enter 5.71000 GHz Res BW 390 kHz Span 80.00 MH Sweep 1.000 ms (1001 pts #VBW 1.2 MHz #VBW 1.2 MHz Occupied Bandwidth Total Power 16.9 dBm 5.690 32 GHz 5.707 92 GHz 39.76 MHz (Δ) 24.54 dBm 2.00 dBm -0.35 dB N I I I 36.107 MHz Transmit Freq Error 17.025 kHz % of OBW Power 99.00 % x dB Bandwidth 38.96 MHz x dB -26.00 dB

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

6.2.3.3. UNII-2C BAND

6.2.3.4. UNII-3 BAND

Channel	Frequency (MHz)	6 dB BW (MHz)	Limit (KHz)	Result
151	5755	35.65	500	PASS
159	5795	35.10	500	PASS
142	5710	3.21	500	PASS

Channel	Frequency (MHz)	99% BW(MHz)
151	5755	36.208
159	5795	36.191
142	5710	36.184

99% BW

6.2.4. 802.11ac VHT80 MODE 6.2.4.1. UNII-1 BAND

Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)	
42	5210	81.51	75.762	

6.2.4.2. UNII-2A BAND

Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)
58	5290	81.07	75.597

6.2.4.3. UNII-2C BAND

Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)
106	5530	82.47	75.730
122	5610	81.27	75.650
138	5690	74.20	/

Page 40 of 334

Channel	Frequency (MHz)	6 dB BW (MHz)	Limit (KHz)	Result
155	5775	73.90	500	PASS
138	5690	2.78	500	PASS

6 dB BW

Channel	Frequency (MHz)	99% BW (MHz)
155	5775	75.437
138	5690	75.704

99% BW

6.3. MAXIMUM CONDUCTED AVERAGE OUTPUT POWER

LIMITS

CFR 47 FCC Part15, Subpart E ISED RSS-247						
Test Item	Limit	Frequency Range (MHz)				
	For FCC client devices:250mW (24dBm)					
Conducted Output Power	For RSS:e.i.r.p. power: not exceed 200 mW(23dBm) or 10 + 10 log10 B, B is the 99% emission bandwidth in megahertz	5150-5250				
	250mW (24dBm) For RSS: conducted output power: not exceed 250 mW(24dBm) or 11 + 10 log10 B, B is the 99% emission bandwidth in megahertz	5250-5350				
	250mW (24dBm) For RSS: conducted output power: not exceed 250 mW(24dBm) or 11 + 10 log10 B, B is the 99% emission bandwidth in megahertz	For FCC:5470-5725 For IC:5470-5600 5650-5725				
	1 Watt (30dBm)	5725-5850				

Note: If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

TEST PROCEDURE

Refer to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Connect the EUT to the a broadband average RF power meter, the power meter shall have a video bandwidth that is greater than or equal to the bandwidth and shall utilize a fast-responding diode detector.

Straddle channel power is measured using PXA spectrum analyzer.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.9°C	Relative Humidity	54%
Atmosphere Pressure	101kPa	Test Voltage	AC120V_60Hz

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

RESULTS

6.3.1. UNII-1 BAND

Mode	Frequency (MHz)	Antenna	CONDUCTED POWER (dBm)	Limit (dBm)	EIRP (dBm)	EIRP Limit (dBm)	Result
	5180	А	13.59	24	16.89	22.2	PASS
а	5200	A	13.24	24	16.54	22.2	PASS
	5240	А	13.38	24	16.68	22.2	PASS
	5180	A	12.43	24	15.73	22.5	PASS
n HT20	5200	A	12.79	24	16.09	22.5	PASS
	5240	А	12.48	24	15.78	22.5	PASS
	5180	A	12.22	24	15.52	22.5	PASS
ac VHT20	5200	A	12.33	24	15.63	22.5	PASS
	5240	A	12.22	24	15.52	22.5	PASS
n HT40	5190	A	12.34	24	15.64	23	PASS
111140	5230	A	12.49	24	15.79	23	PASS
	5190	A	12.41	24	15.71	23	PASS
	5230	A	12.42	24	15.72	23	PASS
ac VHT80	5210	A	9.92	24	13.22	23	PASS

Note: 1. The test results have already included the duty cycle correction factor.

2. All the mode have been tested, but only the worst data recorded in the report.

6.3.2. UNII-2A BAND

Mode	Frequency (MHz)	Antenna	CONDUCTED POWER (dBm)	FCC Limit (dBm)	ISED Limit (dBm)	Result
	5260	А	13.53	24	23.2	PASS
а	5300	А	13.56	24	23.2	PASS
	5320	А	13.86	24	23.2	PASS
	5260	А	12.35	24	23.5	PASS
n HT20	5300	А	12.92	24	23.5	PASS
	5320	А	12.95	24	23.5	PASS
	5260	А	12.25	24	23.5	PASS
ac VHT20	5300	А	12.51	24	23.5	PASS
	5320	А	12.70	24	23.5	PASS
n UT40	5270	А	12.51	24	24	PASS
NH140	5310	А	13.01	24	24	PASS
	5270	A	12.45	24	24	PASS
ac vh140	5310	А	13.09	24	24	PASS
ac VHT80	5290	A	10.54	24	24	PASS

Note: 1. The test results have already included the duty cycle correction factor.

2. All the mode have been tested, but only the worst data recorded in the report.

6.3.3. UNII-2C BAND

Mode	Frequency (MHz)	Antenna	CONDUCTED POWER (dBm)	FCC Limit (dBm)	ISED Limit (dBm)	Result
	5500	А	12.54	24	23.2	PASS
а	5580	A	13.35	24	23.2	PASS
	5700	Α	13.41	24	23.2	PASS
	5500	A	11.77	24	23.5	PASS
n HT20	5580	Α	12.32	24	23.5	PASS
	5700	A	12.38	24	23.5	PASS
	5500	A	11.75	24	23.5	PASS
ac VHT20	5580	Α	12.26	24	23.5	PASS
	5700	A	12.30	24	23.5	PASS
	5510	А	11.71	24	24	PASS
n HT40	5550	A	12.26	24	24	PASS
	5670	A	12.42	24	24	PASS
	5510	А	11.64	24	24	PASS
ac VHT40	5550	A	12.37	24	24	PASS
	5670	A	12.39	24	24	PASS
	5530	A	9.89	24	24	PASS
ac VH180	5610	A	10.29	24	24	PASS

Note: 1. The test results have already included the duty cycle correction factor. About correction Factor please refer to section 6.1.

2. All the mode have been tested, but only the worst data recorded in the report.

6.3.4. UNII-3 BAND

Mode	Frequency (MHz)	Antenna	CONDUCTED POWER (dBm)	Limit (dBm)	Result
	5745	А	11.84	30	PASS
а	5785	А	11.35	30	PASS
	5825	А	11.13	30	PASS
	5745	А	11.40	30	PASS
n HT20	5785	А	10.86	30	PASS
	5825	А	10.33	30	PASS
	5745	А	11.03	30	PASS
ac VHT20	5785	А	10.45	30	PASS
	5825	А	10.32	30	PASS
n UT40	5755	А	11.82	30	PASS
NH140	5795	А	11.25	30	PASS
ac VHT40	5755	А	11.69	30	PASS
	5795	A	11.20	30	PASS
ac VHT80	5775	A	8.96	30	PASS

Note: 1. The test results have already included the duty cycle correction factor. About correction Factor please refer to section 6.1.

2. All the mode have been tested, but only the worst data recorded in the report.

6.3.5. STRADDLE CHANNEL

UNII-2C BAND

Mode	Frequency (MHz)	Maximum AVG Conducted Output Power (dBm)	Min 26dB BW(MHz)	FCC Limit (dBm)	ISED Limit (dBm)
а	5720	14.14	15.20	22.8	22.26
n HT20	5720	11.54	15.52	22.9	22.4
ac VHT20	5720	10.67	15.52	22.9	22.4
n HT40	5710	12.11	34.68	24.0	24.0
ac VHT40	5710	12.06	34.52	24.0	24.0
ac VHT80	5690	10.17	74.20	24.0	24.0

Note: 1. The test results have already included the duty cycle correction factor. About correction Factor please refer to section 6.1.

2. For test plots, it not included the duty cycle correction factor.

3. All the mode have been tested, but only the worst data recorded in the report.

802.11a				802.11n HT20			
Receipts Spectrum Analy RL 385 Center Freq 5.7	tyzer-Channel Power 50 0 DC 717400000 GHz NFE #FGain:Low	SENSE JIRI 41109 4070 Center Freq: 5,77400000 GHz Trig: Free Run Avg Hold: 44/300 #Atten: 40 dB Avg Avg	03:48:23 PM Sep 18, 2019 Radio Std: None Radio Device: BTS	Keynylf Sjectnem Avalyse - Charnel Power School birth ALLON AUTO 0 R.L 69 300 DC Center Freq: 5.717240000 GHz Radii NFE MFE directory Center Freq: 5.717240000 GHz Radii MFE directory Center Freq: 5.717240000 GHz Radii MFE directory Tig: Free Run Avgirloid: 45000 Radii	03:53:51 PM Sep 18, 2019 Std: None Device: BTS		
Ref 10 dB/div Ref 200 200 100 	00fset 22.76 dB 7 30.00 dBm			Ref Offset 22.8 dB 10 dB/dv Ref 30.00 dBm Log			
eno eou Center 5.717 GH #Res BW 1 MHz	HZ	#VBW 3 MHz	Span 30.4 MHz Sweep 1 ms	Center 5.717 GHz #Res BW 1 MHz #VBW 3 MHz	Span 31.04 MHz Sweep 1 ms		
Channel Po 13.83	ower 3 dBm / 15.2 MHz	Power Spectral Density -57.99 dBm /Hz		Channel Power Power Spectral Density 11.21 dBm / 15.52 MHz -60.69 dBm /Hz			
MEQ		37ATUS		esg atAnu			

8	02.11ac VHT20	802.11n HT40				
Revision Spectrum Analyzer Channel Power RL RF 50 G DC Center Freq 5.717240000 GHz NFE #FGainLow	SERSE:INTI ALIGN AUTO Center Freq: 5.717240000 GHz Trig: Free Run Avg Hold: 45/300 #Atten: 40 dB	03:58:31 PM Sep 18, 2019 Radio Std: None Radio Device: BTS	Keysupit Spectrum Analyzer Channel Power ØR RL RF S0 00 DC Center Freq 5.707660000 GHz NFE WFGain1.0	SENSE:INT AL Center Freq: 5.707660000 Trig: Free Run W #Atten: 40 dB	etgn Auto 0 GHz Avg Hold: 45/300	04:06:06 PM Sep 18, 2019 Radio Std: None Radio Device: BTS
Ref Offset 21.97 dB			Ref Offset 21.97 dB			
99 000 000 000 000 000 000						
en contraction con	#VBW 3 MHz	Span 31.04 MHz Sweep 1 ms	400 400 200 Center 5.708 GHz #Res BW 1 MHz	#VBW 3 MHz		Span 69.36 MH: Sweep 1 ms
10.53 dBm / 15.52 мнz	-61.38 dBm /нz		11.84 dBm / 34.68 мнz	-63.56 (dBm /Hz	
a	STATUS		MSG		STATUS	
8	02.11ac VHT40		8	02.11ac VH	status T80	
80 10 September Manuel Finne 14 September 2000 CHz 14 Fight September 2000 CHz MF MFCalmLow		Despetitive Despetitive Radio Std: Nome Radio Device BTS	Kingget Spotum Anlyze: Chand Pear Kingget Spotum Anlyze: Chan	02.111ac VH	STATUS T80 0 GHz AvgiHoid: 45/300	04-22-33PM Sep 18, 2014 Radio Std: None Radio Device: BTS
86 Noreal Sector Relative Cheese Fase RL Ver 1972 2000 GHz ME REGISTION REGISTION REGISTION Oddidiv Ref 0.000 Bm	Schutz Freg. 5 707/4000 GHt Trig: Freg. 5 707/4000 GHt Trig: Freg. 8 707/4000 GHt Trig: Freg. 8 707/4000 GHt SAtten: 40 GB	Derige 41 PF see 18, 2017 Radio Std: None Radio Device: BTS	Model Received Section Analysis Channel Rever Received Rever Receiv	CO2.11ac VHT Conter Free 8 8870000 	TRADA TRAD COME O GHz Avg Hoid: 45/300	Re2233MS4628,2015 Radio Std: Nore Radio Device: BTS
86 Ref Offset 2197 dB 93 94 94 94 94 95 95 95 95 95 95 95 95 95 95		03994499549918,2032 Radio Std: None Radio Device: BTS	Biggett Spectrum Analyses - Channel Prever Ref 2019 - 2019 - 2019 Ref 2019 - 2019 - 2019 Ref 2019 Ref 2019 - 2019 Ref 2019 Ref 2019 - 2019 Ref 2019	202.111ac VHT	100 AUTO 0 0 Hz Avg Hoid: 45/300 -	0422339454918,2019 Radio Std: None Radio Device: BTS
86 86 87 88 88 88 88 88 88 88 88 88	BYBW 3 MHz	Radio Std: None Radio Std: None Radio Device: BTS	Ref Offset 21 97 dB Ref Offse	Conter Free 6.6.8700000	stans	er 22 3787 Sep 18, 2015 Radio Std: None Radio Device: BTS
BE BE BE BE BE BE BE BE BE BE	BYDEW 3 MHz Power Spectral Density -63.60 dBm /Hz	Span 69.04 MHz Sweep 1 ms	Ref Office 21 Sea OC Ref office 21 Sea OC Ref Office 21 Sea OC Ref Office 21 Sea O dB/div Ref 30.00 dBm Log Center 5,688 GHz Res BW 1 MHz Channel Power 9,63 dBm / 74.2 MHz	202.111ac VHT	I Density dBm /Hz	642233PH Sep18, 2015 Radio Std: None Radio Device: BTS Span 148.4 MHz Sweep 1 ms

UNII-3 BAND

Mode	Frequency (MHz)	Maximum AVG Conducted Output Power (dBm)	Min 26dB BW(MHz)	Limit (dBm)
а	5720	6.98	5.28	30
n HT20	5720	5.00	5.68	30
ac VHT20	5720	4.23	5.72	30
n HT40	5710	0.73	5.08	30
ac VHT40	5710	0.71	4.92	30
ac VHT80	5690	-4.70	4.52	30

Note: 1. The test results have already included the duty cycle correction factor. About correction Factor please refer to section 6.1.

- 2. For test plots, it not included the duty cycle correction factor.
- 3. All the mode have been tested, but only the worst data recorded in the report.

802.11ac VHT20				802.11n HT40						
Keysent Spectrum Analyzer - Channel Power RL 8F 50 II DC enter Freq 5.727860000 GHz NFE	SER Galn:Low	SE:INT Center Freq: 5.72786000 Trig: Free Run #Atten: 40 dB	IGN AUTO 0 GHz Avg Hold: 44/300	03:59:41 PM Sep 18, 2019 Radio Std: None Radio Device: BTS	La käysight Spectr La Ri Center Fre	Min Analyzer - Channel Power RF 50 P DC Q 5.727540000 G NFE	Hz #IFGain:Low	SENSE INT Center Freq: 5.7275 Trig: Free Run #Atten: 40 dB	ALIGN AUTO 40000 GHz Avg Hold: 45/300	04:07:15PM Sep 18, 2019 Radio Std: None Radio Device: BTS
Ref Offset 21.97 dB					10 dB/dly	Ref Offset 21.97 dB	š).			
					Log 20.0	Ner boloo uBiii				
00					19.0					
0.0					-10.0				-	
0.0 			Salar Salar Salar		-20 0 -an o					
9.0. R0					-40,0					
0.0	_				-60.0					
enter 5.728 GHz Res BW 1 MHz		#VBW 3 MHz		Span 11.44 MHz Sweep 1 ms	Center 5.72 #Res BW 1	28 GHz MHz	1	#VBW 3 M	Hz	Span 10.16 MHz Sweep 1 ms
Channel Power		Power Spectra	I Density		Channe	el Power		Power Spec	tral Density	
4 09 dBm / 5 72 h		63 48	Bm /uz			146 dBm /	5 09 MU-	-66 6	0 dBm /us	
G	802.	11ac VH	T40	04-10-1201 Ser 18-2013 04-10-1204 Ser 18-2013	MSG	sum Analyze - Channel Power	80	2.11ac V		10714758 San 19 7015
enter Freq 5.727460000 GHz		Center Freq: 5.7274600 Trig: Free Run	00 GHz Avg Hold: 45/300	Radio Std: None	Center Fre	q 5.727260000 G	Hz	Center Freq: 5.7272 Trig: Free Run	60000 GHz Avg Hold: 45/300	Radio Std: None
Ref Offset 21.97 dB	FGain:Low	#Atten: 40 dB		Radio Device: BTS		Ref Offset 21.97 dB	#FGain:Low	#Atten: 40 dB		Radio Device: B15
og Ref 30.00 dBm				1 1	10 dB/div Log	Ref 30.00 dBm				
0.0					10 ά					
ta)					10.00					
a 0			manuf		-20.0.					
0.0					-46 0.					
an					-50,0 E0.0					
enter 5.727 GHz				Span 9.84 MHz	Center 5.7	27 GHz		#\/P\W_2 N		Span 9.04 MHz
Res BW 1 MHz		#VBW 3 MH	and the second	Sweep 1 ms	#Res BW			#4044 314		Sweep This
Channel Power		Power Spectr	al Density		Channe	el Power		Power Spec	tral Density	
0.43 dBm / 4.92 i	ИНz	-66.49	dBm /Hz			5.24 dBm //	4.52 MHz	-71.7	9 dBm /Hz	
					teol -					
			STATUS		MSG				STATUS	

6.4. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15, Subpart E ISED RSS-247					
Test Item	Limit	Frequency Range (MHz)			
	For FCC: Other than Mobile and portable:17dBm/MHz Mobile and portable:11dBm/MHz	5150-5250			
	For RSS: e.i.r.p. 10dBm/MHz				
Power Spectral Density	11dBm/MHz	5250-5350			
Density	11dBm/MHz	For FCC:5470-5725 For IC:5470-5600 5650-5725			
	30dBm/500kHz	5725-5850			

Note: If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

For U-NII-1, U-NII-2A and U-NII-2C band:

Center Frequency	The center frequency of the channel under test		
Detector	RMS		
RBW	1MHz		
VBW	≥3 × RBW		
Span	Encompass the entire emissions bandwidth (EBW) of the signal		
Trace	Trace average		
Sweep time	Auto		
For U-NII-3:			
Center Frequency	The center frequency of the channel under test		
Detector	RMS		
RBW	500kHz		
VBW	≥3 × RBW		
Span	Encompass the entire emissions bandwidth (EBW) of the signal		
Trace	Trace average		
Sweep time	Auto		

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.9°C	Relative Humidity	54%
Atmosphere Pressure	101kPa	Test Voltage	AC120V_60Hz

RESULTS

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6.4.1. UNII-1 BAND

Mode	Frequency (MHz)	Chain	Conducted PSD (dBm)	Limit (dBm)	EIRP (dBm)	EIRP Limit (dBm)	
	5180	А	5.741	11	9.041	10	
а	5200	А	5.607	11	8.907	10	
	5240	А	5.248	11	8.548	10	
	5180	А	4.030	11	7.330	10	
n HT20	5200	А	4.079	11	7.379	10	
	5240	А	4.373	11	7.673	10	
	5190	А	1.342	11	4.642	10	
11 11 40	5230	А	1.607	11	4.907	10	
ac VHT80	5210	А	-4.222	11	-0.922	10	
Note: 1.PSD= TEST PLOT Value + 10 log (1/x), where x is the duty cycle. 2.About correction Factor please refer to section 6.1.							

TEST PLOT

<u>802.11a</u>

802.11ac VHT80

6.4.1. UNII-2A BAND

Mode	Frequency (MHz)	Chain	Conducted PSD (dBm)	Limit (dBm)		
	5260	А	5.632	11		
а	5300	А	5.208	11		
	5320	А	5.281	11		
	5260	А	3.577	11		
n HT20	5300	А	4.153	11		
	5320	А	5.073	11		
n UT40	5270	А	1.461	11		
n H140	5310	А	1.892	11		
ac VHT80	5290	А	-4.124	11		
Note: 1.PSD= TEST PLOT Value + 10 log (1/x), where x is the duty cycle. 2.About correction Factor please refer to section 6.1						

TEST PLOT

<u>802.11a</u>

802.11ac VHT80

6.4.2. UNII-2C BAND

Mode	Frequency (MHz)	Chain	Conducted PSD (dBm)	Limit (dBm)			
	5500	А	3.909	11			
2	5580	А	3.972	11			
a	5700	А	4.256	11			
	5720	А	3.879	11			
	5500	А	4.312	11			
n HT20	5580	А	3.908	11			
111120	5700	А	4.622	11			
	5720	А	1.418	11			
	5510	А	0.344	11			
	5550	А	0.925	11			
11 11 140	5670	А	1.646	11			
	5710	А	-2.404	11			
	5530	А	-4.681	11			
ac VHT80	5610	А	-4.045	11			
	5690	А	-6.471	11			
Note: 1.PSD 2.Abo	Note: 1.PSD= TEST PLOT Value + 10 log (1/x), where x is the duty cycle. 2.About correction Factor please refer to section 6.1						

TEST PLOT

<u>802.11a</u>

802.11ac VHT80

6.4.3. UNII-3 BAND

Mode	Frequency (MHz)	Chain	Conducted PSD (dBm)	Limit (dBm)
	5745	А	1.837	30
	5785	А	1.124	30
а	5825	А	1.307	30
	5720	А	1.156	30
	5745	А	-0.204	30
	5785	А	-0.660	30
n HIZU	5825	А	-0.282	30
	5720	А	-1.698	30
	5755	А	-2.085	30
n HT40	5795	А	-2.403	30
	5710	А	-5.247	30
	5775	А	-8.442	30
ac VH180	5690	А	-10.527	30
Note: 1.PSE 2.Abo	= TEST PLOT V out correction Fac	/alue + 10 ctor pleas	log (1/x), where e refer to section	e x is the duty cycle. 6.1

TEST PLOT

<u>802.11a</u>

802.11ac VHT80

7. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205, §15.209 and §15.407(b) (4)

Please refer to ISED RSS-GEN Clause 8.9

Radiation Disturbance Test Limit for FCC (Class B)(9kHz-1GHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30MHz.

IC Restricted bands please refer to ISED RSS-GEN Clause 8.10. FCC Restricted bands please refer to CFR 47 FCC 15.209.

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

LIMITS OF RADIATED EMISSION MEASUREMENT (Below 1GHz)				
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit		
		(dBuV/m) at 3 m		
		Quas	i-Peak	
30 - 88	100	40		
88 - 216	150	43.5		
216 - 960	200	46		
Above 960	500	54		
Above 1000	500	Peak	Average	
		74	54	

Limits of unwanted emission out of the restricted bands

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1GHz)			
Frequency Range		Field Strength Limit	
(MHZ) 30 - 88	EIRP Limit	(dBuV/m) at 3 m	
5150~5250 MHz			
5250~5350 MHz	PK:-27 (dBm/MHz)	PK:68.2(dBµV/m)	
5470~5725 MHz			
5725~5850 MHz	PK:-27 (dBm/MHz) *1	PK: 68.2(dBµV/m) *1	
	PK:10 (dBm/MHz) *2	PK:105.2 (dBµV/m) *2	
	PK:15.6 (dBm/MHz) *3	PK: 110.8(dBµV/m) *3	
	PK:27 (dBm/MHz) *4	PK:122.2 (dBµV/m) *4	

Note:

*1 beyond 75 MHz or more above of the band edge.

*2 below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

*3 below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

*4 from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
TEST SETUP AND PROCEDURE

Below 30MHz

The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 0.8 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of 1 meter height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

6. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Below 1GHz

The setting of the spectrum analyser

RBW	120kHz
VBW	300kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 0.8 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Above 1GHz

The setting of the spectrum analyser

RBW	1MHz
VBW	PEAK: 3MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector. For the Duty Cycle please refer to clause 6.1.ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions have been tested, but only the worst case (X axis) data recorded in the report.

Note 2: The EUT does not support simultaneous transmission.

Note 3: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

TEST ENVIRONMENT

Temperature	24.2°C	Relative Humidity	47%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V_60Hz

7.1. 802.11a MODE

7.1.1. UNII-1 BAND RESTRICTED BANDEDGE LOW CHANNEL

HORIZONTAL RESULTS

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	25.03	40.46	65.49	74.00	-8.51	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	9.22	40.46	49.68	54.00	-4.32	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. AVG: VBW=1/Ton where: ton is transmit duration.

3. For duty cycle, please refer to clause 6.1.

VERTICAL RESULTS

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	22.54	40.46	63.00	74.00	-11.00	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	6.81	40.46	47.27	54.00	-6.73	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. AVG: VBW=1/Ton where: ton is transmit duration.

3. For duty cycle, please refer to clause 6.1.

HARMONICS AND SPURIOUS EMISSIONS LOW CHANNEL

HORIZONTAL RESULTS <u>1-7GHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1138.000	52.67	-14.07	38.60	74.00	-35.40	peak
2	2122.000	51.79	-10.11	41.68	74.00	-32.32	peak
3	2656.000	50.67	-8.21	42.46	74.00	-31.54	peak
4	4264.000	45.84	-3.11	42.73	74.00	-31.27	peak
5	5182.000	50.85	0.77	51.62	74.00	-22.38	peak
6	6970.000	42.02	6.39	48.41	74.00	-25.59	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

6. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 72), so all the test point were deemed to comply with the limits list in the standard.

HORIZONTAL RESULTS <u>7-18GHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7429.000	41.69	8.28	49.97	74.00	-24.03	peak
2	8507.000	41.82	9.24	51.06	74.00	-22.94	peak
3	11037.000	37.57	13.66	51.23	74.00	-22.77	peak
4	13545.000	35.75	16.33	52.08	74.00	-21.92	peak
5	15239.000	35.54	16.02	51.56	74.00	-22.44	peak
6	17912.000	29.55	23.40	52.95	74.00	-21.05	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

VERTICAL RESULTS <u>1-7GHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1594.000	53.53	-12.27	41.26	74.00	-32.74	peak
2	2650.000	49.08	-8.26	40.82	74.00	-33.18	peak
3	3190.000	48.62	-5.94	42.68	74.00	-31.32	peak
4	4258.000	48.86	-3.08	45.78	74.00	-28.22	peak
5	5182.000	49.10	0.77	49.87	74.00	-24.13	peak
6	6400.000	45.22	4.54	49.76	74.00	-24.24	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

6. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 72), so all the test point were deemed to comply with the limits list in the standard.

<u>7-18GHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7451.000	42.20	8.20	50.40	74.00	-23.60	peak
2	8529.000	43.88	9.18	53.06	74.00	-20.94	peak
3	10619.000	38.48	13.27	51.75	74.00	-22.25	peak
4	14381.000	35.90	16.97	52.87	74.00	-21.13	peak
5	16900.000	32.14	20.50	52.64	74.00	-21.36	peak
6	17967.000	29.83	23.45	53.28	74.00	-20.72	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS MID CHANNEL

HORIZONTAL RESULTS <u>1-7GHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1138.000	53.58	-14.07	39.51	74.00	-34.49	peak
2	2506.000	48.53	-8.18	40.35	74.00	-33.65	peak
3	3196.000	46.85	-5.96	40.89	74.00	-33.11	peak
4	4246.000	45.25	-3.03	42.22	74.00	-31.78	peak
5	5200.000	46.66	0.91	47.57	74.00	-26.43	peak
6	6904.000	40.89	6.30	47.19	74.00	-26.81	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

6. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 72), so all the test point were deemed to comply with the limits list in the standard.

87.0 dBu∀/m 77 67 57 Mark Mark 47 37 27 17 7.0 18000.00 MHz 7000.000 8100.00 9200.00 10300.00 11400.00 12500.00 13600.00 14700.00 15800.00

HORIZONTAL RESULTS <u>7-18GHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7814.000	39.98	9.58	49.56	74.00	-24.44	peak
2	9387.000	38.71	10.89	49.60	74.00	-24.40	peak
3	11818.000	36.56	14.41	50.97	74.00	-23.03	peak
4	14447.000	35.27	16.93	52.20	74.00	-21.80	peak
5	16900.000	30.82	20.50	51.32	74.00	-22.68	peak
6	17923.000	29.05	23.40	52.45	74.00	-21.55	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

VERTICAL RESULTS <u>1-7GHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1330.000	50.14	-13.18	36.96	74.00	-37.04	peak
2	2122.000	49.19	-10.11	39.08	74.00	-34.92	peak
3	2662.000	51.92	-8.18	43.74	74.00	-30.26	peak
4	3196.000	47.65	-5.96	41.69	74.00	-32.31	peak
5	5200.000	48.91	0.91	49.82	74.00	-24.18	peak
6	6964.000	41.83	6.38	48.21	74.00	-25.79	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

<u>7-18GHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8518.000	41.55	9.21	50.76	74.00	-23.24	peak
2	10597.000	37.39	13.38	50.77	74.00	-23.23	peak
3	12676.000	36.15	14.77	50.92	74.00	-23.08	peak
4	13963.000	35.65	16.75	52.40	74.00	-21.60	peak
5	16834.000	31.97	20.52	52.49	74.00	-21.51	peak
6	17824.000	29.10	23.45	52.55	74.00	-21.45	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS HIGH CHANNEL

HORIZONTAL RESULTS <u>1-7GHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1060.000	51.57	-14.51	37.06	74.00	-36.94	peak
2	2122.000	50.28	-10.11	40.17	74.00	-33.83	peak
3	2656.000	52.17	-8.21	43.96	74.00	-30.04	peak
4	4252.000	47.57	-3.05	44.52	74.00	-29.48	peak
5	4906.000	53.38	-0.77	52.61	74.00	-21.39	peak
6	6982.000	41.87	6.40	48.27	74.00	-25.73	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

6. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 72), so all the test point were deemed to comply with the limits list in the standard.

87.0 dBu∀/m 77 67 57 47 37 27 17 7.0 7000.000 8100.00 9200.00 10300.00 11400.00 12500.00 13600.00 14700.00 15800.00 18000.00 MHz

HORIZONTAL RESULTS
<u>7-18GHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7803.000	39.46	9.63	49.09	74.00	-24.91	peak
2	10509.000	37.62	12.39	50.01	74.00	-23.99	peak
3	11521.000	37.02	14.48	51.50	74.00	-22.50	peak
4	14436.000	35.52	16.95	52.47	74.00	-21.53	peak
5	16460.000	32.00	19.65	51.65	74.00	-22.35	peak
6	17802.000	29.64	23.45	53.09	74.00	-20.91	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

VERTICAL RESULTS

<u>1-7GHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1138.000	49.47	-14.07	35.40	74.00	-38.60	peak
2	2506.000	49.06	-8.18	40.88	74.00	-33.12	peak
3	3196.000	46.59	-5.96	40.63	74.00	-33.37	peak
4	5236.000	43.43	0.95	44.38	74.00	-29.62	peak
5	5890.000	40.62	4.68	45.30	74.00	-28.70	peak
6	6970.000	40.79	6.39	47.18	74.00	-26.82	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

<u>7-18GHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7451.000	42.22	8.20	50.42	74.00	-23.58	peak
2	8518.000	44.12	9.21	53.33	74.00	-20.67	peak
3	11378.000	37.42	13.69	51.11	74.00	-22.89	peak
4	14381.000	34.50	16.97	51.47	74.00	-22.53	peak
5	16845.000	31.87	20.52	52.39	74.00	-21.61	peak
6	17703.000	30.38	22.62	53.00	74.00	-21.00	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

7.1.2. UNII-2A BAND

RESTRICTED BANDEDGE HIGH CHANNEL

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	20.14	40.64	60.78	74.00	-13.22	peak
2	5352.160	21.98	40.63	62.61	74.00	-11.39	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	6.54	40.64	47.18	54.00	-6.82	AVG
2	5352.160	6.04	40.63	46.67	54.00	-7.33	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. AVG: VBW=1/Ton where: ton is transmit duration.

3. For duty cycle, please refer to clause 6.1.

VERTICAL RESULTS PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	18.53	40.64	59.17	74.00	-14.83	peak
2	5352.000	20.81	40.63	61.44	74.00	-12.56	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	5.38	40.64	46.02	54.00	-7.98	AVG
2	5352.000	5.10	40.63	45.73	54.00	-8.27	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. AVG: VBW=1/Ton where: ton is transmit duration.

3. For duty cycle, please refer to clause 6.1.

HARMONICS AND SPURIOUS EMISSIONS LOW CHANNEL

HORIZONTAL RESULTS <u>1-7GHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1060.000	51.27	-14.51	36.76	74.00	-37.24	peak
2	2662.000	48.67	-8.18	40.49	74.00	-33.51	peak
3	4258.000	48.99	-3.08	45.91	74.00	-28.09	peak
4	5266.000	43.78	0.98	44.76	74.00	-29.24	peak
5	5896.000	40.74	4.79	45.53	74.00	-28.47	peak
6	6538.000	42.35	5.75	48.10	74.00	-25.90	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

6. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 72), so all the test point were deemed to comply with the limits list in the standard.

HORIZONTAL RESULTS 7-18GHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7814.000	39.10	9.58	48.68	74.00	-25.32	peak
2	10267.000	37.22	11.90	49.12	74.00	-24.88	peak
3	11499.000	37.00	14.43	51.43	74.00	-22.57	peak
4	13952.000	34.92	16.74	51.66	74.00	-22.34	peak
5	16460.000	31.66	19.65	51.31	74.00	-22.69	peak
6	17714.000	30.07	22.71	52.78	74.00	-21.22	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

VERTICAL RESULTS <u>1-7GHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1324.000	48.84	-13.17	35.67	74.00	-38.33	peak
2	2506.000	48.09	-8.18	39.91	74.00	-34.09	peak
3	3196.000	46.91	-5.96	40.95	74.00	-33.05	peak
4	4834.000	42.04	-0.91	41.13	74.00	-32.87	peak
5	5896.000	40.51	4.79	45.30	74.00	-28.70	peak
6	6886.000	41.19	6.19	47.38	74.00	-26.62	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

<u>7-18GHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8507.000	43.46	9.24	52.70	74.00	-21.30	peak
2	9574.000	39.62	10.64	50.26	74.00	-23.74	peak
3	11851.000	36.79	14.46	51.25	74.00	-22.75	peak
4	13787.000	34.40	17.43	51.83	74.00	-22.17	peak
5	14777.000	34.73	16.17	50.90	74.00	-23.10	peak
6	17824.000	29.18	23.45	52.63	74.00	-21.37	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS MID CHANNEL

HORIZONTAL RESULTS <u>1-7GHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1060.000	51.53	-14.51	37.02	74.00	-36.98	peak
2	2128.000	49.46	-10.09	39.37	74.00	-34.63	peak
3	3190.000	45.38	-5.94	39.44	74.00	-34.56	peak
4	4252.000	47.90	-3.05	44.85	74.00	-29.15	peak
5	5284.000	46.93	1.00	47.93	74.00	-26.07	peak
6	6748.000	41.63	5.61	47.24	74.00	-26.76	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

6. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 72), so all the test point were deemed to comply with the limits list in the standard.