

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190201201

FCC REPORT

Applicant: Libre Wireless Technologies, Inc.

Address of Applicant: 5405 Alton Parkway, Suite A-563, Irvine, CA 92604, USA

Equipment Under Test (EUT)

Product Name: Wireless Audio Module

Model No.: LS6-N22S

Trade mark: Libre

FCC ID: 2ADBM-LS6-N22S

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 21 Feb., 2019

Date of Test: 21 Feb., to 26 Feb., 2019

Date of report issued: 27 Feb., 2019

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	27 Feb., 2019	This report was amended on FCC ID: 2ADBM-LS6-N22S follow FCC Class II Permissive Change. The differences between them as below: Applicant Address Manufacturer . Module changed from restrictive to unrestricted, retesting the radiated portion

Tested by:

Test Engineer

Date: 27 Feb., 2019

Reviewed by: Date: 27 Feb., 2019

Project Engineer

3 Contents

			Page
1	CO	/ER PAGE	1
2	VER	SION	2
3	CON	NTENTS	3
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	7
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	12
	6.6	BAND EDGE	
	6.6.	1 Conducted Emission Method	13
	6.6.2		
	6.7	Spurious Emission	
	6.7.		
	6.7.2	2 Radiated Emission Method	40
7	TES	T SETUP PHOTO	50
8	FUT	CONSTRUCTIONAL DETAILS	52

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (c)	Pass*
AC Power Line Conducted Emission	15.207	Pass*
Conducted Peak Output Power	15.247 (b)(3)	Pass*
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass*
Power Spectral Density	15.247 (e)	Pass*
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Pass*: refer to the FCC ID: 2ADBM-LS6-N22S

N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	Libre Wireless Technologies, Inc.
Address:	5405 Alton Parkway, Suite A-563, Irvine, CA 92604, USA
Manufacturer:	RF-Link Technology Investments Co. Ltd.
Address:	6 th Floor, Building 56A, Baotian 3 rd Road, Xixiang Sub-District, Bao'An District, Shenzhen City, PRC

5.2 General Description of E.U.T.

Product Name:	Wireless Audio Module
Model No.:	LS6-N22S
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 72.2Mbps
MIMO Support:	2T2R
Antenna Type:	PCB Antenna
Antenna gain:	1.5dBi
Power supply:	DC 3.3V
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Fr	Operation Frequency each of channel for 802.11b/g/n(H20)						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

^{1.} For 802.11n-HT40 mode, the channel number is from 3 to 9;

^{2.} Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.		
Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

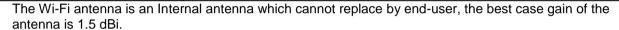
Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019
Cable	HP	10503A	N/A	03-07-2018	03-06-2019
EMI Test Software	AUDIX	E3	\	Version: 6.110919	b

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 1	5.207	
Test Method:	ANSI C63.10: 2013	<u></u>	
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
•		I I_	
Receiver setup:	RBW=9 kHz, VBW=30 kl		JD. J ()
Limit:	Frequency range (MHz)	Limit (c Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logar	arithm of the frequency.	
Test procedure	line impedance stab 50ohm/50uH couplir 2. The peripheral device through a LISN that with 50ohm terminal setup and photograph 3. Both sides of A.C. ling interference. In order positions of equipments	lators are connected to the illization network (L.I.S.N.) and impedance for the meaners are also connected to provides a 500hm/50uH ction. (Please refer to the blobs). The are checked for maximumer to find the maximum emit and all of the interface to ANSI C63.4: 2014 on contraction of the interface to ANSI C63.4: 2014 on contraction in the contraction of the interface to ANSI C63.4: 2014 on contraction of the interface to ANSI C63.4: 2014 on contraction of the interface to ANSI C63.4: 2014 on contraction of the interface to ANSI C63.4: 2014 on contraction of the interface to ANSI C63.4: 2014 on contraction of the interface to the interface to ANSI C63.4: 2014 on contraction of the interface to	which provides a suring equipment. the main power oupling impedance lock diagram of the test um conducted ission, the relative cables must be
	THOUGHT OTHER		
Test setup:	AUX Equipment Test table/Insulat Remark E.U.T. Equipment Under T LISN: Line Impedence Sta Test table height=0.8m	ion plane Test bilization Network	Iter — AC power
Test setup: Test Instruments:	AUX Equipment Test table/Insulat Remarkc E.U.T: Equipment Under T LISN: Line Impedence Sta	40cm 80cm Fi E.U.T EMI Receiver	_
	AUX Equipment Test table/Insulat Remark E.U.T. Equipment Under T LISN: Line Impedence Sta Test table height=0.8m	E.U.T ion plane Est bilization Network etails	_

6.3 Conducted Output Power

Test Requirement: Test Method:	FCC Part 15 C Section 15.247 (b)(3) ANSI C63.10:2013 and KDB 558074
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Please refer to the FCC ID: 2ADBM-LS6-N22S

6.4 Occupy Bandwidth

1 7	
Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Please refer to the FCC ID: 2ADBM-LS6-N22S

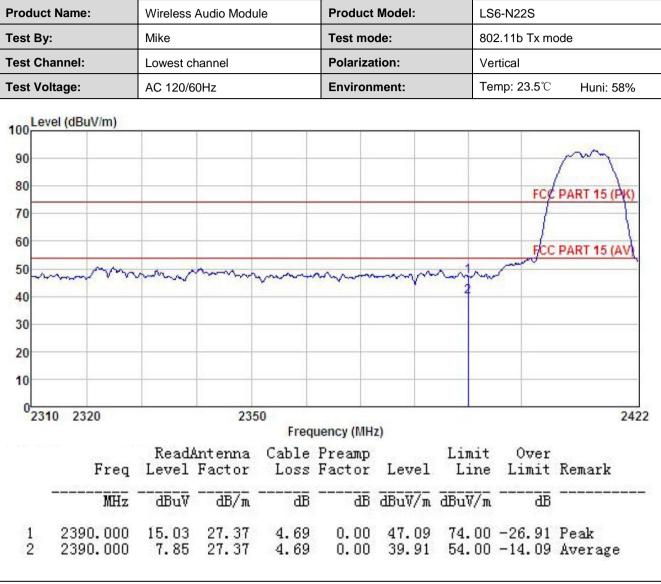
6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Please refer to the FCC ID: 2ADBM-LS6-N22S

6.6 Band Edge

6.6.1 Conducted Emission Method

0.0.1 Odnadeted Emission							
Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB 558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.8 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Please refer to the FCC ID: 2ADBM-LS6-N22S						


6.6.2 Radiated Emission Method

<u>0.0.Z</u>	Naulateu Lillission W	etiiou						
	Test Requirement:	FCC Part 15 C	Section '	15.20	9 and 15.205			
	Test Method:	ANSI C63.10:	2013 and	KDE	3 558074			
	Test Frequency Range:	2.3GHz to 2.50	GHz					
	Test Distance:	3m						
	Receiver setup:	Frequency Detector RBW VBW Remark						
	•	Above 1GHz	Pea		1MHz		MHz	Peak Value
			RMS		1MHz		MHz	Average Value
	Limit:	Frequen	су	Lin	nit (dBuV/m @	3m)	۸.	Remark
		Above 10	SHz		54.00 74.00			verage Value Peak Value
	Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horiz make the 4. For each case and meters ar to find the 5. The test-r Specified 6. If the emis the limit s of the EU have 10d	d at a 3 m ine the po was set 3 which was an a height d to determine the and the rotal maximum eceiver sy Bandwidt ssion leve pecified, t T would b B margin v	eter of sition meters mount is varianten atable in readystem then to be repwould	camber. The to of the highest ers away from to unted on the to aried from one the maximum cal polarization assion, the EUT na was turned from the was turned from the example of the EUT in peak esting could be orted. Otherwise	able value interpretation and the interpretat	vas rotation. erference variable to four i of the file he anter arranged ghts from degrees etect Fur de was 10 ped and emissic one us	meters above eld strength. Inna are set to deto its worst in 1 meter to 4 is to 360 degrees inction and lithe peak values ons that did not ing peak, quasi-
	Test setup:		(Turntab	× W	Ho 3m Ground Reference Plane t Receiver	rn Antenna	Antenna Tow	wer
	Test Instruments:	Refer to section	n 5.8 for o	details	s			
	Test mode:	Refer to section	n 5.3 for o	details	S			
	Test results:	Passed						

TX0

802.11b mode:

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:		Wireless Audio Module			Product M	lodel:	LS6-	LS6-N22S		
est By:		Mike Lowest channel			Test mode) :	802.1	802.11b Tx mode		
est Cha	annel:				Polarization:			Horizontal		
est Vol	Itage:	AC 120/60)Hz	Environment:			Temp	Temp: 23.5℃ Huni: 58%		
Lo	vel (dBuV/m)									
100	ver (ubuv/iii)								m	
90										
80										
70								FCC	PART 15 (PK)	
AVIOLA I										
60								~~ FCC	PART 15 (AV)	
					-					
50	mann	mann	more	mounty.	and land from	and the second	hammen			
50 40	mmym	~~~~^	man	hyprody	are Transm		my			
40	mmmmm	~~~~^	m	hym	ar Sugar		angur .			
30	months.	············		Value of the same	and the same		my		-	
40 30 20				Andrew	and the same		harry and the			
30	man and	······································		Vargaret, and a second	and resonance		turgur.			
40 30 20 10	10 2320	······································	235		and transfer		turgur.		242	
40 30 20 10	10 2320		235		uency (MH:	z)	the grant		2422	
40 30 20 10		ReadA Level	ntenna	Freq Cable	Preamp		Limit	Over Limit		
40 30 20 10		ReadA Level	ntenna Factor	Freq Cable	Preamp Factor		Line	Limit	Remark	
40 30 20 10	Freq	Level	ntenna Factor ——dB/m	Freq Cable Loss	Preamp Factor dB	Level	Line dBuV/m	Limit ———————————————————————————————————	Remark	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mike Test mode:			Produ	ct Model:	LS6	LS6-N22S			
Test By:				Test n	node:	802.	802.11b Tx mode			
Test Channel:				Vert	Vertical					
Test Voltage:	AC 120/6	0Hz		Enviro	nment:	Tem	np: 23.5℃	Huni: 58%		
Lovel (dBuV/m)	8					·				
110 Level (dBuV/m)										
100										
		1								
80							FC	C DADT 45 (DIV)		
							FC	C PART 15 (PK)		
60~			~	m				5.5		
					Constitution of the consti	4	FC	C PART 15 (AV)		
					~~	for	~~~	~~~		
40										
20								10.		
0										
2452			From	quency (MI	471			250		
			1160	quericy (iiii	44.					
	Pood	int anna	Cabla	Drooms		1+	TT. 0. 30			
Fre	Read# eq Level	intenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark		
	q Level	Factor	Loss	Factor	Level	Line	Limit	Remark		
Fre MI	q Level	Intenna Factor ——dB/m	Cable Loss dB	Factor	Level	Line	Limit	Remark		
	eq Level Hz dBuV 00 14.65	Factor	Loss dB	Factor dB	Level dBuV/m 47.03	Line dBuV/m 74.00	Limit dB -26.97			

Remark.

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	ame: Wireless Audio Module			Product	Model:	LS6	LS6-N22S			
est By:	Mike			Test mo	de:	802.	802.11b Tx mode			
est Channel:	nnel: Highest channel Polarization: Ho			Hori	zontal					
est Voltage:	AC 120/6	0Hz		Environ	ment:	Tem	ıp: 23.5℃	Huni: 58%		
Laval AlDellas										
110 Level (dBuV/m)		19							
100		-2.								
		1								
80		1					FCC	PART 15 (PK)		
							100	FART 13 (FR)		
60~			m	\			500	DART 45 (ALC		
				1	1		FLL	PART 15 (AV)		
40					7~~	~~~		~~~		
40										
20										
0 ²⁴⁵²								250		
				luency (MH						
F		Intenna.		Preamp Factor	T 7	Limit Line		Remark		
rie	eq Level	ractor	LOSS	ractor	rever	Line	Limit	Kemark		
MI	Iz dBuV	dB/m		₫B	dBuV/m	dBuV/m	₫B			
	00 16.01	27.57	4.81	0.00	48.39	74.00	-25, 61	Peak		
1 2483.50		27.57	4.81					Average		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

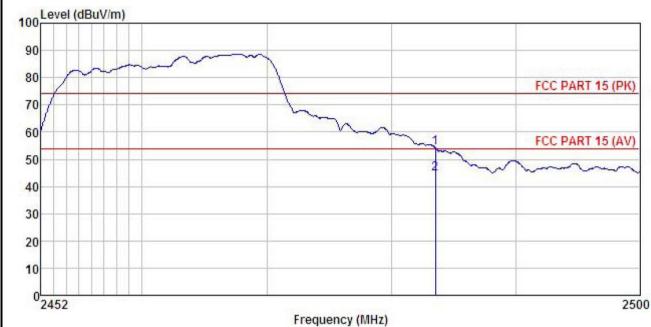
^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

Product Name:		Wireless A	udio Modul	е	Product	Model:	LS6-N2	LS6-N22S			
Гest By:		Mike			Test mod	de:	802.11	802.11g Tx mode			
Test Cha	annel:	Lowest cha	annel		Polarizat	ion:	Vertica	Vertical Temp: 23.5℃ Huni: 58%			
Test Vol	tage:	AC 120/60	Hz		Environn	nent:	Temp:				
100 Lev	vel (dBuV/m)		- U								
90									many		
80								FCC	PART 15 (PK)		
70											
60								FCC	PART 15 (AV)		
50	a Maria	0.000	m.~~^	- a - M a	· m- mA .	~ ^ ^ ^	. ~	7			
40	V V	- WWW		Year ar	n the a m	γ ου	7 2				
30											
20											
10											
0231	10 2320		235		iency (MHz	1			2422		
		Readá	int enna			,	Limit	Over			
	Freq		Factor	Loss	Factor	Level	Line		Remark		
	MHz	dBu₹	dB/m	₫B	dB	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>			
	2390.000	20.14	27 37	4.69	0.00	F2 20	74 00	-21.80	Doole		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.


Product Name:		Wireless	Audio Modul	le	Product	Product Model:			LS6-N22S		
est By	'	Mike			Test mod	le:	802	802.11g Tx mode Horizontal Temp: 23.5℃ Huni: 58%			
est Ch	annel:	Lowest ch	nannel		Polarizat	ion:	Hor				
est Vo	Itage:	AC 120/6	0Hz		Environn	nent:	Ten				
Lev	vel (dBuV/m)										
100	roi (abarrii)							-			
90									1		
80											
								FCC	PART 15 (PK)		
70								1			
60		1					1200	FCC	PART 15 (AV)		
50							A	,,,,,	PART TO (NY)		
m	mon	www	war ara	human	why	mound	7 2				
40											
30											
20											
10											
10											
023	10 2320		235	0					2422		
					iency (MHz	2)					
	F		Antenna Factor		Preamp	Level	Limit Line	Over	Remark		
	rred	rever	ractor	FOSS	ractor	rever	Line	TIMIL	Kemark		
	MHz	dBuV	dB/m	₫B	<u>dB</u>	dBuV/m	dBuV/m	d₿			
1	2389.538	22.95	27.37	4.69	0.00	55.01	74.00	-18.99	Peak		
1 2 3	2389.538	9.41	27.37	4.69	0.00				Average		
3	2390.000	21.76	27.37	4.69	0.00	53.82	74.00	-20.18	Peak		
4	2390.000	8.75	27.37	4.69	0.00	40.81	54, 00	-13.19	Average		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Wireless Audio Module	Product Model:	LS6-N22S
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 23.5℃ Huni: 58%

	ReadAntenr Freq Level Facto								Remark
	MHz	dBu∀		<u>d</u> B	<u>dB</u>	dBu√/m	dBu√/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

roduct Name:	Wireless Audio Modu	ıle	Product	Model:	LS6-N22S		2S	
est By:	Mike	Mike Test mode: 802.11g Tx mode				e		
est Channel:	Highest channel		Polarization:		Horiz	ontal		
est Voltage:	AC 120/60Hz		Environ	ment:	Temp	ວ: 23.5℃	Huni: 58%	
Level (dRuV/m)								
100 Level (dBuV/m)								
90		\						
80						ECC	PART 15 (PK)	
70						rcc	PART 15 (PR)	
60			1	my				
001					-	FCC	PART 15 (AV)	
		10		4				
50	4			2	~	·~	~~~	
50				2	\ \		~~~	
				2	À		~~~	
40				2	\		~~~	
30				2				
40 30 20 10				2				
40 30 20		Freq	juency (MH	2 2 2)			250	
40 30 20 10 0 2452	ReadAnt enna	Cable	juency (MH Preamp		Limit		250	
40 30 20 10 0 2452	ReadAntenna Level Factor	Cable	Preamp				250 Remark	
40 30 20 10 0 2452	Level Factor	Cable	Preamp Factor		Line	Limit		
40 30 20 10 0 2452	Level Factor dBuV dB/m 27.16 27.57	Cable Loss dB	Preamp Factor dB	Level dBuV/m 59.54	Line dBuV/m 74.00	Limit dB -14.46	Remark	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

roduc	t Name:	Wireless A	Audio Modu	le	Produc	ct Model:	LS6-	N22S		
Гest By	<i>/</i> :	Mike			Test m	iode:	802.	802.11n(HT20) Tx mode		
Test Ch	nannel:	Lowest ch	nannel		Polarization:			ical		
Test Vo	oltage:	AC 120/60	0Hz		Enviro	nment:	Tem	p: 23.5 ℃	Huni: 58%	
100 Le	evel (dBuV/m)									
90									~~~	
80								FCC	PART 15 (PK)	
70								1	PART TO (PR)	
60								FCC	PART 15 (AV)	
50 ~	man Am	www	~~~	····	www	mm	~~			
30										
						_				
20										
20 10								Lis.		
10	10 2320		235		uency (MH:	z)			2422	
10			235 Intenna Factor	Freq Cable			Limit Line	Over Limit		
10			int enna	Freq Cable	Preamp Factor		Line	Limit		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

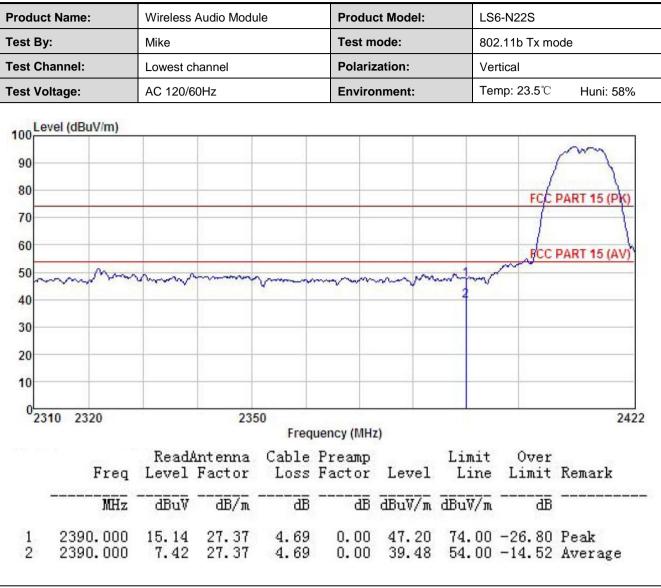
oduct Name:		Wireless	Audio Modu	ule	Produc	t Model:		LS6-N22S		
est By	7:	Mike			Test mo	ode:		802.11n(H	IT20) Tx mode	
est Ch	nannel:	Lowest c	hannel		Polarization:		Horizontal			
est Vo	ltage:	AC 120/6	0Hz		Enviror	ment:		Temp: 23.	5℃ Huni: 58%	
Lev	vel (dBuV/m)									
00	rer (abayin)									
90		1				1		-	mony	
80		-						For	C PART 15 (PK)	
70								-	C PART 15 (PR)	
60										
							10	FC(C PART 15 (AV)	
50	moun	moun	mound	moun	m	m	w/			
40		1								
30		1								
20		1								
									7	
10										
0	40 2220		221	F0					242	
	10 2320		235		quency (MF	łz)			242	
0			235 Antenna Factor	Fred Cable	Preamp				1001 DO	
0			Int enna	Fred Cable	Preamp Factor		Line	Limit	1004 DB	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Wireless Audio Mod	ule	Product	Model:	LS	6-N22S				
est By:	Mike		Test mode:			802.11n(HT20) Tx mode				
est Channel:	Highest channel	ghest channel Polarization: Vertical			Highest channel		Polarization:			
est Voltage:	AC 120/60Hz		Environi	ment:	Te	Temp: 23.5℃ Hur				
1										
100 Level (dBuV/m)							ì			
90	- ~~~~						-			
80	~~~					FCC I	PART 15 (PK)			
70						, 55	ALL TO (LTG)			
60			m	1		500	34 DT 45 (410			
50					7	FCC	PART 15 (AV)			
40				1	~		~~~			
30										
20										
10										
0 2452		102000					2500			
	DJA-+		uency (MH)		Timbe	Over				
Freq	ReadAntenna Level Factor	Loss	Factor	Level	Limit Line		Remark			
MHz	dBuVdB/m		<u>dB</u>	dBuV/m	dBuV/m	<u>ab</u>				
1 2483.500	25.24 27.57 13.49 27.57	4.81 4.81					Peak Average			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.


Product Name:	Wireless	Audio Modul	е	Produc	ct Model:	LS	6-N22S		
Test By:	Mike			Test m	ode:	802	2.11n(HT20) Tx mode	
Test Channel:	Highest	channel		Polarization:		Но	Horizontal		
Test Voltage:	AC 120/6	60Hz		Enviro	nment:	Tei	Temp: 23.5℃ Huni: 58%		
The same of the same of the	2004201								
100 Level (dBuV/	m)								
90								-	
80	~~~~							DESCRIPTION OF THE PROPERTY OF	
			1				FCC	PART 15 (PK)	
70				~~~	- 0 1	iii			
60					7	1	FCC	PART 15 (AV)	
50			-		,	1	~	~ ~ ~	
40							1	~~~	
30									
20									
10									
02452						2		250	
2432			Fred	juency (MH	lz)			230	
	Read	Ant enna	Cable	Preamp		Limit			
Fr	eq Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
<u>N</u>	Hz dBuV		<u>ab</u>		$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	<u>dB</u>		
1 2483.5	00 27.69	27.57	4.81	0.00	60.07	74.00	-13.93	Peak	
2 2483.5	00 12.46	27.57 27.57	4.81	0.00	44.84	54.00	-9.16	Average	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

TX1:

Remark:

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

roduct	t Name:	Wireless A	Audio Modu	le	Produ	uct Model:	LS	LS6-N22S	
est By:	:	Mike			Test	mode:	802	2.11b Tx mc	ode
est Cha	annel:	Lowest ch	annel		Polar	ization:	Но	rizontal	
est Vol	Itage:	AC 120/60)Hz		Envir	onment:	Ter	mp: 23.5 ℃	Huni: 58%
Low	el (dBuV/m)								
00 Lev	er (ubuv/iii)								~~~
90									
80								506	DADT 45 (DA)
70								FUL	PART 15 (PK)
0.0	- 1							RCC	PART 15 (AV)
60								AND AND	PART 13 (AV)
60 50	- ~~~~~~~	a.A. a.A.	~~~~	. N N.	v.	~~~~~~~		Jan Jan	PART 13 (AV)
	~~~~~		~~~	m	n		m		PART 13 (AV)
50 ~~	~~~~~	~~~	~~~	m	v	and the same of	www	Jana Land	PART 13 (AV)
50 40 30	~~~~~	~~~	~~~	~~~	nnm		~	Jan Dalland	PART 13 (AV)
50 40 30 20	~~~~~	~~~	~~~	m	non				PART 13 (AV)
50 40 30	~~~~~	~~~	~~~	~~~	n		~	Jan Dalland	TANT 13 (AV)
50 40 30 20	0 2320	~~~	235	0	v		~	Jan Dalla	2422
50 40 30 20	0 2320	~~~	235		vvvvvviency (MHz	······································			
50 40 30 20		ReadA Level	ntenna	Frequ Cable	Preamp	C.	Limit Line	Over	
50 40 30 20			ntenna	Frequ Cable	Preamp Factor		Line	Over Limit	2422

#### Remark.

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	Wireless A	Audio Modu	le	Produ	uct Model:	L	S6-N22S	
Test By:	Mike			Test	mode:	8	02.11b Tx n	node
Test Channel:	Highest cl	nannel		Polar	ization:	V	ertical	
Test Voltage:	AC 120/60	)Hz		Envir	onment:	Т	emp: 23.5°	Huni: 58%
110 Level (dBuV/m)	,							
100								
80		1					FCC	PART 15 (PK)
60				1			FCC	PART 15 (AV)
40					2			
20								1
02452								2500
Fred		ntenna Factor	Cable			Limit Line		Remark
MH2	dBu√			<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1 2483.500 2 2483.500		27.57 27.57	4.81 4.81	0.00 0.00	50.37 41.95	74.00 54.00	-23.63 -12.05	Peak Average

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	Wireless Audio N	/lodule	Prod	uct Model:	LS	LS6-N22S		
Гest By:	Mike	Test mode: 802.11b Tx mode			ode			
Test Channel:	Highest channel		Polai	Polarization:		Horizontal		
Гest Voltage:	AC 120/60Hz		Envi	ronment:	Te	mp: 23.5℃	Huni: 58%	
110 Level (dBuV/m)					·			
100								
80		1				FCC	PART 15 (PK)	
60			1	1		FCC	PART 15 (AV)	
40				2				
20								
02452		Free	uency (MH:	7)			2500	
Freq	ReadAnten Level Fact	na Cable		ut E E suu seere	Limit Line		Remark	
MHz	dBuV dB	7mdB	<u>dB</u>	dBu√/m	dBuV/m	<u>dB</u>		
1 2483.500 2 2483.500	18.19 27. 9.42 27.	57 4.81 57 4.81	0.00 0.00			-23.43 -12.20	Peak Average	

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.



## 802.11g mode:

Product	t Name:	Wireless A	Audio Modu	le	Prod	uct Model:	LS	LS6-N22S		
Test By	:	Mike			Test mode:			<b>le:</b> 802.11g Tx mode		
Test Ch	annel:	Lowest ch	owest channel Polarization: Vertical							
est Vo	Itage:	AC 120/60	)Hz		Envir	onment:	Te	mp: 23.5℃	Huni: 58%	
	1/15 1/1 1						•			
100 Le	evel (dBuV/m)									
90				-				\mathrew \tag{\pi}	my	
80										
70								FCC	PART 15 (PK)	
220020								~		
60							1~	FCC	PART 15 (AV)	
50		mar	~~~~	1000	~~~~	mano	m			
40	A			*		**************************************	4			
30										
20										
-323										
10										
023	10 2320		235		Marie Marie	Asc.			242	
					uency (MH	100	42 - 14 - 14 - 14			
	Freq	ReadA Level	intenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
	MHz	dBu₹	dB/m	₫B	₫B	dBu√/m	dBuV/m	dB		
1 2	2390.000 2390.000	23.70 9.45	27.37 27.37	4.69 4.69		55.76	74.00	-18.24 -12.49	Peak	
2	2390.000	9.40	41.JI	4.09	0.00	41.01	04.00	12.49	vacrage	

#### Remark

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.



roduc	t Name:	Wireless	Audio Mod	ule	Produ	uct Model:	L	LS6-N22S			LS6-N22S			
est By	<b>y</b> :	Mike			Test	Test mode:			mode					
est Ch	nannel:	Lowest cl	hannel		Polar	ization:	F	Horizontal						
est Vo	oltage:	AC 120/6	60Hz		Envir	onment:	Т	emp: 23.5°	C Huni: 58%					
La	evel (dBuV/m)													
100	ever (dbdv/m)													
90									my					
110/2								1	1					
80								FC	C PART 15 (PK)					
70														
00								- N						
60							1.0	FC The	C PART 15 (AV)					
50	0.000		AM0000				0.0.	Y						
40	~~~~~~~	and the h		- Aug - Fred	~~~~~	mar W	2							
						- 1								
300														
30														
30														
30 20														
30														
30 20 10	240 2220		222	50					245					
30 20 10	310 2320		23	50 Fre	quency (MI	Hz)			242					
30 20 10	310 2320	Roadú		Fre	quency (Mi	1000	Timi+	Ottor						
30 20 10			ntenna	Fre Cable	Preamp		Limit Line							
30 20 10	Freq		ntenna Factor	Fre Cable Loss	Preamp Factor	Level	Line	Limit						
30 20 10			ntenna	Fre Cable	Preamp Factor		Line	Limit	Remark					
30 20 10	Freq	Level dBuV	ntenna Factor ——dB/m	Fre Cable Loss dB	Preamp Factor dB	Level	Line dBuV/m	Limit	Remark					

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	Wireless Audio Module	Product Model:	LS6-N22S
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 23.5℃ Huni: 58%



	Freq		Antenna Factor					Remark
	MHz	—dBu∜	dB/m	 <u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1 2	2483.500 2483.500							

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:  Fest By:  Fest Channel:  Fest Voltage:		Wireless Audio Modul		le Product Model:		LS	LS6-N22S			
		Mike		Test mode:		802	2.11g Tx mo	1g Tx mode		
		Highest channel		Polarization:			Hoi	Horizontal		
		AC 120/60Hz		Environme		ronment:	nent: Ten		emp: 23.5℃ Huni: 58%	
Level (dBu	V/m)									
100 20101 (424										
90		~~								
80				1						
				1	Contract of	1		FCC	PART 15 (PK)	
70				Y	~		1			
60		200					1	FCC	PART 15 (AV)	
50						- 2				
40										
1000										
30									=======================================	
20										
10										
Service Control of the Control of th										
2452	The dank			14200	25.00				250	
					uency (MH:	102		154 <b>=</b> 115109400000		
	Erra		ntenna Factor				Limit	Over	Remark	
	rred	rever	ractor	FORE	ractor	Level	Line	LIMIT	Remark	
	MHz	dBu∀	dB/m	₫B	₫B	dBuV/m	dBuV/m	dB		
1 2483	.500	36.74	27.57 27.57	4.81	0.00	69.12	74.00	-4.88	Peak	
	.500	15.74	27 57	4.81	0.00	48 12	54 00	-5 88	Average	

- $3. \ \ \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} \textit{Preamplifier Factor}.$
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.



## 802.11n(HT20):

Product Name:  Fest By:  Fest Channel:  Fest Voltage:		Wireless Audio Module  Mike  Lowest channel  AC 120/60Hz			Product	Model:	LS6-I	LS6-N22S  802.11n(HT20) Tx mode  Vertical  Temp: 23.5°C Huni: 58%		
					Test mod	de:	802.1			
					Polarizat	tion:	Vertic			
					Environr	nent:	Temp			
	aval (dDullim)						•			
100	evel (dBuV/m)									
90								~~	way	
80						_		ECC P	ART 15 (PK)	
70								, CCF	ART 13 (FR)	
60							00	$\sim$		
50	1000						1/10	FCC P.	ART 15 (AV)	
	many	my	money	~~~~~	My	www	~			
40										
30										
20										
			1							
10										
0	340 2320		225	:0					2422	
0	310 2320		235		uency (MHz	2)			2422	
0			intenna	Frequ Cable	Preamp		Limit Line	Over Limit		
0			intenna	Frequ Cable	Preamp Factor		Line	Limit		
0	Freq	Level	ntenna Factor — dB/m	Frequence Cable Loss	Preamp Factor dB	Level dBuV/m 51.18	Line  dBuV/m  74.00	Limit dB -22.82	Remark	

#### Remark:

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:  Test By:  Test Channel:  Test Voltage:			Wireless Audio Module  Mike  Lowest channel  AC 120/60Hz				oduct Mo	odel:	LS6-N22S		
							st mode:		802.11n(HT20) Tx mode		
							Polarization:		Horizontal		
							vironme	nt:	Temp: 23.5℃ Huni: 58%		
100 L	Level (dBuV/	m)									
90									~	mana	
80											
70									FCC P	ART 15 (PK)	
60									~ FCC P	ART 15 (AV)	
50	mm	V-M	mm	mm	m	m	m	m		AII 10 (A17	
40 30											
20											
10											
0	2310 2320			2350	)					2422	
	F	req		ntenna Factor	Cable			Limi 1 Lir	t Over e Limit	Remark	
		MHz	dBu∀	dB/m	₫B	<u>d</u> B	dBuV/	m dBuV/	m dB		
1 2	2390. 2390.		18.90 8.72	27.37 27.37	4.69 4.69	0.00 0.00			0 -23.04 0 -13.22		

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product	Name:	Wireless	Audio Modu	le	Pi	roduct Mod	del:	LS6-N22S	
Test By:		Mike			Te	est mode:		802.11n(H	T20) Tx mode
Test Cha	annel:	Highest cl	hannel		P	olarization		Vertical	
Test Vol	Itage:	AC 120/6	0Hz		E	nvironmen	t:	Temp: 23.	5℃ Huni: 58%
					•				
100 Le	vel (dBuV/m)								
90		~~	~~	1					
80									
70					V			FCI	C PART 15 (PK)
					~		1		
60							1	FC	C PART 15 (AV)
50							1	~~~	~~~
40							la-		
30									
20									
10							.5, ¹⁰		
024	52			Fran	woney /MI	I=\			2500
		Pando			quency (MF		Limit	Over	
	Freq	Level	intenna Factor	Loss	Factor	Level		Limit	Remark
	MHz	dBu₹	<u>d</u> B/m	dB	dB	dBuV/m	dBu√/m	<u>d</u> B	
1 2	2483.500 2483.500	29.87 13.47	27.57 27.57	4.81 4.81	0.00 0.00	62.25 45.85	74.00	-11.75	Peak Average

#### Remark.

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.



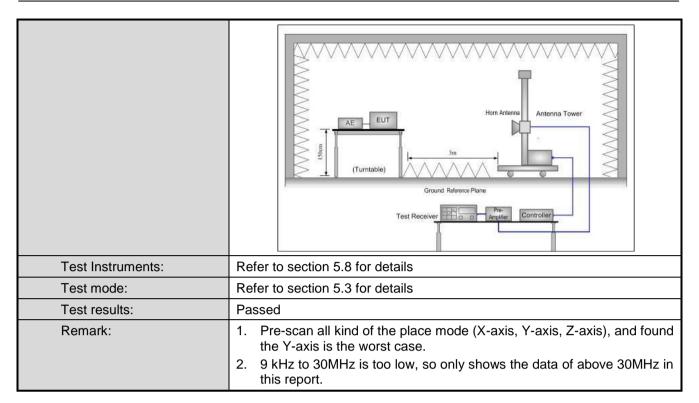
Product Name:		Wireless Audio Mod		iuic	FIOU	Product Model:		LS6-N22S		
est By:		Mike			Test	mode:	8	02.11n(HT2	20) Tx mode	
est Channe	el:	Highest of	channel		Pola	rization:	Н	orizontal		
est Voltage	:	AC 120/6	60Hz		Envi	ronment:	Т	emp: 23.5°	C Huni:	58%
100 Level (c	IRuV/m)									
100	Davinij									
90		~~								
80				-				F	CC PART 15	(PK)
70					~~		1			,
60							1			0
								lan o	CC PART 15	(AV)
50										
50							4		~~~	~
40							4			<u> </u>
							4			<b>&gt;</b>
40							4			\ \
40 30							4			\$
40 30 20 10							4			~~
40 30 20				Fre	quency (M	IHz)	4			250
40 30 20 10		ReadA	nt enna		AD BOOK	102	Limit	Over		250
40 30 20 10	Freq	ReadA Level	ntenna Factor	Cable	Preamp	Test 1990an			Remark	250
40 30 20 10	Freq	Level	ntenna Factor	Cable	Preamp Factor	Test 1990an	Line	Limit	Remark	250
40 30 20 10 0 2452		Level dBuV	Factor	Cable Loss ——————————————————————————————————	Preamp Factor dB	Level	Line  dBuV/m  74.00	Limit dB -9.84		250

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.



# 6.7 Spurious Emission

## 6.7.1 Conducted Emission Method


Test Method:	FCC Part 15 C Section 15.247 (d)						
	ANOLOGO 40 0040 - LIVDD 550074						
	ANSI C63.10:2013 and KDB 558074						
s it t t r	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.						
Test setup:	Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane						
Test Instruments:	Refer to section 5.8 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Please refer to the FCC ID: 2ADBM-LS6-N22S						



## 6.7.2 Radiated Emission Method

6.7.2 Ra	idiated Emission Me	etnoa					
Test	t Requirement:	FCC Part 15 C S	ection 15.209	and 15.205			
Test	t Method:	ANSI C63.10:201	3				
Test	t Frequency Range:	9kHz to 25GHz					
Test	t Distance:	3m					
Rec	eiver setup:	Frequency	Detector	RBW	VI	BW	Remark
		30MHz-1GHz	Quasi-peak	120KHz	300KHz		Quasi-peak Value
		Above 1GHz	Peak	1MHz		ИHz	Peak Value
			RMS	1MHz		ЛHz	Average Value
Limi	t:	Frequency		nit (dBuV/m @3	m)		Remark
		30MHz-88MH		40.0			uasi-peak Value
		88MHz-216MH 216MHz-960M		43.5 46.0			uasi-peak Value uasi-peak Value
		960MHz-1GH		54.0			uasi-peak Value
				54.0			Average Value
		Above 1GHz		74.0		,	Peak Value
Test	t Procedure:	1. The EUT wa	s placed on t	he top of a rot	ating	table 0	
							meter chamber.
				degrees to d	eterm	ine the	e position of the
		highest radia			اما ما	- uf - u - u	
				s away from t			lce-receiving le-height antenna
		tower.	icii was mou	ited on the top	Jula	variabi	le-neight antenna
			height is vai	ied from one r	meter	to four	meters above
		<u> </u>					field strength.
				al polarization	s of th	ne ante	enna are set to
		make the me		aion tha FUT			ad to ito waret
							ed to its worst m 1 meter to 4
							s to 360 degrees
		to find the m					and and an group
				was set to Pea			inction and
				Maximum Ho			10.15.1
							OdB lower than
							d the peak values ions that did not
							sing peak, quasi-
							orted in a data
		sheet.					
Test	t setup:	Below 1GHz					
					-		
			<u> </u>		Γ,	Aı	ntenna Tower
				_			
			> 3m <b>&lt;</b>	]	l		Search
		EUT _	, ·		/		Antenna
		\	4m			n	<u>,</u>
		·	<u>^</u> -	<b>*</b>		RF Te Receiv	
			7: :		<u> </u>		\
		Turn Table		m		_ /	
		Table	`   <b>^</b>			_ `	
		7777777	Minin		////	1///	
		Ground I	Plane				
		Ground r	autiv				
		Above 1GHz					







#### Measurement Data (worst case):

#### **Below 1GHz:**

Product Name	e:	Wireless A	Audio Modul	е	Product	Model:	LS6-N2	22S	
Test By:		Mike			Test mo	de:	Wi-Fi T	x mode	
Test Frequen	су:	30 MHz ~	1 GHz		Polariza	tion:	Vertica	l	
Test Voltage:		AC 120/60	.C 120/60Hz		Environment: Temp: 23.5°C		23.5℃	Huni: 58%	
1	177-1								
80 Level (dB	uV/m)								
70									
60								FCC PART	15 CLASS B
50									
300									
40 1	. 2								
30	\ /\ /\	1		3		month to		5 L. A. M.	alexander (Grange)
20	N A	1	MMM	May Libr	1/1/14	mil hall	J. Market	White and all	
20		water the	V	M	***		Man Alder of	4.	
10									
0									
30	50		100	Frequ	200 ency (MH	7)		500	100
		Read	Antenna				Limit	Over	
	Freq		Factor				Line	Limit	Remark
	MHz	dBu√	<u>dB</u> /m			$\overline{\tt dBuV/m}$	dBuV/m		
40 -44	05 005	F4 F0					40.00	4 00	

35.07

34.71

29.71

30.22

30.05

30.68

40.00 -4.93 QP

40.00 -5.29 QP

43.50 -13.79 QP

46.00 -15.78 QP

46.00 -15.95 QP

46.00 -15.32 QP

### Remark:

2

3

4

5

6

37.025

53.882

131.758

261.975

517.248

833.317

51.73

49.77

48.14

42.52

37.66

33.31

12.16

13.40

8.59

13.38

17.68

21.20

1.11

1.34

2.30

2.84

3.71

4.24

29.93

29.80

29.32

28.52

29.00

28.07

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.



Product	Name:	Wireless A	Audio Modul	е	Product	Model:	LS6-	N22S		
Test By:		Mike			Test mo	de:	Wi-F	i Tx mode		
Test Fred	quency:	30 MHz ~	1 GHz		Polariza	tion:	Horiz	ontal		
Γest Volt	age:	AC 120/60	)Hz		Environ	nent:	Tem	ວ: 23.5℃	H	uni: 58%
80 Level 70 60 50 40 20	(dBuV/m)		3 h /\/\/\	Manhadah	A Marin			FCC PAR		
THE REAL PROPERTY.	I Y I	hand of	Y	122.00	4					
030	50	Readú	100	200000000000000000000000000000000000000	200 Jency (MHz	:)	Timi+	500		1000
33030	50 Freq		100 Intenna Factor	Cable		e Language stores	Limit Line	500 Over Limit	Remai	
			ınt enna	Cable	uency (MHz Preamp Factor	e Language stores	Line	Over	Remai	1000

## Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





## **Above 1GHz**

## TX0:

TXU:								
				802.11b				
			Test ch	nannel: Low	est channel			
			De	tector: Peal	. Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	52.15	36.06	6.81	41.82	53.20	74.00	-20.80	Vertical
4824.00	51.36	36.06	6.81	41.82	52.41	74.00	-21.59	Horizontal
			Dete	ctor: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	46.26	36.06	6.81	41.82	47.31	54.00	-6.69	Vertical
4824.00	45.49	36.06	6.81	41.82	46.54	54.00	-7.46	Horizontal
				nannel: Midd				
		T I		tector: Peal	Value		Ī	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	48.36	36.32	6.85	41.84	49.69	74.00	-24.31	Vertical
4874.00	50.11	36.32	6.85	41.84	51.44	74.00	-22.56	Horizontal
			Dete	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	40.19	36.32	6.85	41.84	41.52	54.00	-12.48	Vertical
4874.00	42.39	36.32	6.85	41.84	43.72	54.00	-10.28	Horizontal
				annel: High				
		I I		tector: Peal	k Value		I	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	49.52	36.58	6.89	41.86	51.13	74.00	-22.87	Vertical
4924.00	48.11	36.58	6.89	41.86	49.72	74.00	-24.28	Horizontal
			Dete	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	46.28	36.58	6.89	41.86	47.89	54.00	-6.11	Vertical
4924.00	42.14	36.58	6.89	41.86	43.75	54.00	-10.25	Horizontal
Remark [.]								

#### Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





				802.11g				
			Test ch	nannel: Low	est channel			
			De	tector: Peal	k Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	52.14	36.06	6.81	41.82	53.19	74.00	-20.81	Vertical
4824.00	49.87	36.06	6.81	41.82	50.92	74.00	-23.08	Horizontal
			Dete	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	46.32	36.06	6.81	41.82	47.37	54.00	-6.63	Vertical
4824.00	47.59	36.06	6.81	41.82	48.64	54.00	-5.36	Horizontal
			Test ch	nannel: Mido	dle channel			
				tector: Peal				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	48.62	36.32	6.85	41.84	49.95	74.00	-24.05	Vertical
4874.00	49.11	36.32	6.85	41.84	50.44	74.00	-23.56	Horizontal
			Dete	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	42.26	36.32	6.85	41.84	43.59	54.00	-10.41	Vertical
4874.00	42.98	36.32	6.85	41.84	44.31	54.00	-9.69	Horizontal
			Test ch	annel: High	est channel			
			De	tector: Peal	k Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	50.32	36.58	6.89	41.86	51.93	74.00	-22.07	Vertical
4924.00	49.17	36.58	6.89	41.86	50.78	74.00	-23.22	Horizontal
			Dete	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	43.16	36.58	6.89	41.86	44.77	54.00	-9.23	Vertical
4924.00	42.58	36.58	6.89	41.86	44.19	54.00	-9.81	Horizontal
D l								

#### Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





				000 14-/117	720)			
				802.11n(HT				
				annel: Low				
		Antonno		tector: Peak	l value		<u> </u>	
Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
(1411 12)	(dBuV)	(dB/m)	(dB)	(dB)	,	,	` ′	
4824.00	52.36	36.06	6.81	41.82	53.41	74.00	-20.59	Vertical
4824.00	43.11	36.06	6.81	41.82	44.16	74.00	-29.84	Horizontal
		T T		ctor: Avera	ge Value		T	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	46.69	36.06	6.81	41.82	47.74	54.00	-6.26	Vertical
4824.00	45.82	36.06	6.81	41.82	46.87	54.00	-7.13	Horizontal
				nannel: Midd				
I		T		tector: Peal	k Value		I	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	49.25	36.32	6.85	41.84	50.58	74.00	-23.42	Vertical
4874.00	47.11	36.32	6.85	41.84	48.44	74.00	-25.56	Horizontal
			Dete	ctor: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	42.25	36.32	6.85	41.84	43.58	54.00	-10.42	Vertical
4874.00	43.99	36.32	6.85	41.84	45.32	54.00	-8.68	Horizontal
				annel: High				
		T T		tector: Peal	k Value		T	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	50.19	36.58	6.89	41.86	51.80	74.00	-22.20	Vertical
4924.00	47.85	36.58	6.89	41.86	49.46	74.00	-24.54	Horizontal
			Dete	ctor: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	42.26	36.58	6.89	41.86	43.87	54.00	-10.13	Vertical
4924.00	43.19	36.58	6.89	41.86	44.80	54.00	-9.20	Horizontal
Remark:		•						
1 Final Lev	el = Receive	r Read level +	Antenna Fa	ctor + Cable	Loss - Pream	nlifier Factor		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





## **TX1:**

TX1:				802.11b				
			Tost ch	nannel: Low				
				tector: Peal				
_	Read	Antenna	Cable	Preamp		1		
Frequency (MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	51.26	36.06	6.81	41.82	52.31	74.00	-21.69	Vertical
4824.00	50.69	36.06	6.81	41.82	51.74	74.00	-22.26	Horizontal
			Dete	ctor: Avera	ge Value			
Гжа су . са са су .	Read	Antenna	Cable	Preamp	Laval	l imait l ima	0.427	
Frequency (MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	45.26	36.06	6.81	41.82	46.31	54.00	-7.69	Vertical
4824.00	46.98	36.06	6.81	41.82	48.03	54.00	-5.97	Horizontal
			Test ch	nannel: Mido	dle channel			
			De	tector: Peal	<ul><li>Value</li></ul>			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	48.26	36.32	6.85	41.84	49.59	74.00	-24.41	Vertical
4874.00	49.71	36.32	6.85	41.84	51.04	74.00	-22.96	Horizontal
			Dete	ctor: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	39.62	36.32	6.85	41.84	40.95	54.00	-13.05	Vertical
4874.00	41.47	36.32	6.85	41.84	42.80	54.00	-11.20	Horizontal
			Test ch	annel: High	est channel			
			De	tector: Peal	Value Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	49.62	36.58	6.89	41.86	51.23	74.00	-22.77	Vertical
4924.00	47.15	36.58	6.89	41.86	48.76	74.00	-25.24	Horizontal
			Dete	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	45.62	36.58	6.89	41.86	47.23	54.00	-6.77	Vertical
4924.00	43.69	36.58	6.89	41.86	45.30	54.00	-8.70	Horizontal
Remark:								

#### Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





				802.11g				
			Test ch	nannel: Lowe	est channel			
			De	tector: Peal	k Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	51.24	36.06	6.81	41.82	52.29	74.00	-21.71	Vertical
4824.00	49.69	36.06	6.81	41.82	50.74	74.00	-23.26	Horizontal
			Dete	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	45.98	36.06	6.81	41.82	47.03	54.00	-6.97	Vertical
4824.00	46.21	36.06	6.81	41.82	47.26	54.00	-6.74	Horizontal
			Test ch	nannel: Mido	lle channel			
				tector: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	49.87	36.32	6.85	41.84	51.20	74.00	-22.80	Vertical
4874.00	50.78	36.32	6.85	41.84	52.11	74.00	-21.89	Horizontal
			Dete	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	41.25	36.32	6.85	41.84	42.58	54.00	-11.42	Vertical
4874.00	43.26	36.32	6.85	41.84	44.59	54.00	-9.41	Horizontal
			Test ch	annel: High	est channel			
			De	tector: Peak	k Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	49.19	36.58	6.89	41.86	50.80	74.00	-23.20	Vertical
4924.00	48.72	36.58	6.89	41.86	50.33	74.00	-23.67	Horizontal
			Dete	ector: Averag	ge Value		<u>'</u>	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	42.21	36.58	6.89	41.86	43.82	54.00	-10.18	Vertical
4924.00	43.62	36.58	6.89	41.86	45.23	54.00	-8.77	Horizontal
		Read level + A			,	lifier Factor.	,	

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





				000.44 (1:3	-00)			
				802.11n(HT				
				nannel: Lowe				
				tector: Peal	( Value		<u> </u>	
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over	Polarization
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Folarization
4824.00	51.87	36.06	6.81	41.82	52.92	74.00	-21.08	Vertical
4824.00	52.39	36.06	6.81	41.82	53.44	74.00	-20.56	Horizontal
			Dete	ctor: Avera	ge Value			
Fraguenay	Read	Antenna	Cable	Preamp	Lovel	Limit Line	Over	
Frequency (MHz)	Level	Factor	Loss	Factor	Level (dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
(1711 12)	(dBuV)	(dB/m)	(dB)	(dB)	(ubu v/III)	(ubu v/III)	Lillit (db)	
4824.00	47.85	36.06	6.81	41.82	48.90	54.00	-5.10	Vertical
4824.00	46.32	36.06	6.81	41.82	47.37	54.00	-6.63	Horizontal
			Test ch	nannel: Mido	dle channel			
			De	tector: Peak	Value			
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
` '	(dBuV)	(dB/m)	(dB)	(dB)	,	,		
4874.00	49.21	36.32	6.85	41.84	50.54	74.00	-23.46	Vertical
4874.00	48.55	36.32	6.85	41.84	49.88	74.00	-24.12	Horizontal
		T - T		ctor: Avera	ge Value		I	
Frequency	Read	Antenna	Cable	Preamp Factor	Level	Limit Line	Over	Delevization
(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	(dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
4874.00	41.13	36.32	6.85	41.84	42.46	54.00	-11.54	Vertical
4874.00	42.69	36.32	6.85	41.84	44.02	54.00	-9.98	Horizontal
								I
			Test ch	annel: High	est channel			
			De	tector: Peak	<ul><li>Value</li></ul>			
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
` ,	(dBuV)	(dB/m)	(dB)	(dB)	,	,		Martinal
4924.00	49.21	36.58	6.89	41.86	50.82	74.00	-23.18	Vertical
4924.00	48.17	36.58	6.89	41.86	49.78	74.00	-24.22	Horizontal
	Dood	Antonna		ctor: Avera	je value			
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over	Polarization
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	i dianzadon
4924.00	42.25	36.58	6.89	41.86	43.86	54.00	-10.14	Vertical
4924.00	43.19	36.58	6.89	41.86	44.80	54.00	-9.20	Horizontal
Remark:		<u>.                                      </u>			1		1	
1. Final Level	l = Receiver I	Read level + A	\ntenna Fact	or + Cable Lo	oss – Preamp	lifier Factor.		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.