

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China

TEST REPORT

FCC ID: 2ADBH-101

Applicant : ShenZhen DeFengYuan Technology Co.,Ltd
Address : 3007 Room, 30th Floor, SEG Plaza, Huaqiangbei Road, Futian District, Shenzhen, China

Equipment Under Test (EUT):

Name	:	Bluetooth keyboard Case
Model	:	7 inch, 7.8 inch, 8 inch, 9.7 inch, 10.1 inch, 12.2 inch

In Accordance with: FCC PART 15, SUBPART C : 2013 (Section 15.247)

Report No	:	CST-TCB140917054
Date of Test	:	September 19, 2014- September 26, 2014
Date of Issue	:	September 27, 2014

Test Result: PASS

In the configuration tested, the EUT complied with the standards specified above

Authorized Signature

(Mark Zhu) General Manager

The manufacture should ensure that all the products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of Shenzhen Certification Technology Service Co., Ltd. Or test done by Shenzhen Certification Technology Service Co., Ltd. Approvals in connection with, distribution or use of the product described in this report must be approved by Shenzhen Certification Technology Service Co., Ltd. Approvals in writing.

Contents

1.		neral Information4	
	1.1.	Description of Device (EUT)	4
	1.2.	Accessories of device (EUT)	5
	1.3.	Test Lab information	5
2.	Su	mmary of test	
	2.1.	Summary of test result	6
	2.2.	Assistant equipment used for test	6
	2.3.	Block Diagram	7
	2.4.	Test mode	7
	2.5.	Test Conditions	7
	2.6.	Measurement Uncertainty (95% confidence levels, k=2)	8
	2.7.	Test Equipment	9
3.	Ma	nximum Peak Output power11	
	3.1.	Limit 1	1
	3.2.	Test Procedure	1
	3.3.	Test Setup	1
	3.4.	Test Result 1	1
4.	Ba	ndwidth12	
	4.1.	Limit	2
	4.2.	Test Procedure	2
	4.3.	Test Result	2
5.	Ca	rrier Frequency Separation15	
5.		rrier Frequency Separation15 Limit	5
5.	5.1.		
5.	5.1. 5.2.	Limit	5
5. 6.	5.1. 5.2. 5.3. Nu	Limit	5 5
	5.1. 5.2. 5.3. Nu	Limit	5 5
	5.1. 5.2. 5.3. Nu 6.1.	Limit	5 5 6
	5.1. 5.2. 5.3. Nu 6.1. 6.2.	Limit	5 5 6 6
	 5.1. 5.2. 5.3. Nu 6.1. 6.2. 6.3. 	Limit	5 5 6 6
6.	 5.1. 5.2. 5.3. Nu 6.1. 6.2. 6.3. 	Limit	5 5 6 6
6.	 5.1. 5.2. 5.3. Nu 6.1. 6.2. 6.3. Dw 7.1. 	Limit 1 Test Procedure 1 Test Result 1 mber Of Hopping Channel 16 Limit 1 Test Procedure 1 Test Result 1	5 5 6 6 6 8
6.	 5.1. 5.2. 5.3. Nu 6.1. 6.2. 6.3. Dw 7.1. 7.2. 	Limit 1 Test Procedure 1 Test Result 1 mber Of Hopping Channel 16 Limit 1 Test Procedure 1 Test Result 1 Test limit 1 Test limit 1	5 5 6 6 8 8
6.	 5.1. 5.2. 5.3. Nu 6.1. 6.2. 6.3. Dv 7.1. 7.2. 7.3. 	Limit 1 Test Procedure. 1 Test Result 1 mber Of Hopping Channel 16 Limit 1 Test Procedure. 1 Test Result 1 Test Result 1 Test Procedure. 1 Test Result 1 Test Result 1 Test Result 1 Test Result 1 Test Procedure. 1 Test limit 1 Test Procedure 1 Test Procedure 1	5 5 6 6 8 8
6. 7.	 5.1. 5.2. 5.3. Nu 6.1. 6.2. 6.3. Dw 7.1. 7.2. 7.3. Rational Systems (Note: System 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	Limit 1 Test Procedure 1 Test Result 1 mber Of Hopping Channel 16 Limit 1 Test Procedure 1 Test Result 1 Test limit 1 Test Procedure 1 Test limit 1 Test Results 1	5 5 6 6 6 8 8 8 8
6. 7.	 5.1. 5.2. 5.3. Nu 6.1. 6.2. 6.3. Dv 7.1. 7.2. 7.3. Ra 8.1. 	Limit1Test Procedure1Test Result1mber Of Hopping Channel16Limit1Test Procedure1Test Result1vell Time18Test limit1Test Procedure1Test Result1Mell Time18Test limit1Test Result1Test Result1Test Procedure1Test Results1Test Results1	5 5 6 6 6 8 8 8 8 8 1
6. 7.	 5.1. 5.2. 5.3. Nu 6.1. 6.2. 6.3. Dw 7.1. 7.2. 7.3. Ra 8.1. 8.2. 	Limit 1 Test Procedure. 1 Test Result 1 mber Of Hopping Channel 16 Limit 1 Test Procedure. 1 Test Result 1 Test limit. 1 Test Procedure 1 Test Results 1 Test Results 1 Test Results 2 Limit 2	5 5 6 6 6 8 8 8 8 8 1 2
6. 7.	 5.1. 5.2. 5.3. Nu 6.1. 6.2. 6.3. Dw 7.1. 7.2. 7.3. Ra 8.1. 8.2. 8.3. 	Limit 1 Test Procedure 1 Test Result 1 mber Of Hopping Channel 16 Limit 1 Test Procedure 1 Test Result 1 Test limit 1 Test Procedure 1 Test Results 1 Test Results 1 Itimit 2 Block Diagram of Test setup 2	5 5 6 6 6 8 8 8 8 8 1 2 2
6. 7.	 5.1. 5.2. 5.3. Nu 6.1. 6.2. 6.3. Dv 7.1. 7.2. 7.3. Ra 8.1. 8.2. 8.3. 8.4. 	Limit1Test Procedure1Test Result1mber Of Hopping Channel16Limit1Test Procedure1Test Result1rell Time18Test limit1Test Results1Test Results1Limit21Limit2Block Diagram of Test setup2Test Procedure2	5 5 6 6 6 8 8 8 8 1 2 2
6. 7. 8.	 5.1. 5.2. 5.3. Nu 6.1. 6.2. 6.3. Dw 7.1. 7.2. 7.3. Ra 8.1. 8.2. 8.3. 8.4. Ba 	Limit1Test Procedure.1Test Result1mber Of Hopping Channel16Limit1Test Procedure.1Test Result1rell Time.18Test limit.1Test Procedure1Test Results1Itest Procedure1Test Results1Test Results1Test Results1Test Results1Test Results21Limit2Block Diagram of Test setup2Test Result2Test Result2Test Result2Test Result2Test Procedure.2Test Procedure.2Test Result2Test Result2Test Result2Test Result2Test Result2	5 5 6 6 6 6 8 8 8 8 1 2 2 3
6. 7. 8.	 5.1. 5.2. 5.3. Nu 6.1. 6.2. 6.3. Dw 7.1. 7.2. 7.3. Ra 8.1. 8.2. 8.3. 8.4. Ba 9.1. 	Limit1Test Procedure.1Test Result1mber Of Hopping Channel16Limit1Test Procedure.1Test Result1rell Time.18Test limit1Test Results1Test Results1Limit1Test Results1Test Results1Test Results1Test Results1Test Results21Limit2Block Diagram of Test setup2Test Procedure.2Test Result2Test Procedure.2Test Procedure.2Test Procedure.2Test Procedure.2Test Procedure.2Test Procedure.2Test Procedure.2Test Procedure.2Test Procedure.2Test Result2Test Result	5 5 6 6 6 6 8 8 8 8 1 2 2 3 9

9.4. Test Result	
10. Power Line Conducted Emissions	
10.1. Block Diagram of Test Setup	
10.2. Limit	
10.3. Test Procedure	
10.4. Test Result	
11. Antenna Requirements	42
11.1. Limit	
11.2. Result	
12. Test setup photo	43
12.1. Photos of Radiated emission	
12.2. Photos of Conducted Emission test	
13. Photos of EUT	45

1. General Information

1.1. Description of Device (EUT)

EUT Model No. DIFF. Trade mark	 Bluetooth keyboard Case 7 inch, 7.8 inch, 8 inch, 9.7 inch, 10.1 inch, 12.2 inch There's no difference between the models except the appearance color and model name, so all the test were performed on the model 10.1 inch N/A
Power supply Adapter	: DC 3.7V from lithium battery. : NIL
Radio Technology	: Bluetooth 3.0
Operation frequency	: 2402-2480MHz
Modulation	: GFSK
Antenna Type	: Integrated Antenna, max gain 0dBi.
Applicant	: ShenZhen DeFengYuan Technology Co.,Ltd
Address	: 3007 Room, 30th Floor, SEG Plaza, Huaqiangbei Road, Futian District, Shenzhen, China
Manufacturer	ShenZhen DeFengYuan Technology Co.,Ltd
Address	Guantian New Era Industrial Zone, Shiyan Town, Bao An District, Shenzhen

1.2. Accessories of device (EUT)

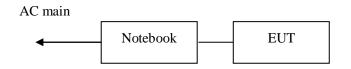
Accessories 1 : NIL Type : NIL

1.3. Test Lab information

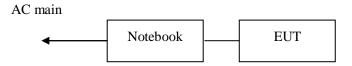
Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China FCC Registered No.:197647 IC Registered No.: 8528B

2. Summary of test

2.1. Summary of test result


Description of Test Item	Standard	Results			
Maximum Peak Output Power	FCC Part 15: 15.247(b)(1) ANSI C63.4 :2003	PASS			
Bandwidth	FCC Part 15: 15.215 ANSI C63.4 :2003	PASS			
Carrier Frequency Separation	FCC Part 15: 15.247(a)(1) ANSI C63.4 :2003	PASS			
Number Of Hopping Channel	FCC Part 15: 15.247(a)(1)(iii) ANSI C63.4 :2003	PASS			
Dwell Time	FCC Part 15: 15.247(a)(1)(iii) ANSI C63.4 :2003	PASS			
Radiated Emission	FCC Part 15: 15.209 FCC Part 15: 15.247(d) ANSI C63.4 :2003	PASS			
Band Edge Compliance	FCC Part 15: 15.247(d) ANSI C63.4 :2003	PASS			
Power Line Conducted Emissions	FCC Part 15: 15.207 ANSI C63.4 :2003	PASS			
Antenna requirement	FCC Part 15: 15.203	PASS			
Note: Test with the test procedure Bluetool.					

2.2. Assistant equipment used for test


Description	:	NIL
Manufacturer	:	NIL
Model No.	:	NIL
Input	:	NIL
Output	:	NIL

2.3. Block Diagram

1, For radiated emissions test: EUT was placed on a turn table, which is 0.8 meter high above ground. EUT was be set into BT test mode by adb.exe software before test.

2, For Power Line Conducted Emissions Test: EUT was connected to power adapter by 1m USB line

2.4. Test mode

The test software "ASTTestTool.exe" was used to control EUT work in Continuous TX mode, and select test channel, wireless mode

Tested mode, channel, and data rate information					
Mode Channel Frequency					
(MHz)					
	Low :CH1	2402			
GFSK	Middle: CH40	2441			
	High: CH79	2480			

2.5. Test Conditions

Temperature range	21-25℃
Humidity range	40-75%
Pressure range	86-106kPa

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.42dB	
Uncertainty for Radiation Emission test in 3m	2.13 dB	Polarize: V
chamber (below 30MHz)	2.57dB	Polarize: H
Uncertainty for Radiation Emission test in 3m	3.54dB	Polarize: V
chamber (30MHz to 1GHz)	4.1dB	Polarize: H
Uncertainty for Radiation Emission test in 3m	2.08dB	Polarize: H
chamber (1GHz to 25GHz)	2.56dB	Polarize: V
Uncertainty for radio frequency	1×10-9	
Uncertainty for conducted RF Power	0.65dB	
Uncertainty for temperature	0.2°C	
Uncertainty for humidity	1%	
Uncertainty for DC and low frequency voltages	0.06%	

2.6. Measurement Uncertainty (95% confidence levels, k=2)

2.7. Test Equipment

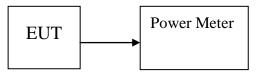
Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
3m Semi-Anechoic	ETS-LINDGREN	N/A	SEL0017	Nov. 16, 13	1 Year
Spectrum analyzer	Agilent	E4407B	MY49510055	Oct. 30, 13	1 Year
Receiver	R&S	ESCI	101165	Oct. 30, 13	1 Year
Receiver	R&S	ESCI	101202	Oct. 30, 13	1 Year
Bilog Antenna	SCHWARZBECK	VULB 9168	9168-438	Mar.11, 14	1 Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D(1201)	Mar.11, 14	1 Year
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA 9170 D(1432)	Mar.11, 14	1 Year
Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	Mar.11, 14	1 Year
L.I.S.N.	SCHWARZBECK	NSLK8126	8126466	Oct. 30, 13	1 Year
Cable	Resenberger	SUCOFLEX 104	MY6562/4	Oct. 30, 13	1 Year
Cable	Resenberger	SUCOFLEX 104	309972/4	Oct. 30, 13	1 Year
Cable	Resenberger	SUCOFLEX 104	329112/4	Oct. 30, 13	1 Year
Power Meter	Anritsu	ML2487A	6K00001491	Oct. 30, 13	1Year
Power sensor	Anritsu	ML2491A	32516	Oct. 30, 13	1 Year
Pre-amplifier	SCHWARZBECK	BBV9743	9743-019	Oct. 30, 13	1 Year
Pre-amplifier	Quietek	AP-180C	CHM-0602012	Oct. 30, 13	1 Year
Base station	Agilent	E5515C	GB44300243	Oct. 30, 13	1 Year
Temperature controller	Terchy	MHQ	120	Oct. 30, 13	1 Year
Power divider	Anritsu	K240C	020346	Oct. 30, 13	1 Year
Signal Generator	ROHDE&SCHWA	CMU200	116785	Oct. 30, 13	1 Year

Report No.: CST-TCB140917054

	RZ				
Attenuator	Agilent	8491B	MY39262165	Oct. 30, 13	1 Year
X-series USB Peak					
and Average Power	Agilent	U2021XA	MY54080020	2014.01.19	1 Year
Sensor					
X-series USB Peak					
and Average Power	Agilent	U2021XA	MY54110001	2014.01.19	1 Year
Sensor					
4 Ch.Simultaneous					
Sampling 14 Bits 2	Agilent	U2531A	TW54063507	2014.01.19	1 Year
MS/s					

3. Maximum Peak Output power

3.1. Limit


Please refer section15.247.

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts, the e.i.r.p shall not exceed 4W

3.2. Test Procedure

The transmitter output is connected to the RF Power Meter. The RF Power Meter is set to the peak power detection.

3.3. Test Setup

3.4. Test Result

EUT: Blueto	oth keyboard	Case M/N	: 10.1 inch					
Test date: 20	14-09-25	Test site: RF site	Tested b	oy: Peter				
Mode Freq (MHz)		PK Output Power (dBm)	Power Power		Margin (dB)			
	2402	-5.58	0.28	30	35.58			
GFSK	2441	-5.62	0.27	30	35.62			
	2480	-5.57	0.28	30	35.57			
Conclusion: PASS								

4. Bandwidth

4.1. Limit

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

4.2. Test Procedure

The transmitter output was coupled to a spectrum analyzer via a antenna. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30kHz RBW and 30kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.3. Test Result

EUT: Bluetooth keyboard Case M/N: 10.1 inch								
Test date: 20	14-09-25	Test site: RF site	Tested by: Peter					
Mode	Mode Freq 20dB Bandwidth (MHz) (MHz)		Limit (kHz)	Conclusion				
2402		0.8948	/	PASS				
GFSK	2441	0.8972	/	PASS				
	2480	0.9017	/	PASS				

Orginal Test data For 20dB bandwidth GFSK:

5. Carrier Frequency Separation

5.1. Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW

5.2. Test Procedure

The transmitter output was coupled to a spectrum analyzer via a antenna. The carrier frequency was measured by spectrum analyzer with 30kHz RBW and 30kHz VBW.

5.3. Test Result

EUT: Bluetooth keyboard Case M/N: 10.1 inch						
Test date: 2014	-09-25	Test site: RF site	Tested by: Simple			
Mode/Channel	Channel separation (MHz)	20dB Bandwidth (MHz)	Limit (MHz) 2/3 20dB bandwidth	Conclusion		
GFSK	1.014	0.8972	0.5981	PASS		

Orginal test data for channel separation GFSK

6. Number Of Hopping Channel

6.1. Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels


6.2. Test Procedure

The transmitter output was coupled to a spectrum analyzer via a antenna. The number of hopping channel was measured by spectrum analyzer with 300kHz RBW and 1MHz VBW.

6.3. Test Result

EUT: Bluetooth keyboard Case M/N: 10.1 inch							
Test date: 2014-09-25		Test site: RF site	Tested by: Pe	ter			
Mode	Number o	f hopping channel	Limit	Conclusion			
GFSK		79	>15	PASS			

Original test data for hopping channel number GFSK

7. Dwell Time

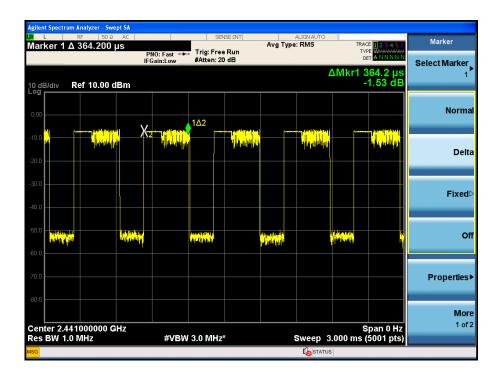
7.1. Test limit

Please refer section15.247

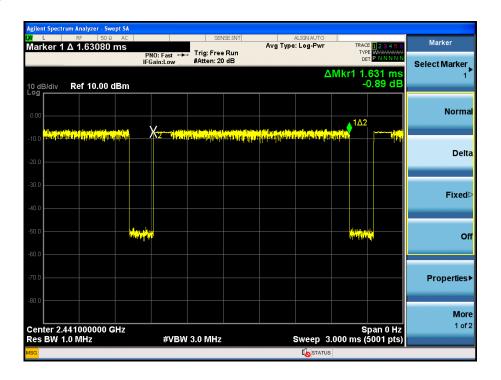
According to \$15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz. The average time of occupancy on any frequency shall not greater than 0.4 s within period of 0.4 sec- onds multiplied by the number of hopping channel employed.

7.2. Test Procedure

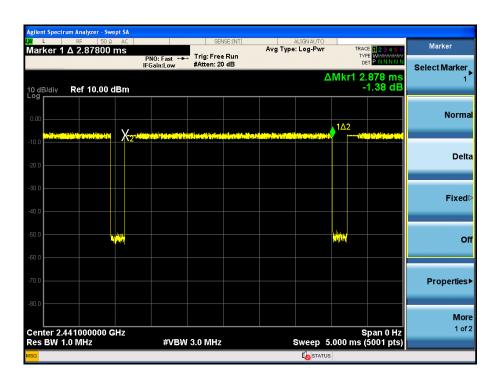
- 7.2.1. Place the EUT on the table and set it in transmitting mode.
- 7.2.2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 7.2.3. Set center frequency of spectrum analyzer = operating frequency.
- 7.2.4. Set the spectrum analyzer as RBW, VBW=1MHz, Span = 0Hz, Sweep = auto.
- 7.2.5. Repeat above procedures until all frequency measured were complete.
- 7.3. Test Results


PASS.

Detailed information please see the following page.


EUT: Bluetooth keyboard Case M/N: 10.1 inch								
Test date:	2014-09-25	Test site: RF sit	te Teste	d by: Peter				
Mode	Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limit (s)	Conclusion		
	DH1	2441	0.3642	233.088	< 0.4	PASS		
GFSK	DH3	2441	1.631	347.947	< 0.4	PASS		
	DH5	2441	2.878	368.384	< 0.4	PASS		
Note: 1 A	period time =	0.4 (s) * 79 = 3	31.6(s)					
2 DH1 time slot = Pulse Duration * $(1600/(1*79))$ * A period time								
DH3 time slot = Pulse Duration * $(1600/(3*79))$ * A period time								
D	DH5 time slot = Pulse Duration * $(1600/(5*79))$ * A period time							

GFSK


DH1:

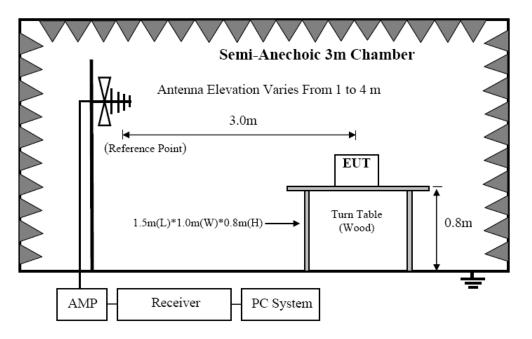
DH3:

DH5

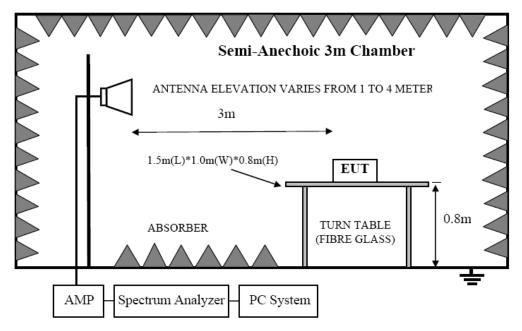
8. Radiated emissions

8.1. Limit

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.


MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

15.209 Limit


FREQUENCY	DISTANCE	FIELD STREN	IGTHS LIMIT	
MHz	Meters	μV/m	$dB(\mu V)/m$	
0.009-0.490	300	2400/F(KHz)	/	
0.490-1.705	30	24000/F(KHz)	/	
1.705-30	30	30	29.5	
30 ~ 88	3	100	40.0	
88 ~ 216	3	150	43.5	
216 ~ 960	3	200	46.0	
960 ~ 1000	3	500	54.0	
Above 1000	3	74.0 dB(µV	/)/m (Peak)	
Above 1000	5	54.0 dB(μ V)/m (Average)		

8.2. Block Diagram of Test setup

8.2.1. In 3m Anechoic Chamber Test Setup Diagram for below 1GHz

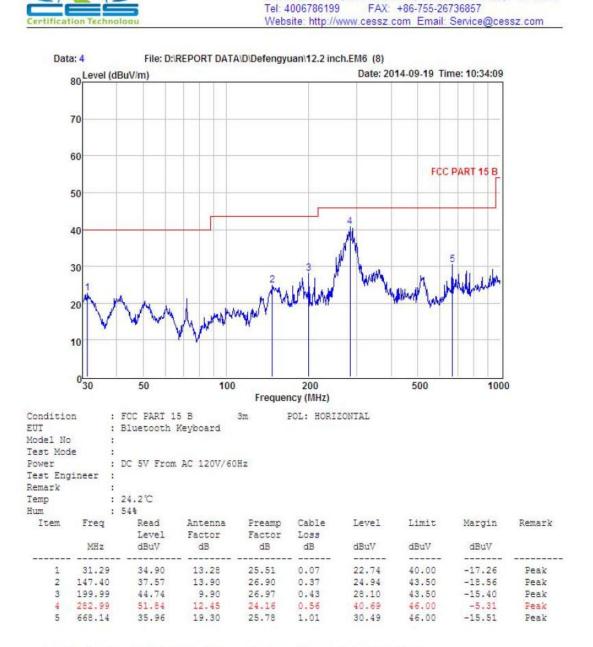
8.2.2. In 3m Anechoic Chamber Test Setup Diagram for frequency above 1GHz

Note: For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP.

8.3. Test Procedure

(1) EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic

FCC ID: 2ADBH-101


chamber.

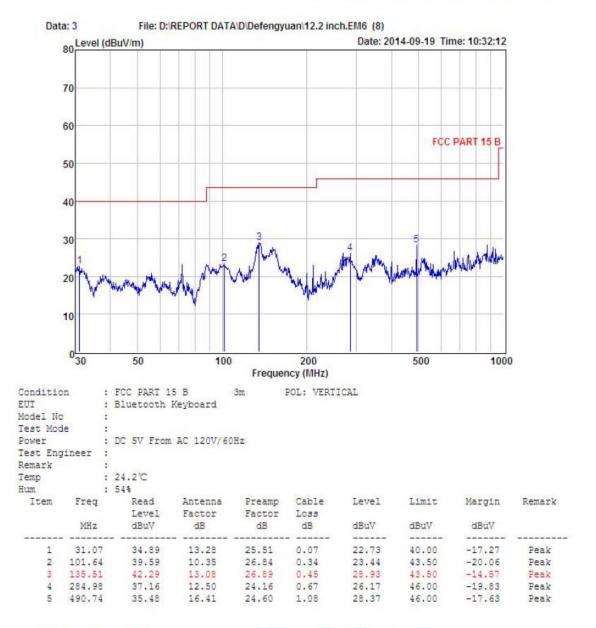
- (2) Setup EUT and simulator as shown in section 1.4 and 6.1
- (3) Test antenna was located 3m from the EUT on an adjustable mast. Below pre-scan procedure was first performed in order to find prominent radiated emissions.
- (a) Change work frequency or channel of device if practicable.
- (b) Change modulation type of device if practicable.
- (c) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions
- (4) Spectrum frequency from 9KHz to 25GHz (tenth harmonic of fundamental frequency) was investigated
- (5) For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4 2003 on Radiated Emission test.
- (6) For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz, VBW is set at 3MHz for Peak measure; RBW is set at 1MHz, VBW is set at 10Hz for Average measure.
- 8.4. Test Result

We have scanned the 10th harmonic from 9KHz to the EUT. Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Shenzhen Certification Technology Service Co., Ltd.


2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China

From 30MHz to 1000MHz: Conclusion: PASS

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: 4006786199 FAX: +86-755-26736857 Website: http://www.cessz.com Email: Service@cessz.com

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

Remark: All modes have been tested, and only worst data of GFSK mode, Channel 2402MHz was listed in this report.

1GHz—25GHz Radiated emissison Test result									
EUT: Bluetooth keyboard Case M/N: 10.1 inch									
Pow	er: DC 3.	7V From b	attery						
Test	date: 202	14-09-25	Test site	: 3m Cł	namber	Tested by	y: Peter		
Test	mode: G	FSK Tx CH	H1 2402M	lHz					
Ante	enna pola	rity: Vertica	al						
No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	4804	44.28	33.95	10.18	34.26	54.15	74	19.85	РК
2	4804	31.26	33.95	10.18	34.26	41.13	54	12.87	AV
3	7206	/							
4	9608	/							
5	12010	/							
Ante	enna Pola	rity: Horizo	ontal						
1	4804	40.63	33.95	10.18	34.26	50.5	74	23.5	PK
2	4804	30.85	33.95	10.18	34.26	40.72	54	13.28	AV
3	7206	/							
4	9608	/							
5	12010	/							

Note:

1, Measuring frequency from 1GHz to 25GHz

2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK

2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK

3, Result = Read level + Antenna factor + cable loss-Amp factor

4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

1GHz—25GHz Radiated emissison Test result									
EUT: Bluetooth keyboard Case M/N: 10.1 inch									
Power	r: DC 3.7	V From bat	tery						
Test d	late: 2014	1-09-25	Test site:	3m Cha	mber	Tested by:	Peter		
Test n	node: GF	SK Tx CH4	40 2441M	Hz					
Anten	na polari	ty: Vertical							
No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/ m)	Margin (dB)	Remark
1	4882	40.87	33.93	10.2	34.29	50.71	74	23.29	PK
2	4882	30.56	33.93	10.2	34.29	40.4	54	13.6	AV
3	7323	/							
4	9764	/							
5	12205	/							
Anten	na Polari	ty: Horizon	tal						
1	4882	41.72	33.93	10.2	34.29	51.56	74	22.44	PK
2	4882	30.69	33.93	10.2	34.29	40.53	54	13.47	AV
3	7323	/							
4	9764	/							
5	12205	/							

Note:

1, Measuring frequency from 1GHz to 25GHz

2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK

2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK

3, Result = Read level + Antenna factor + cable loss-Amp factor

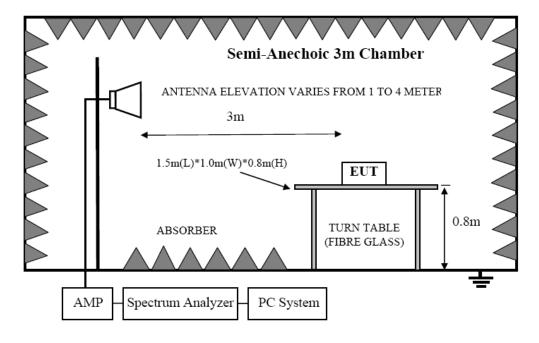
4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

1GHz—25GHz Radiated emissison Test result									
EUT: Bluetooth keyboard Case M/N: 10.1 inch									
Power: DC 3.7V From battery Test date: 2014-09-25 Test site: 3m Chamber Tested by: Peter									
			namber	Tested by	: Peter				
Test mode: GFSK Tx CH7		MHZ							
Antenna polarity: Vertical						[1		
No Freq Level F		Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/ m)	Margin (dB)	Remark		
1 4960 41.29	33.98	10.22	34.25	51.24	74	22.76	PK		
2 4960 31.12	33.98	10.22	34.25	41.07	54	12.93	AV		
3 7440 /									
4 9920 /									
5 12400 /									
Antenna Polarity: Horizont	tal								
1 4960 40.29	33.98	10.22	34.25	50.24	74	23.76	PK		
2 4960 30.63	33.98	10.22	34.25	40.58	54	13.42	AV		
3 7440 /									
4 9920 /									
5 12400 /									

Note:

1, Measuring frequency from 1GHz to 25GHz

2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK


2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK

3, Result = Read level + Antenna factor + cable loss-Amp factor

4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

9. Band Edge Compliance

9.1. Block Diagram of Test Setup

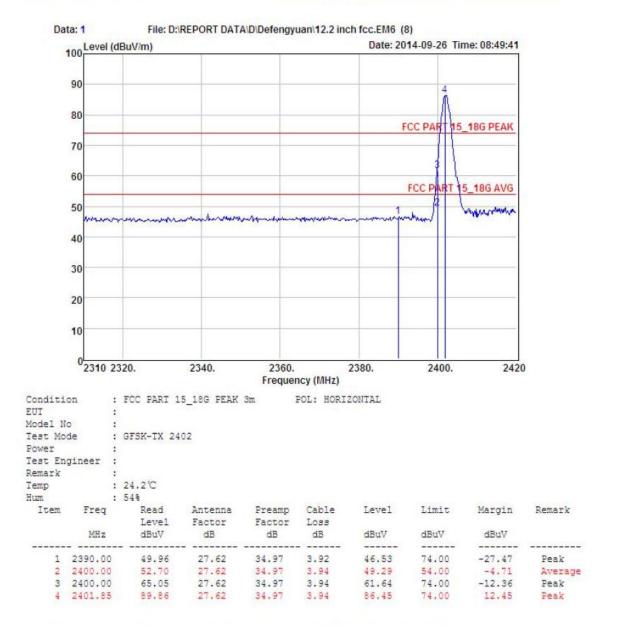
9.2. Limit

All the lower and upper band-edges emissions appearing within 2310MHz to 2390MHz and 2483.5MHz to 2500MHz restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions outside operation frequency band 2400MHz to 2483.5MHz and 5725MHz to 5850MHz shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

9.3. Test Procedure

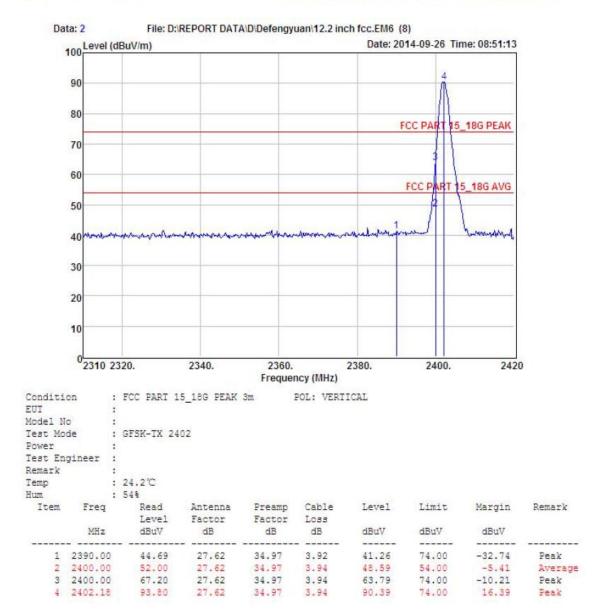
Same with clause 6.3 except change investigated frequency range from 2310MHz to 2415MHz, 2475MHz to 2500MHz.

9.4. Test Result


PASS. (See below detailed test data)

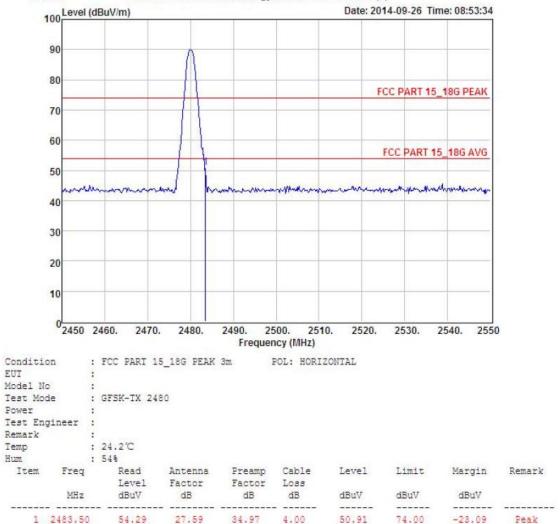
FCC ID: 2ADBH-101

GFSK CH LOW :


Certification Technologu

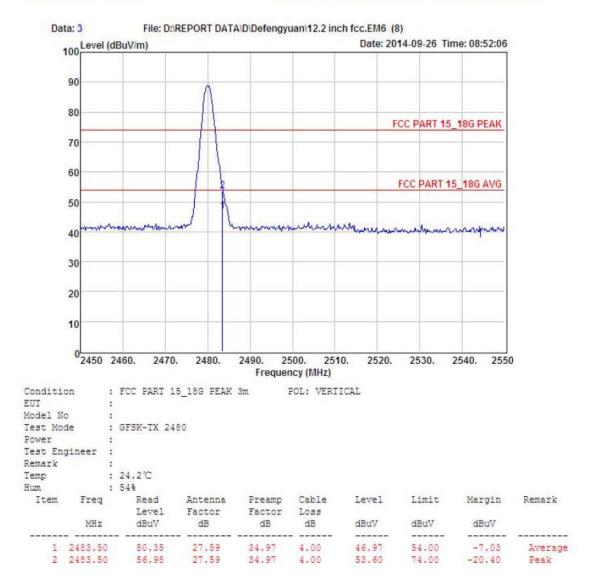
Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: 4006786199 FAX: +86-755-26736857 Website: http://www.cessz.com Email: Service@cessz.com

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss



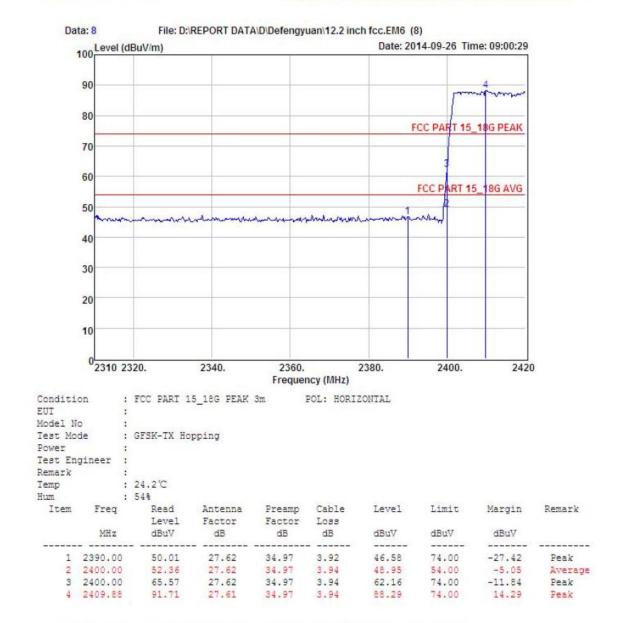
Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

CH High :


Data: 4

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: 4006786199 FAX: +86-755-26736857 Website: http://www.cessz.com Email: Service@cessz.com File: D:\REPORT DATA\D\Defengyuan\12.2 inch fcc.EM6 (8) Date: 2014-09-26 Time: 08:53:34

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

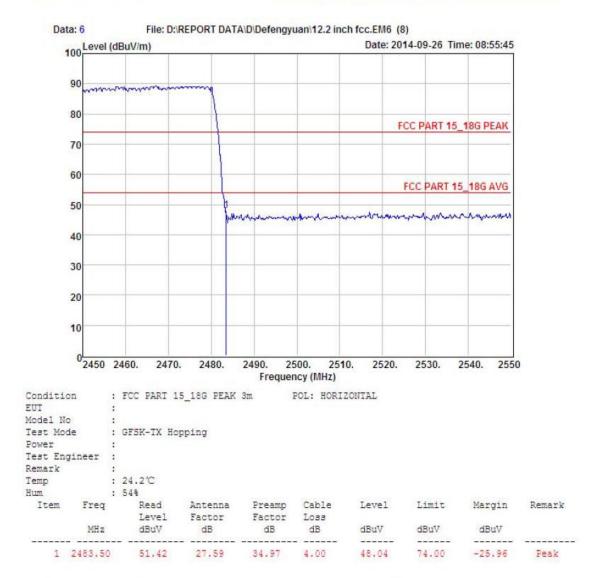


Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

Hopping

Low

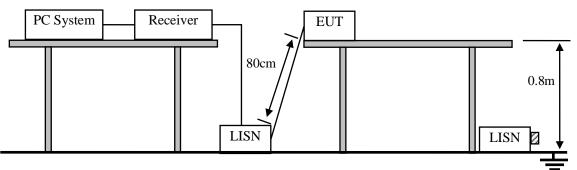
Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss



Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

High

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss


Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: 4006786199 FAX: +86-755-26736857 Website: http://www.cessz.com Email: Service@cessz.com

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

10. Power Line Conducted Emissions

10.1.Block Diagram of Test Setup

Ξ:50Ω Terminator

10.2.Limit

	Maximum RF Line Voltage				
Frequency	Quasi-Peak Level	Average Level			
	$dB(\mu V)$	$dB(\mu V)$			
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*			
500kHz ~ 5MHz	56	46			
5MHz ~ 30MHz	60	50			

Notes: 1. * Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

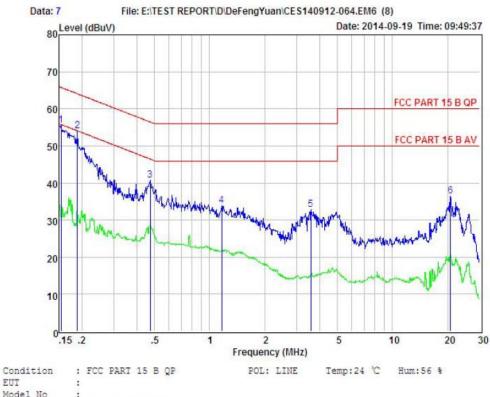
10.3.Test Procedure

(1) The EUT was placed on a non-metallic table, 80cm above the ground plane.

(2) Setup the EUT and simulator as shown in 10.1

(3) The EUT Power connected to the power mains through a power adapter and a line impedance stabilization network (L.I.S.N1). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N2), this provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4 2003 on conducted Emission test.

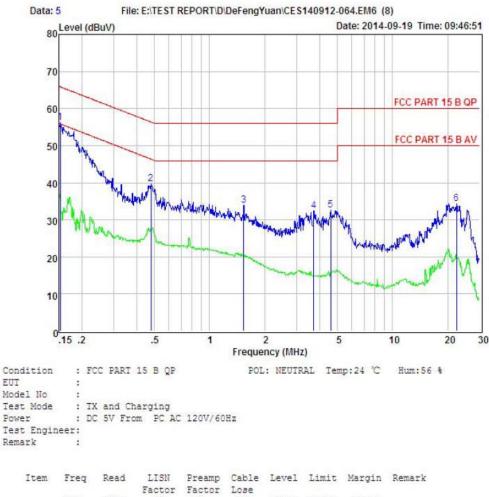
(4) The bandwidth of test receiver is set at 10KHz.


(5) The frequency range from 150 KHz to 30MHz is checked.

10.4.Test Result

PASS. (See below detailed test data)

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: 4006786199 Fax: +86-755-26736857 Website: http://www.cessz.com Email:Service@cessz.com


EUT : Model No : Test Mode : TX and Charging Power : DC 5V From PC AC 120V/60Hz Test Engineer: Remark :

Ite	em Freq	Read	LISN Factor	Preamp Factor		Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	0.154	45.78	0.03	-9.72	0.10	55.63	65.78	-10.15	Peak
2	0.189	44.20	0.03	-9.72	0.10	54.05	64.06	-10.01	Peak
3	0.474	30.81	0.03	-9.72	0.10	40.66	56.45	-15.79	Peak
4	1.166	24.01	0.04	-9.71	0.10	33.86	56.00	-22.14	Peak
5	3.584	22.83	0.08	-9.69	0.12	32.72	56.00	-23.28	Peak
6	20.814	26.19	0.33	-9.51	0.37	36.40	60.00	-23.60	Peak

Remarks: Level = Read + LISN Factor - Preamp Factor + Cable loss

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: 4006786199 Fax: +86-755-26736857 Website: http://www.cessz.com Email:Service@cessz.com

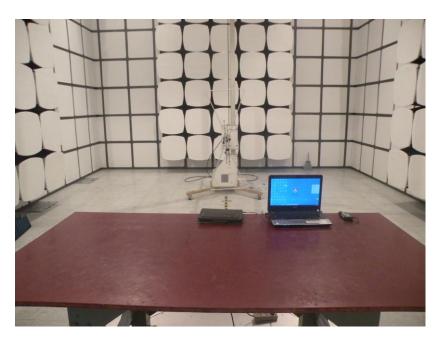
	MHz	dBuV	dB	dB dB	dB	dBuV	dBuV	dBuV	
1	0.152	46.43	0.03	-9.72	0.10	56.28	65.87	-9.59	Peak
		29.88		-9.72		39.73			Peak
3	1.535	24.03	0.05	-9.71	0.10	33.89	56.00	-22.11	Peak
4	3.700	22.45	0.08	-9.69	0.12	32.34	56.00	-23.66	Peak
5	4.598	22.72	0.09	-9.68	0.12	32.61	56.00	-23.39	Peak
6 3	2.416	24.05	0.40	-9.54	0.41	34.40	60.00	-25.60	Peak

Remarks: Level = Read + LISN Factor - Preamp Factor + Cable loss

Note: If QP Result comply with AV limit, AV Result is deemed to comply with AV limit

11.Antenna Requirements

11.1.Limit


For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

11.2.Result

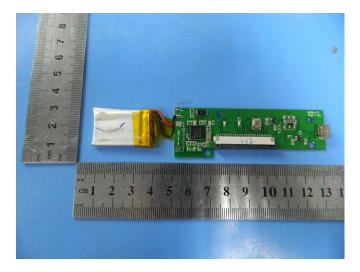
The antennas used for this product are PCB Antenna for Bluetooth, no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 0dBi for Bluetooth.

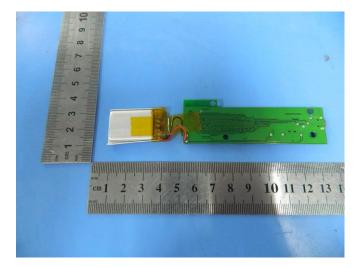
12. Test setup photo

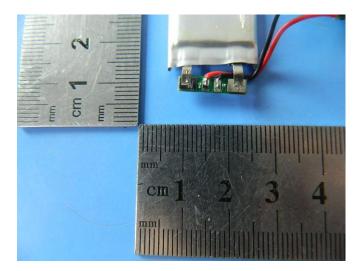
12.1.Photos of Radiated emission

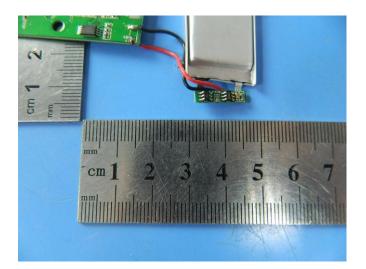
12.2.Photos of Conducted Emission test

13.Photos of EUT









-----END OF THE REPORT------