

RADIO TEST REPORT FCC ID: 2ADAO-KHWBC502F001

Product: Asset Tag 2 Trade Mark: Kontakt.io Model No.: KHWBC502F001 Family Model: N/A Report No.: S21082801004001 Issue Date: Sep 07. 2021

Prepared for

Kontakt Micro-Location Sp. z o.o

ul.Stoczniowcow 3, 30-709 Krakow, Poland

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1	TEST RESULT CERTIFICATION	
2	SUMMARY OF TEST RESULTS	4
3	FACILITIES AND ACCREDITATIONS	5
3. 3. 3.	LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5 5
4	GENERAL DESCRIPTION OF EUT	6
5	DESCRIPTION OF TEST MODES	8
6	SETUP OF EQUIPMENT UNDER TEST1	0
6. 6.	2 SUPPORT EQUIPMENT	1
7	TEST REQUIREMENTS	
		4
7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	CONDUCTED EMISSIONS TEST1RADIATED SPURIOUS EMISSION16DB BANDWIDTH2DUTY CYCLE2PEAK OUTPUT POWER3POWER SPECTRAL DENSITY3CONDUCTED BAND EDGE MEASUREMENT3SPURIOUS RF CONDUCTED EMISSIONS3	4 6 8 9 1 3 5 6
7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	CONDUCTED EMISSIONS TEST1RADIATED SPURIOUS EMISSION16DB BANDWIDTH2DUTY CYCLE2PEAK OUTPUT POWER35 POWER SPECTRAL DENSITY37 CONDUCTED BAND EDGE MEASUREMENT38 SPURIOUS RF CONDUCTED EMISSIONS3	4 6 9 1 3 5 6 7

1 TEST RESULT CERTIFICATION

Kontakt Micro-Location Sp. z o.o	
ul.Stoczniowcow 3, 30-709 Krakow, Poland	
Kontakt Micro-Location Sp. z o.o	
ul.Stoczniowcow 3, 30-709 Krakow, Poland	
Product description	
Asset Tag 2	
KHWBC502F001	
Family Model: N/A	

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J	
FCC 47 CFR Part 15, Subpart C	Complied
ANSI C63.10-2013	Complied
KDB 558074 D01 15.247 Meas Guidance v05r02	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: Aug 28. 2021 ~Sep 07, 2021
	hang. Hu
Testing Engineer	
	(Mary Hu)
	Alex
Authorized Signatory	Grow
	(Alex Li)

2 SUMMARY OF TEST RESULTS				
FCC Part15 (15.247), Subpart C				
Standard Section	Standard Section Test Item			
15.207	Conducted Emission	N/A		
15.247 (a)(2)	6dB Bandwidth	PASS		
15.247 (b)	Peak Output Power	PASS		
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS		
15.247 (e)	Power Spectral Density	PASS		
15.247 (d)	Band Edge Emission	PASS		
15.247 (d)	Spurious RF Conducted Emission	PASS		
15.203	Antenna Requirement	PASS		

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

® ilac

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4

Product Feature and Specification			
Equipment Asset Tag 2			
Trade Mark Kontakt.io			
FCC ID	2ADAO-KHWBC502F001		
Model No.	KHWBC502F001		
Family Model	N/A		
Model Difference N/A			
Operating Frequency 2402MHz~2480MHz			
Modulation	GFSK		
Number of Channels 40 Channels			
Antenna Type Surface Mount Ceramic Chip Antenna			
Antenna Gain Antenna1:2.58 dBi, Antenna2:2.58 dBi			
Power supply DC 3.6V *2, 1200mAh from battery			
Adapter	Adapter N/A		
Hardware Version:	V1.X		
Software Version: V2.X			

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Revision History Report No. Version Description **Issued Date** Initial issue of report Sep 07, 2021 S21082801004001 Rev.01

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

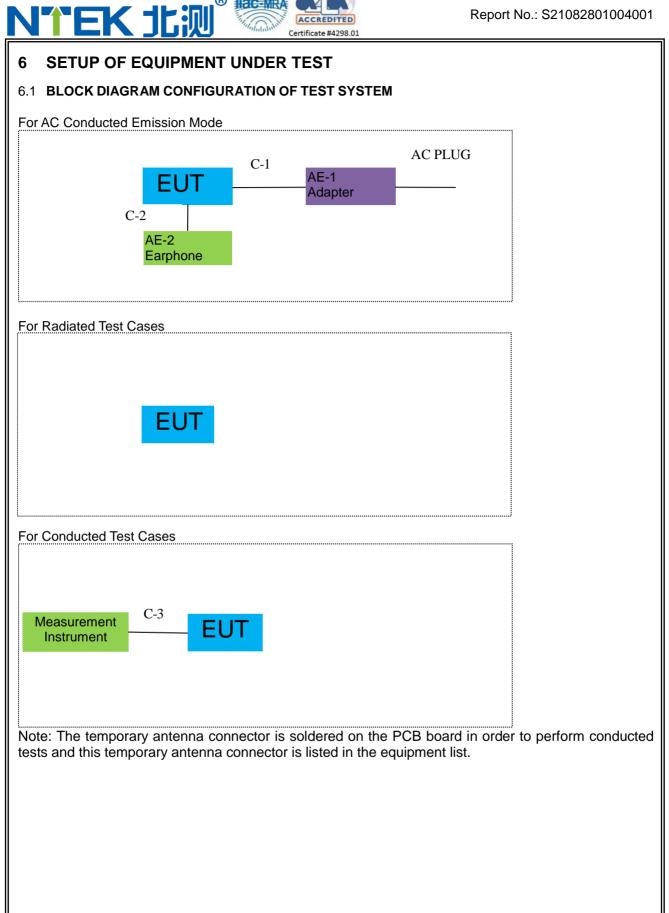
Note: fc=2402MHz+kx2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases		
Test Item	Data Rate/ Modulation	
AC Conducted Emission	Mode 1: normal link mode	
	Mode 1: normal link mode	
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps	
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps	
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps	
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps	
Conducted rest	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps	
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps	

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode(duty cycle =100% during the test)


- 2. AC power line Conducted Emission was tested under maximum output power.
- 3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
- 4. EUT built-in battery-powered, the battery is fully-charged.

This EUT has two Antenna,

ANT 1 and ANT 2 are correlated with each other, each with the same directional gain GANT: 0dBi Directional gain=GANT+10log(NANT)dBi

For MIMO mode, Directional gain=0+10log(2.58)dBi=5.59dBi in 2.4GHz band.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK 北测

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

aulatic	on& Conducted I	iest equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2021.04.27	2022.04.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2021.07.01	2022.06.30	1 year
4	Test Receiver	R&S	ESPI7	101318	2021.04.27	2022.04.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2021.03.29	2022.03.28	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2021.03.29	2022.03.28	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2020.11.19	2021.11.18	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2021.07.01	2022.06.30	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2020.11.19	2021.11.18	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2021.07.01	2022.06.30	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2019.08.06	2022.08.05	3 year
16	Filter	TRILTHIC	2400MHz	29	2021.07.01	2022.06.30	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

ACCREDITED Certificate #4298.01

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period	
1	Test Receiver	R&S	ESCI	101160	2021.04.27	2022.04.26	1 year	
2	LISN	R&S	ENV216	101313	2021.04.27	2022.04.26	1 year	
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2021.04.27	2022.04.26	1 year	
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year	
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year	
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year	
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year	

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

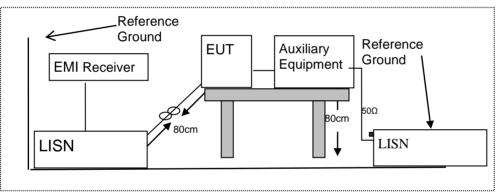
7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	


Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.6 Test Results

EUT:	Asset Tag 2	Model Name :	KHWBC502F001
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	N/A
Test Voltage :	N/A	Test Mode:	N/A

Note: The EUT is powered by battery, so this item is not applicable

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	GHz
16.42-16.423	399.9-410	4.5-5.15
16.69475-16.69525	608-614	5.35-5.46
16.80425-16.80475	960-1240	7.25-7.75
25.5-25.67	1300-1427	8.025-8.5
37.5-38.25	1435-1626.5	9.0-9.2
73-74.6	1645.5-1646.5	9.3-9.5
74.8-75.2	1660-1710	10.6-12.7
123-138	2200-2300	14.47-14.5
149.9-150.05	2310-2390	15.35-16.2
156.52475-156.52525	2483.5-2500	17.7-21.4
156.7-156.9	2690-2900	22.01-23.12
162.0125-167.17	3260-3267	23.6-24.0
167.72-173.2	3332-3339	31.2-31.8
240-285	3345.8-3358	36.43-36.5
322-335.4	3600-4400	(2)
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

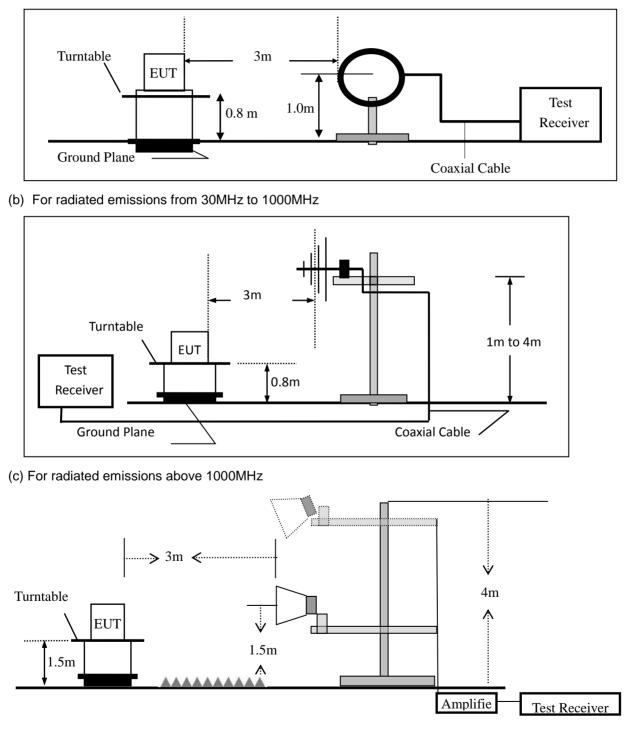
	Class B (dBuV/	/m) (at 3M)
Frequency(MHz)	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.


7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

Certificate #4298.01

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting			
Attenuation	Auto			
Start Frequency	1000 MHz			
Stop Frequency	10th carrier harmonic			
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average			

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:							
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth				
30 to 1000	QP	120 kHz	300 kHz				
Ab ave 4000	Peak	1 MHz	1 MHz				
Above 1000	Average	1 MHz	1 MHz				

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

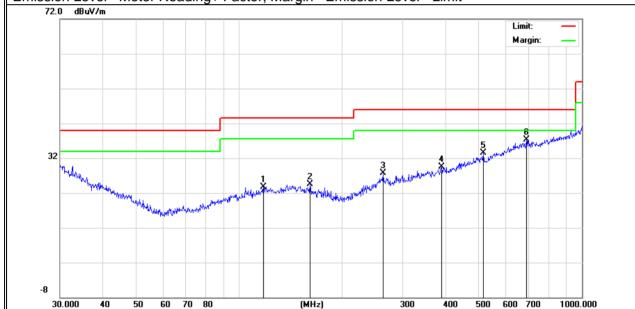
7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Asset Tag 2	Model No.:	KHWBC502F001
Temperature:	20 ℃	Relative Humidity:	48%
Lest Mode:	Mode1/Mode2/Mode3/ Mode4	Test By:	Mary Hu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over	r(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

	All the modulation modes have been tested, and the worst result was report as below.								
EUT:	Asset Tag 2	Model Name :	KHWBC502F001						
Temperature:	25 ℃	Relative Humidity:	55%						
Pressure:	1010hPa	Test Mode:	Mode 1						
Test Voltage :	DC 3.6V								

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	117.7724	5.71	18.03	23.74	43.50	-19.76	QP
V	160.9088	6.37	18.04	24.41	43.50	-19.09	QP
V	262.8955	6.67	20.94	27.61	46.00	-18.39	QP
V	389.3548	5.82	23.77	29.59	46.00	-16.41	QP
V	515.4374	6.93	26.62	33.55	46.00	-12.45	QP
V	689.5643	7.73	29.56	37.29	46.00	-8.71	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

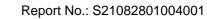
mark
QP QP QP QP
QP QP QP
QP QP
QP
<u></u>
I
)

			1GHz (1G		,						
EUT:		sset Tag	2		odel No.:			/BC502F	001		
Temperature	e: 20) °C		Re	elative Humidi	ity:	48%				
Test Mode:	M	ode2/Mo	de3/Mode4	l T€	est By:		Mary	/ Hu			
ANT 1											
Frequency	Read Level	Cable loss	Antenna Factor	Pream Factor		Lim	its	Margin	Rema	ark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ∖	//m)	(dB)			
		1	Low Cha	annel (24	02 MHz)(GFSk	K)Abov	ve 1G				
4802.19	63.66	5.21	35.59	44.30	60.16	74.(00	-13.84	Pk		Vertical
4802.19	43.91	5.21	35.59	44.30	40.41	54.0	00	-13.59	AV		Vertical
7206.02	60.39	6.48	36.27	44.60	58.54	74.(00	-15.46	Pk		Vertical
7206.02	43.53	6.48	36.27	44.60	41.68	54.0	00	-12.32	AV		Vertical
4804.64	61.50	5.21	35.55	44.30	57.96	74.(00	-16.04	Pk	ŀ	lorizontal
4804.64	43.55	5.21	35.55	44.30	40.01	54.0	00	-13.99	AV	H	lorizontal
7206.53	63.34	6.48	36.27	44.52	61.57	74.(00	-12.43	Pk	ŀ	lorizontal
7206.53	43.83	6.48	36.27	44.52	42.06	54.0		-11.94	AV	ŀ	lorizontal
	Mid Channel (2440 MHz)(GFSK)Above 1G										
4880.542	62.65	5.21	35.66	44.20	59.32	74.(00	-14.68	Pk		Vertical
4880.542	43.57	5.21	35.66	44.20	40.24	54.0	00	-13.76	AV		Vertical
7320.574	63.55	7.10	36.50	44.43	62.72	74.(00	-11.28	Pk		Vertical
7320.574	43.24	7.10	36.50	44.43	42.41	54.0	00	-11.59	AV		Vertical
4880.092	60.49	5.21	35.66	44.20	57.16	74.(00	-16.84	Pk	ŀ	lorizontal
4880.092	43.20	5.21	35.66	44.20	39.87	54.0	00	-14.13	AV	ŀ	lorizontal
7320.528	60.29	7.10	36.50	44.43	59.46	74.(00	-14.54	Pk	ŀ	lorizontal
7320.528	43.83	7.10	36.50	44.43		54.0		-11.00	AV	ŀ	lorizontal
		1	High Cha	annel (24	80 MHz)(GFSk	() Abo	ve 10	3			
4960.941	63.56	5.21	35.52	44.21	60.08	74.(00	-13.92	Pk		Vertical
4960.941	43.23	5.21	35.52	44.21	39.75	54.0	00	-14.25	AV		Vertical
7440.174	62.43	7.10	36.53	44.60	61.46	74.(00	-12.54	Pk		Vertical
7440.174	43.96	7.10	36.53	44.60	42.99	54.0	00	-11.01	AV		Vertical
4960.057	62.71	5.21	35.52	44.21	59.23	74.(00	-14.77	Pk	ŀ	lorizontal
4960.057	43.62	5.21	35.52	44.21	40.14	54.0	00	-13.86	AV	ŀ	lorizontal
7440.055	60.40	7.10	36.53	44.60	59.43	74.(00	-14.57	Pk	ŀ	lorizontal
7440.055	43.85	7.10	36.53	44.60	42.88	54.0	00	-11.12	AV	ŀ	lorizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.



EUT:		Asset Tag	2	Moc	del No.:		KHW	/BC502F(001		
Temperature	э:	20 ℃		Rela	ative Humidi	ity:	48%				
Test Mode:		Mode2/Mc	de3/Mode4	t Tes	t By:		Mary	/ Hu			
				I]
ANT 2 Frequency	Read Level		Antenna Factor	Preamp Factor	Emission Level	Lim	its	Margin	Dama	a ul c	Comment
(MHz)	(dBµV		dB/m	(dB)	(dBµV/m)	(dBµ\	//m)	(dB)	Rema	IFK	Comment
				1 1	2 MHz)(GFSK			1 1			
4802.36	61.47	7 5.21	35.59	44.30	57.97	74.0		-16.03	Pk		Vertical
4802.36	43.35		35.59	44.30	39.85	54.0		-14.15	AV		Vertical
7206.63	64.60		36.27	44.60	62.75	74.0		-11.25	Pk		Vertical
7206.63	43.92		36.27	44.60	42.07	54.0		-11.93	AV		Vertical
4804.52	62.23		35.55	44.30	58.69	74.0		-15.31	Pk		lorizontal
4804.52	43.36		35.55	44.30	39.82	54.0		-14.18	AV		lorizontal
7206.30	60.01		36.27	44.52	58.24	74.0		-15.76	Pk		lorizontal
7206.30	43.73		36.27	44.52	41.96	54.0	00	-12.04	AV		lorizontal
Mid Channel (2440 MHz)(GFSK)Above 1G											
4880.093	62.97	7 5.21	35.66	44.20	59.64	74.0	00	-14.36	Pk		Vertical
4880.093	43.47	7 5.21	35.66	44.20	40.14	54.0	00	-13.86	AV		Vertical
7320.193	64.41	I 7.10	36.50	44.43	63.58	74.0	00	-10.42	Pk		Vertical
7320.193	43.85	5 7.10	36.50	44.43	43.02	54.0	00	-10.98	AV		Vertical
4880.321	62.27	7 5.21	35.66	44.20	58.94	74.0	00	-15.06	Pk	F	lorizontal
4880.321	43.55	5 5.21	35.66	44.20	40.22	54.0	00	-13.78	AV	F	lorizontal
7320.116	61.04	4 7.10	36.50	44.43	60.21	74.0	00	-13.79	Pk	F	lorizontal
7320.116	43.92	2 7.10	36.50	44.43	43.09	54.0	00	-10.91	AV	F	lorizontal
			High Cha	annel (2480) MHz)(GFSK	() Abc	ove 10	3			
4960.431	62.67	7 5.21	35.52	44.21	59.19	74.0	00	-14.81	Pk		Vertical
4960.431	43.18	3 5.21	35.52	44.21	39.70	54.0	00	-14.30	AV		Vertical
7440.692	63.91	I 7.10	36.53	44.60	62.94	74.0	00	-11.06	Pk		Vertical
7440.692	43.28	3 7.10	36.53	44.60	42.31	54.0	00	-11.69	AV		Vertical
4960.333	63.45	5 5.21	35.52	44.21	59.97	74.0	00	-14.03	Pk	F	lorizontal
4960.333	43.16	5 5.21	35.52	44.21	39.68	54.0	00	-14.32	AV	F	lorizontal
7440.731	60.85	5 7.10	36.53	44.60	59.88	74.0	00	-14.12	Pk	F	lorizontal
7440.731	43.88	3 7.10	36.53	44.60	42.91	54.0	00	-11.09	AV	F	lorizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.

UT:	Asset Ta	ag 2		Mo	odel No.:		KHW	/BC502F	001	
emperature:	20 ℃			Re	Relative Humidity: 48%)		
est Mode:	Mode2/	Mode4		Те	Test By: Mary			/ Hu		
ANT1										
Frequency	Meter Reading	Cable Loss	Antenna Factor	Pream Facto		Lim	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ'	V/m)	(dB)	Туре	
		1Mbps(GFSK)								
2310.00	63.43	2.97	27.80	43.80	50.40	74	4	-23.60	Pk	Horizonta
2310.00	39.90	2.97	27.80	43.80	26.87	54	4	-27.13	AV	Horizonta
2310.00	60.80	2.97	27.80	43.80	47.77	74	4	-26.23	Pk	Vertical
2310.00	43.61	2.97	27.80	43.80	30.58	54	4	-23.42	AV	Vertical
2390.00	60.04	3.14	27.21	43.80	46.59	74	4	-27.41	Pk	Vertical
2390.00	43.05	3.14	27.21	43.80	29.60	54	4	-24.40	AV	Vertical
2390.00	62.83	3.14	27.21	43.80	49.38	74	4	-24.62	Pk	Horizontal
2390.00	43.03	3.14	27.21	43.80	29.58	54	4	-24.42	AV	Horizonta
2483.50	63.24	3.58	27.70	44.00	50.52	74	4	-23.48	Pk	Vertical
2483.50	43.03	3.58	27.70	44.00	30.31	54	4	-23.69	AV	Vertical
2483.50	61.14	3.58	27.70	44.00	48.42	74	4	-25.58	Pk	Horizonta
2483.50	43.22	3.58	27.70	44.00	30.50	54	4	-23.50	AV	Horizonta

EUT:	Asset T	ag 2		Mod	del No.:		KHW	/BC502F	001	
Temperature:	: 20 ℃			Rela	Relative Humidity: 48%		48%	,		
Test Mode:	Mode2/	Mode2/ Mode4			Test By: Mary			/ Hu		
ANT2										
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	its	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ∖	//m)	(dB)	Туре	
				1M	ops(GFSK)					
2310.00	64.52	2.97	27.80	43.80	51.49	74	1	-22.51	Pk	Horizontal
2310.00	39.54	2.97	27.80	43.80	26.51	54	1	-27.49	AV	Horizontal
2310.00	62.20	2.97	27.80	43.80	49.17	74	1	-24.83	Pk	Vertical
2310.00	43.80	2.97	27.80	43.80	30.77	54	1	-23.23	AV	Vertical
2390.00	60.82	3.14	27.21	43.80	47.37	74	1	-26.63	Pk	Vertical
2390.00	43.60	3.14	27.21	43.80	30.15	54	1	-23.85	AV	Vertical
2390.00	64.92	3.14	27.21	43.80	51.47	74	1	-22.53	Pk	Horizontal
2390.00	43.79	3.14	27.21	43.80	30.34	54	1	-23.66	AV	Horizontal
2483.50	63.00	3.58	27.70	44.00	50.28	74	1	-23.72	Pk	Vertical
2483.50	43.66	3.58	27.70	44.00	30.94	54	1	-23.06	AV	Vertical
2483.50	62.93	3.58	27.70	44.00	50.21	74	1	-23.79	Pk	Horizontal
2483.50	43.11	3.58	27.70	44.00	30.39	54	1	-23.61	AV	Horizontal

EUT:		Asset 7	Tag 2			Mode	l No.:		KHW	BC502F	001		
Temperat	ure:	20 ℃				Relative Humidity: 48			48%	48%			
Test Mode	Node: Mode2/ Mode4				Test By: Ma			Mary	Hu				
ANT 1													
Freque	ency	Reading Level	Cable Loss	Antenna Factor		amp ctor	Emission Level	Lin	nits	Margin	Detector	Comment	
(MH:	z)	(dBµV)	(dB)	dB/m	(0	lΒ)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре		
326	0	62.69	4.04	29.57	44	1.70	51.60	7	'4	-22.40	Pk	Vertical	
326	0	43.11	4.04	29.57	44	1.70	32.02	5	54	-21.98	AV	Vertical	
326	0	63.58	4.04	29.57	44	l.70	52.49	7	'4	-21.51	Pk	Horizontal	
326	0	43.89	4.04	29.57	44	l.70	32.80	5	54	-21.20	AV	Horizontal	
333	2	64.87	4.26	29.87	44	l.40	54.60	7	'4	-19.40	Pk	Vertical	
333	2	43.02	4.26	29.87	44	l.40	32.75	5	54	-21.25	AV	Vertical	
333	2	61.72	4.26	29.87	44	l.40	51.45	7	'4	-22.55	Pk	Horizontal	
333	2	43.26	4.26	29.87	44	l.40	32.99	5	54	-21.01	AV	Horizontal	
1779	97	45.59	10.99	43.95	43	3.50	57.03	7	'4	-16.97	Pk	Vertical	
1779	97	34.16	10.99	43.95	43	3.50	45.60	5	54	-8.40	AV	Vertical	
1778	38	47.17	11.81	43.69	44	l.60	58.07	7	'4	-15.93	Pk	Horizontal	
1778	38	34.88	11.81	43.69	44	.60	45.78	5	54	-8.22	AV	Horizontal	

Εl	JT:	Asset	Tag 2		Mode	el No.:		KHW	BC502F	001	
Τe	emperature:	20 ℃			Relat	tive Humidit	y:	48%	48%		
Тє	est Mode:	Mode2	/ Mode4	ŀ	Test	est By: Mary Hu					
AN	IT 2										
	Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lin	nits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре	
	3260	60.12	4.04	29.57	44.70	49.03	7	4	-24.97	Pk	Vertical
	3260	39.20	4.04	29.57	44.70	28.11	5	4	-25.89	AV	Vertical
	3260	61.69	4.04	29.57	44.70	50.60	7	4	-23.40	Pk	Horizontal
	3260	43.93	4.04	29.57	44.70	32.84	5	4	-21.16	AV	Horizontal
	3332	64.72	4.26	29.87	44.40	54.45	7	4	-19.55	Pk	Vertical
	3332	43.83	4.26	29.87	44.40	33.56	5	4	-20.44	AV	Vertical
	3332	61.47	4.26	29.87	44.40	51.20	7	4	-22.80	Pk	Horizontal
	3332	43.99	4.26	29.87	44.40	33.72	5	4	-20.28	AV	Horizontal
	17797	63.73	10.99	43.95	43.50	75.17	7	4	1.17	Pk	Vertical
	17797	43.36	10.99	43.95	43.50	54.80	5	4	0.80	AV	Vertical
	17788	63.69	11.81	43.69	44.60	74.59	7	4	0.59	Pk	Horizontal
	17788	43.32	11.81	43.69	44.60	54.22	5	4	0.22	AV	Horizontal

NTEK 北测

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

a) Set RBW = 100 kHz.

- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Asset Tag 2	Model No.:	KHWBC502F001
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Test data reference attachment.

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Asset Tag 2	Model No.:	KHWBC502F001
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

Note: Not Applicable

7.5 **PEAK OUTPUT POWER**

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Asset Tag 2	Model No.:	KHWBC502F001
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Test data reference attachment.

Note: The module for BLEhas two antennas, and different modes support different transmit mode what describe as Following form:

Mode	Tx/Rx
GFSK	2TX, 2RX

For BLE has MIMO mode. Directional gain=5.59dBi 5.59 dBi<6.0 dBi so power limit= 30.00 dBm

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5*DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Asset Tag 2	Model No.:	KHWBC502F001
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Test data reference attachment.

Note: The module for BLE has two antennas, and different modes support different transmit mode what describe as Following form:

Mode	Tx/Rx
GFSK	2TX, 2RX

For BLE has MIMO mode. Directional gain=5.59dBi 5.59 dBi<6.0 dBi so power limit= 8.00 dBm

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Asset Tag 2	Model No.:	KHWBC502F001
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Mary Hu

Test data reference attachment.

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

Test data reference attachment.

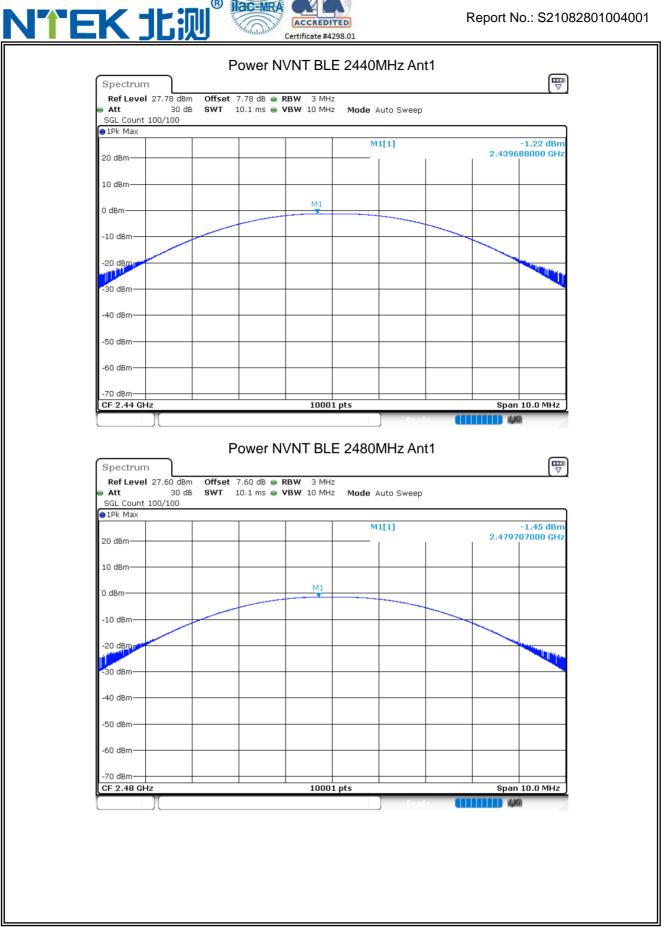
7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

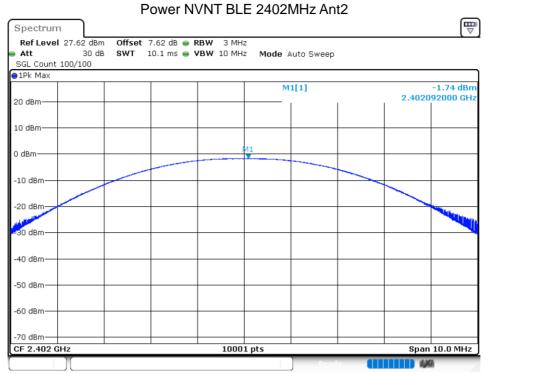
7.9.2 Result

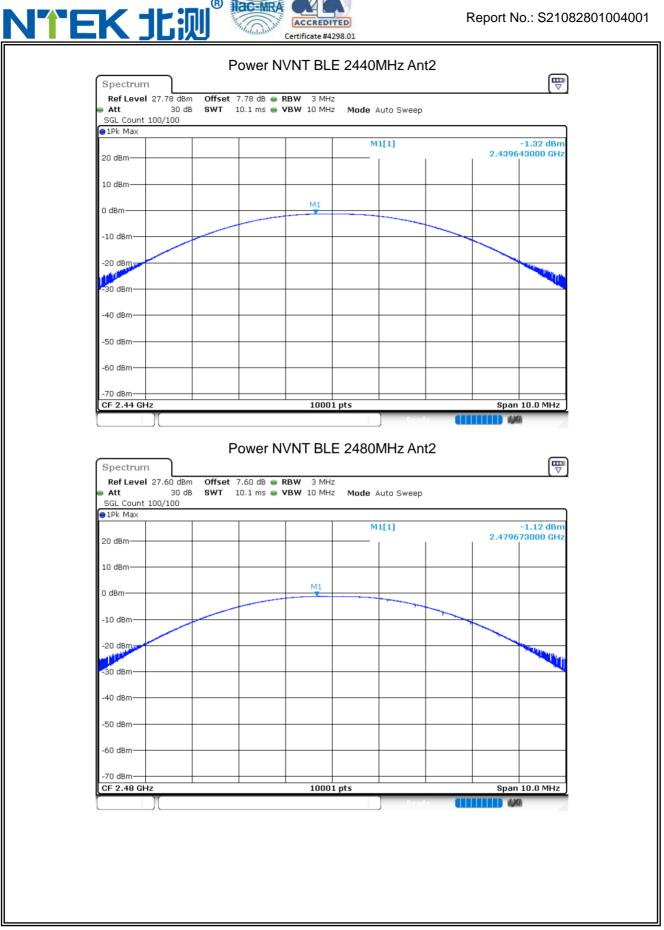
The EUT antenna is permanent attached Surface Mount Ceramic Chip antenna (Gain: 2.58 dBi). It comply with the standard requirement.


8 TEST RESULTS

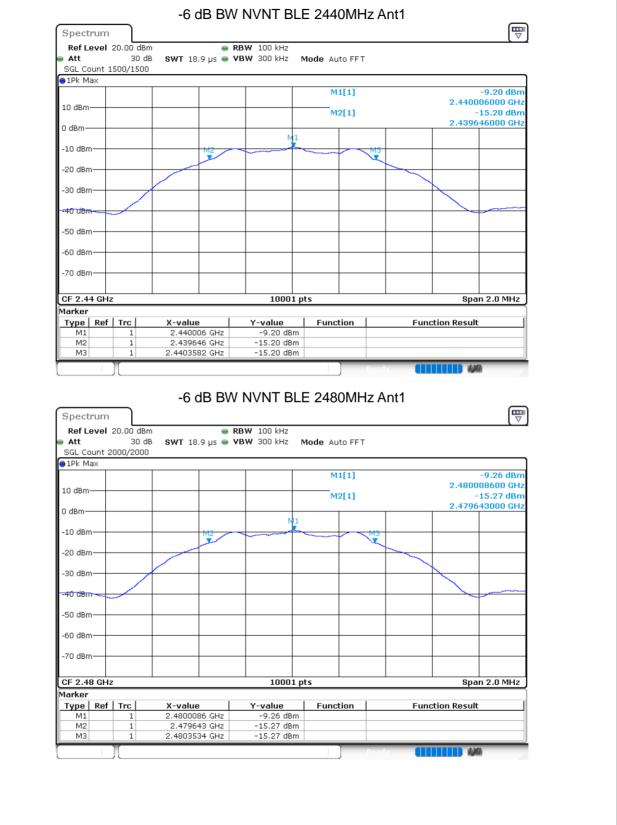
8.1 BLE 1M

8.1.1 MAXIMUM CONDUCTED OUTPUT POWER

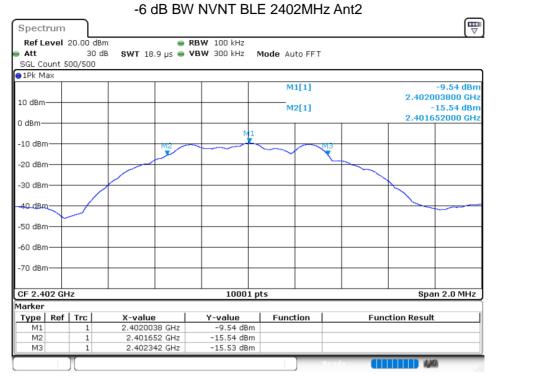

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	-2.26	1.02	30	Pass
NVNT	BLE	2402	Ant 2	-1.74	1.02	30	F 855
NVNT	BLE	2440	Ant 1	-1.22	1.74	20	Pass
NVNT	BLE	2440	Ant 2	-1.32	1.74	30	F 855
NVNT	BLE	2480	Ant 1	-1.45	1.73	30	Pass
NVNT	BLE	2480	Ant 2	-1.12	1.75	30	F 855



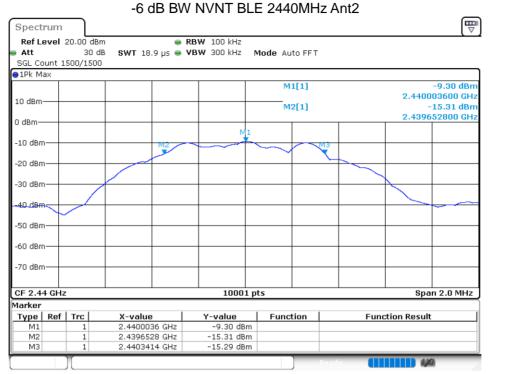
® ilac-M

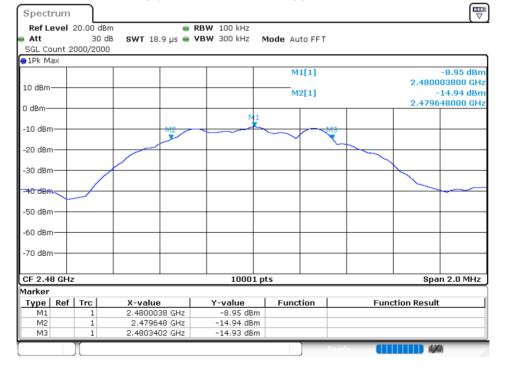


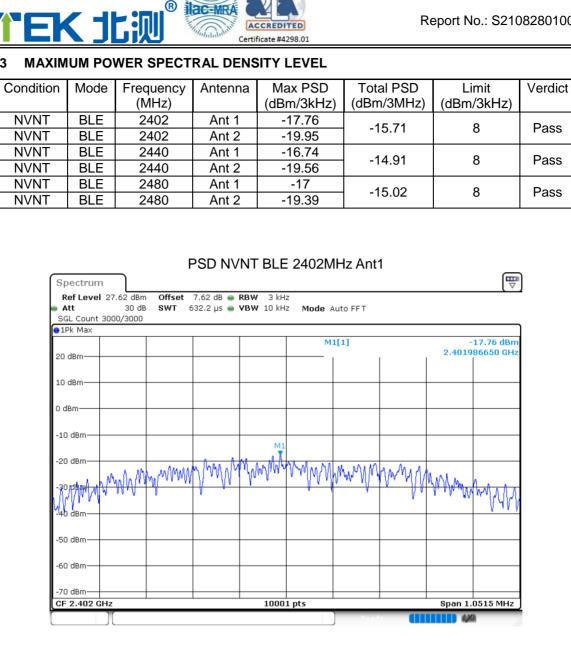
® ilac-M

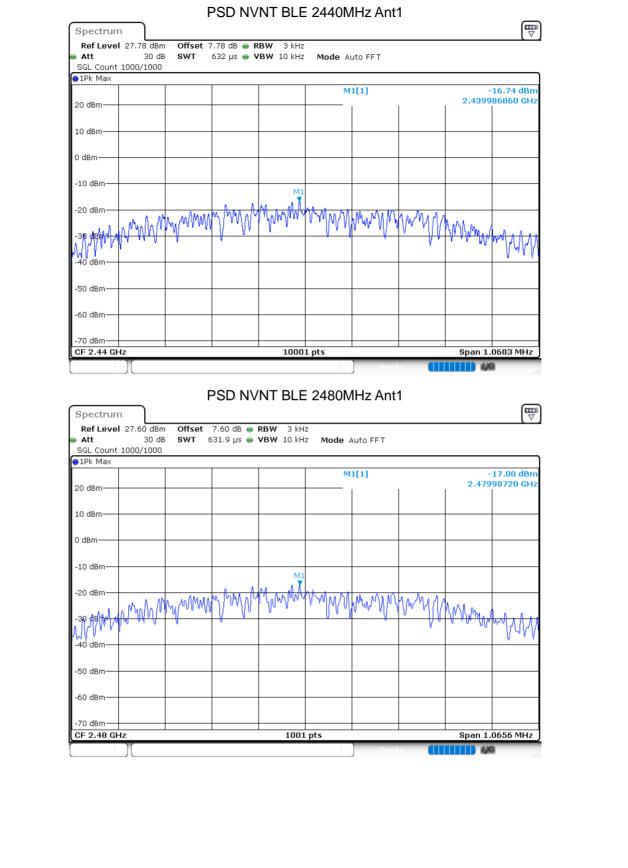


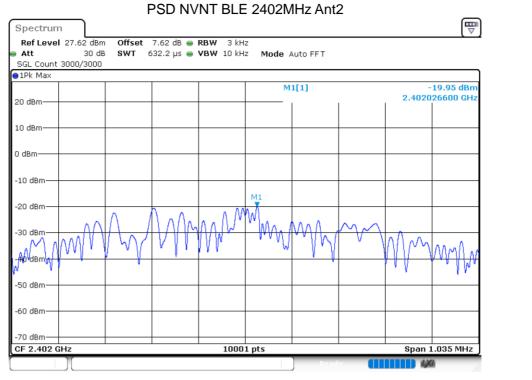
		Erequency		_6 dE	Bandwidtl	h Lir	mit _6 dP	Bandwidth	
Condition	Mode	Frequency (MHz)	Antenna		(MHz)		(MI	Hz)	Verdic
NVNT	BLE	2402	Ant 1		0.701		0.		Pass
NVNT	BLE	2440	Ant 1		0.7122		0.		Pass
NVNT	BLE	2480	Ant 1		0.7104		0.		Pass
NVNT	BLE	2402	Ant 2		0.69		0.		Pass
NVNT	BLE	2440	Ant 2		0.6886		0.		Pass
NVNT	BLE	2480	Ant 2		0.6922		0.	.5	Pass
			6 dB BW NV		2402MU-	A not 1			
	Spect			INI DLE		Anti			
	Ref Le	evel 20.00 dBm	RBW 1					(*)	
	Att SGL Co	30 dB SWT unt 500/500	18.9 µs 👄 VBW 3	100 kHz Mo	de Auto FFT				
	●1Pk Ma								
					M1[1]			10.10 dBm 04800 GHz	
	10 dBm-				M2[1]		-1	16.10 dBm	
	0 dBm—						2.4016	50800 GHz	
	-10 dBm		M2 0	M1	- M				
	-20 dBm		M2						
	-20 dBm								
	-40 dBm								
	-50 dBm								
	-60 dBm								
	-70 dBm								
	CF 2.40	02 GHz		10001 pts			Spar	1 2.0 MHz	
	Marker	Ref Trc X-v	alua I V.	value	Function	E.us	ction Result]	
	M1	1 2.40	20048 GHz -1	.0.10 dBm	Function	Fui	ICCION RESUL		
	M2 M3			.6.10 dBm					
		1 M							

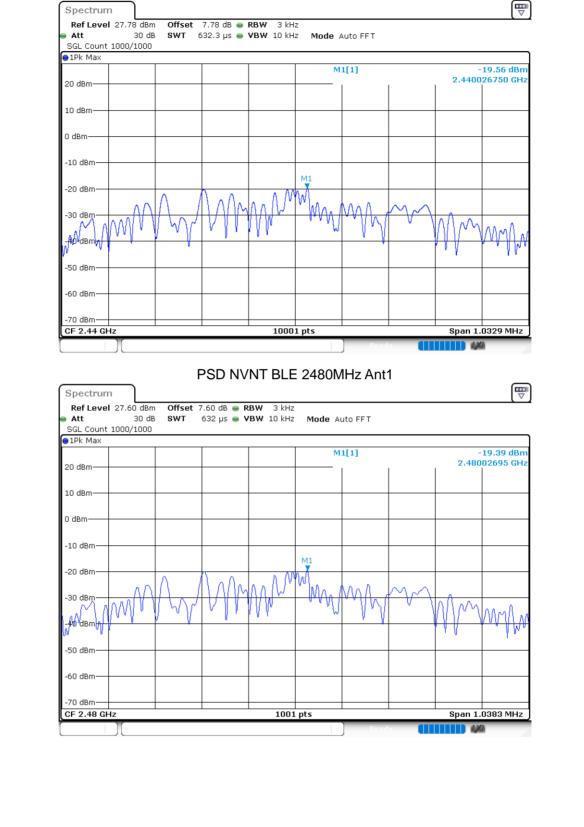


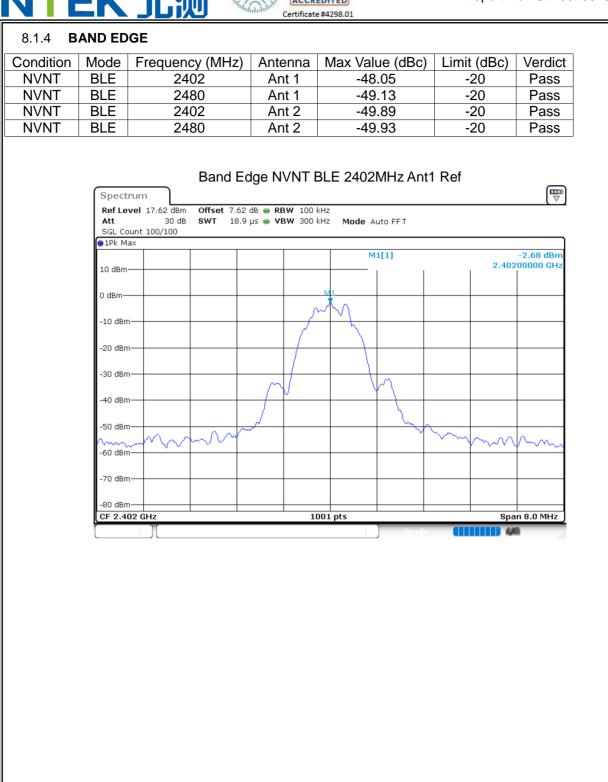


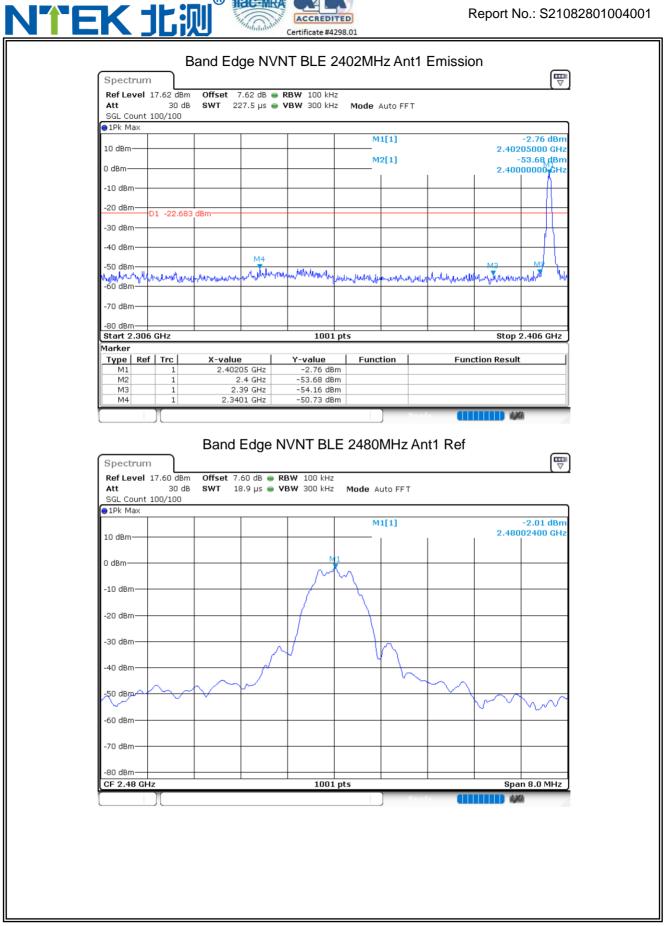


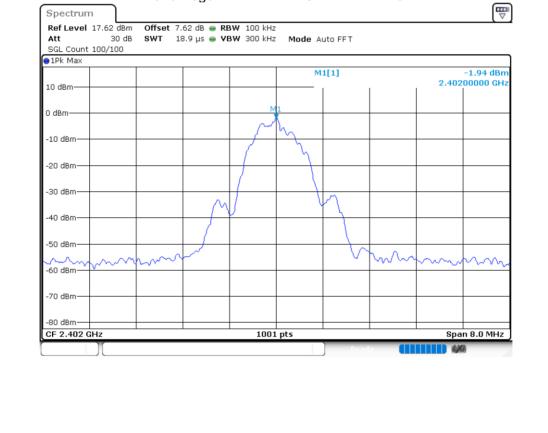






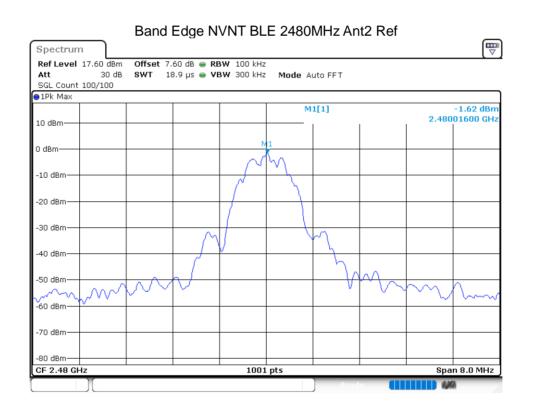





R

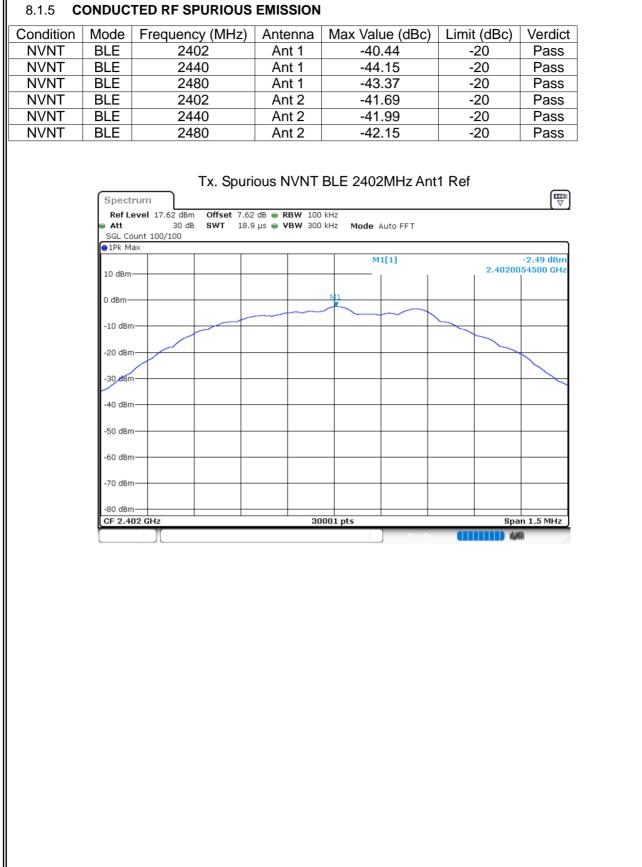
ilac-M

Certificate #4298.01

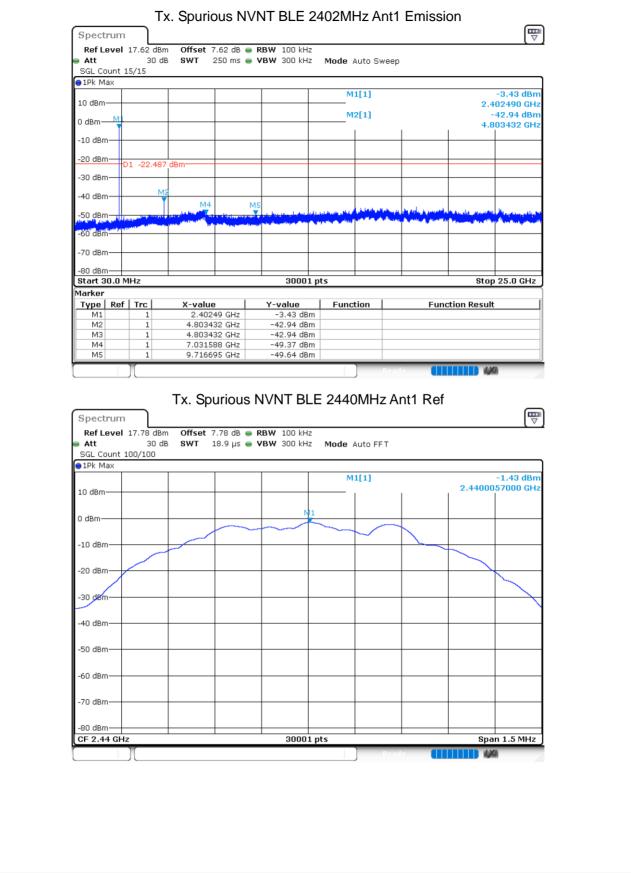

ef Level 17.60 dBm Offset 7.60 dB RBW 100 tt 30 dB SWT 227.5 µs VBW 300 GL Count 1000/1000 Pk Max 0 dBm 0 0 dBm 01 -22.008 dBm 0 0 dBm 01 -22.008 dBm			-1.67 dBm 2.48005000 GHz -52.26 dBm 2.48350000 GHz
GL Count 1000/1000 Pk Max 0 dBm 0 dBm 0 dBm 0 dBm 0 cBm 0 1 -22.008 dBm	M1[1]		2.48005000 GHz -52.26 dBm
Pk Max 0 dBm 0 dBm 0 dBm 0 dBm 0 cBm 0 1 -22.008 dBm			2.48005000 GHz -52.26 dBm
0 dBm			2.48005000 GHz -52.26 dBm
M1 dBm			2.48005000 GHz -52.26 dBm
M1 dBm	M2[1]	I I	-52.26 dBm
0 dBm			
0 dBmD1 -22.008 dBm			
0 dBmD1 -22.008 dBm			
D1 -22.008 dBm			
D1 -22.008 dBm			
Q dβm			
0 dBm			
0 dBm2/14 M3			
O dem planner when the man and the source when the	an motal my mon relation	mbarrownine	and a manufactor was about and
0 dBm		· · ·	
0 dBm			
0 dBm			
	01 pts		Stop 2.576 GHz
irker			
ype Ref Trc X-value Y-value	Function	Fun	ction Result
M1 1 2.48005 GHz -1.67			
M2 1 2.4835 GHz -52.26			
M3 1 2.5 GHz -53.78			
M4 1 2.4855 GHz -51.15	asm		

ITEK JL	B C THE CONTRACT OF CONTRACT O

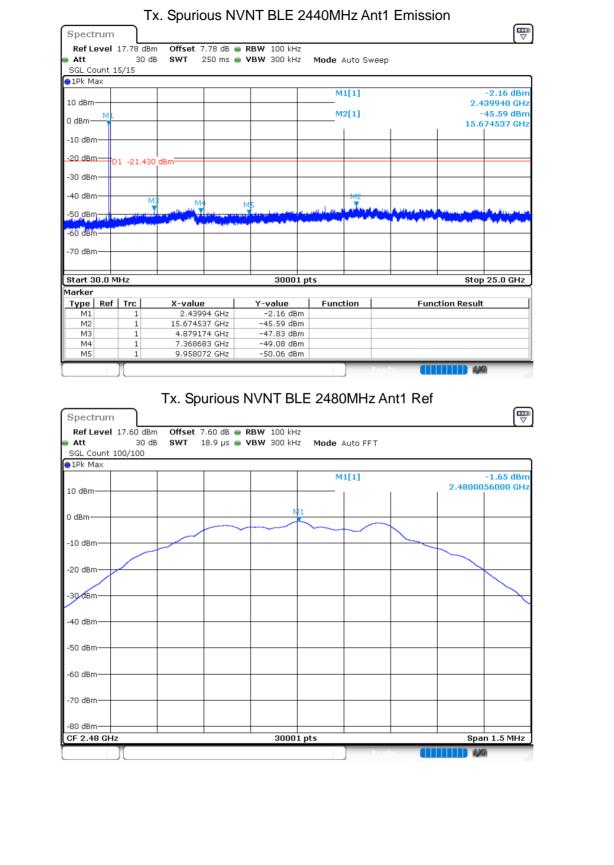
Band Edge	NVNT BLE 240	2MHz Ant2 E	mission	
Spectrum				[₩
Ref Level 17.62 dBm Offset 7.62	dB 😑 RBW 100 kHz			
Att 30 dB SWT 227.5	µs 👄 VBW 300 kHz 🛛 M	1ode Auto FFT		
SGL Count 100/100				
1Pk Max				
		M1[1]	-1.94	
.0 dBm			2.40205000	
		M2[1]	-51.18	
) dBm			2.4000000	GHz
10 dBm				۱
20 dBm D1 -21.943 dBm				
30 dBm				+
40 dBm			- I I I	
40 UBIII				
50 dBm	M4		Ma	h,
water margaret the margaret and the way and the water	mulianderical	deal manufatration	marter Auril Martin M3	٧
60 dBm				
70 dBm				
80 dBm				
Start 2.306 GHz	1001 pts		Stop 2.406 C	Hz
larker				
Type Ref Trc X-value	Y-value	Function	Function Result	1
M1 1 2.40205 G	Hz -1.94 dBm			
M2 1 2.4 G				
M3 1 2.39 G				
M4 1 2.3511 G	Hz -51.84 dBm			

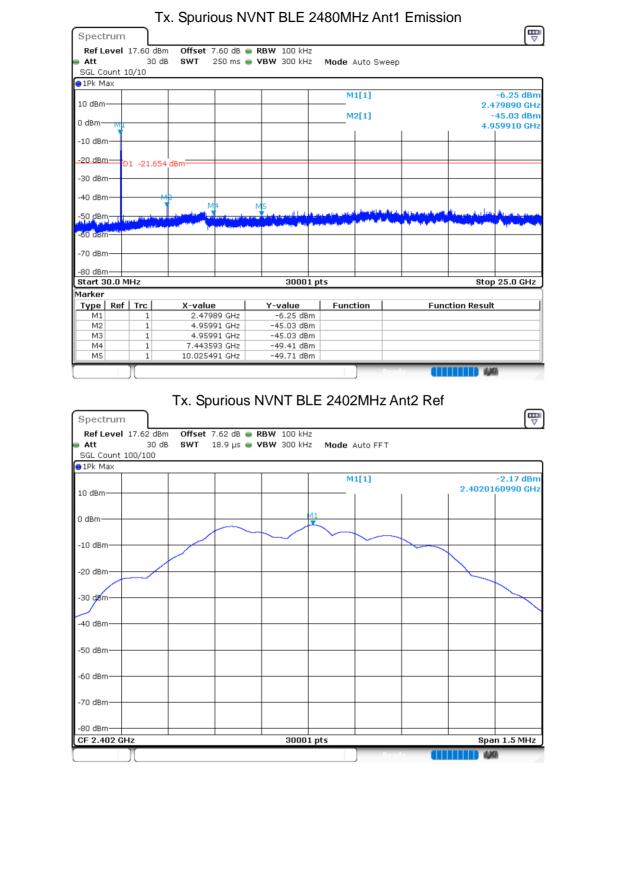


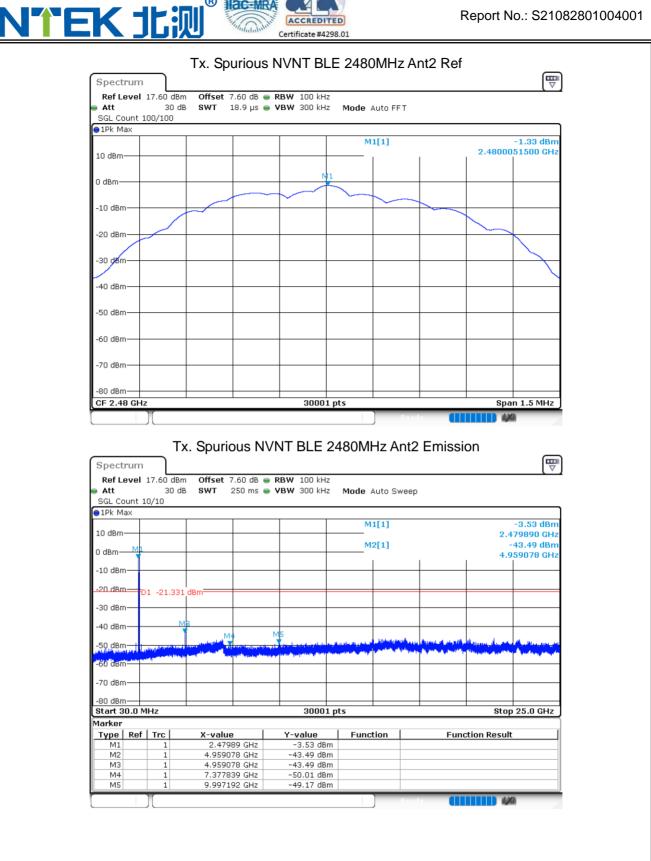
Version.1.3



	B	and Edge	NVN	T BLE 2	2480MF	lz An	t2 E	missic	n	
Spectrum		_								
Ref Level 1	17.60 dBm	Offset 7.60	dB 👄 R	BW 100 kH	z					
Att	30 dB	SWT 227.5	us 🕳 V	BW 300 kH	z Mode	Auto FF	Т			
SGL Count 1	1000/1000									
1Pk Max										
_					М	1[1]				-1.38 dBm
10 dBm									2.480	05000 GHz
M1					м	2[1]				53.25 dBm
0 dBm									2.483	50000 GHz
<u>n</u> 1										
-10 dBm —										
20 dBm - C	01 -21.624	dBm					-			
30 dBm —							-			
40 dBm										
	M4	MB	.							
	newmonth	anter to mark to a sheer	whether	my Harmonie	montalionhout	when	4 million	whether	west torm tor	Montheastant
60 dBm							V			
bo abiii										
70 dBm										
80 dBm										
Start 2.476	GHz			1001	pts				Stop	2.576 GHz
1arker										
Type Ref	Trc	X-value		Y-value	Func	tion		Fund	tion Result:	1
M1	1	2.48005 G	Ηz	-1.38 dB	m					
M2	1	2.4835 G	Ηz	-53.25 dB	m					
MЗ	1	2.5 G	Ηz	-54.02 dB	m					
M4	1	2.4921 G	Ηz	-51.56 dB	m					
	1					1	Dondu			7
	Л									- ///



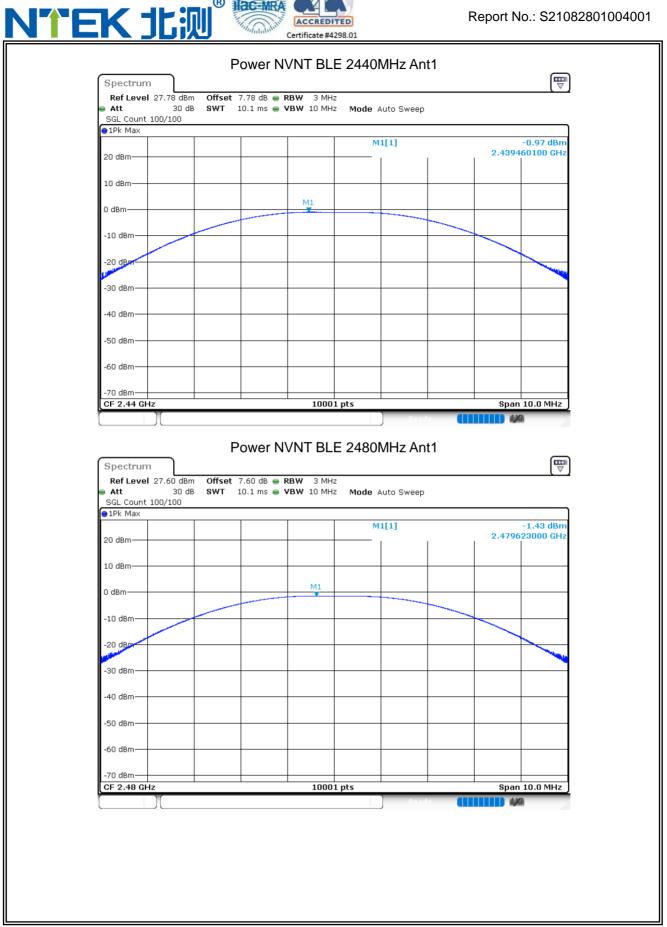



		Tx. Spuric	ous N	VNT BLE	24	02MH	z Ai	nt2	Emissi	on	
Spectrum											
Ref Level	17.62	dBm Offset 7	7.62 dB (RBW 100 kH;	z						
Att	30	IdB SWT :	250 ms (🔵 VBW 300 kHz	2	Mode Au	ito Sv	veep			
SGL Count 1	5/15										
●1Pk Max											
						M1	[1]				-3.33 dBm
10 dBm											401650 GHz
						M2	[1]				-43.87 dBm
									I	4.	803432 GHz
-10 dBm											
-20 dBm-	1 -22.3	174.dBm									
-30 dBm											
-40 dBm		мя									
-40 0811		Y M4		M5							
-50 dBm		and the second second	rid game from	The second secon	فانتبه	الأسعاني المرجا		a fa su la	Note that the state	diseas in the state of the	يتحديك ومرافق المحافظ
and the state of the second	and a state of the	the production of the	and a second second		the set of	and the state of the				(A) Income and the second s	and the discount from the
-60 dBm											
-70 dBm											
-/0 0611											
-80 dBm											
Start 30.0 M	1Hz			30001	l pt:	s				Sto	p 25.0 GHz
Marker											
Type Ref	Trc	X-value		Y-value		Functi	on		Fund	tion Resul	t
M1	1		55 GHz	-3.33 dBi							
M2	1	4.8034		-43.87 dB							
M3	1	4.8034		-43.87 dBi							
M4	1	7.0449		-48.84 dBi							
M5	1	9.5136	J6 GHZ	-49.36 dBi	m]
	1							Read			KA

0	'^	. Spurious		<u>-</u>		12 /7	1112	L111331		Ē
Spectrum										□
Ref Level			8 ● RBW 100 kH							
Att	30 dB	SWT 250 ms	s ⊜ VBW 300 kH	lz N∕	lode /	Auto Sv	veep			
SGL Count 1	.5/15									
∋1Pk Max										
					M	1[1]				-1.77 dBm
10 dBm										39940 GHz
0 dBm 🕂					M	2[1]				43.97 dBm
						I			4.8	80006 GHz
-10 dBm										
0.0 10 1										
-20 dBm-	1 -21.970	dBm								
-30 dBm										
oo abiii										
-40 dBm	M2									
	. I	M4	M5			افر باسر بر	والمراهية	يطديله ليافيد ط	بخمير والالد والع	
-50 dBm	diada da	The second s				i and a	a freedo	Sunday a part of	The design of the second street	
-60 dBm	1948-18 1948-18									
-70 dBm										
Start 30.0 N	1117		3000	1 ntc					Stor	25.0 GHz
larker	1112		3000	1 pts	_		_		3101	5 20.0 GH2
Type Ref	Trc	X-value	Y-value	1	Func	tion	1	Eupo	tion Result	. 1
M1	1	2.43994 GHz		lm l	Tunc	lion		r und	cion Result	
M2	1	4.880006 GHz								
	1	4.880006 GHz	-43.97 dE	3m						
M3			40.74.45	100						
M3 M4	1	7.309587 GHz	-49.74 dE	an						

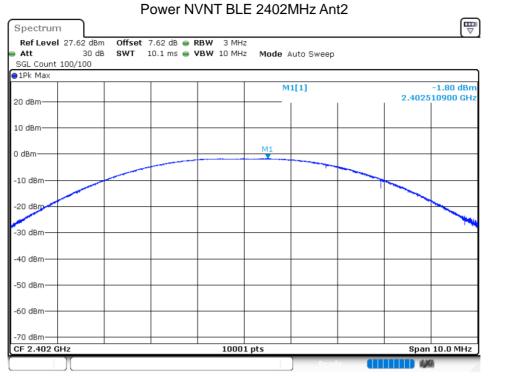
R

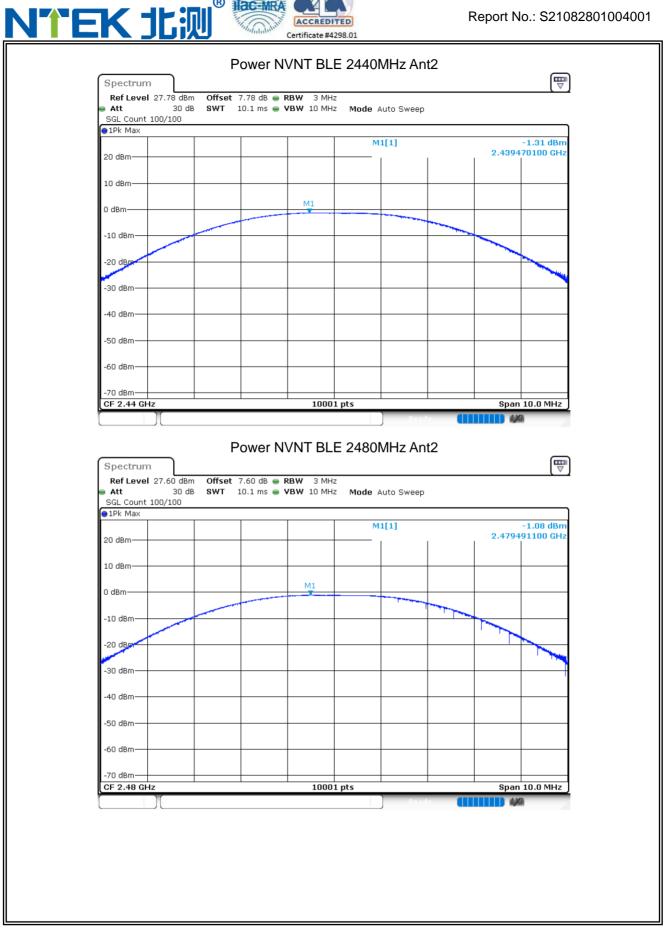
ilac-M


8.2 BLE 2M

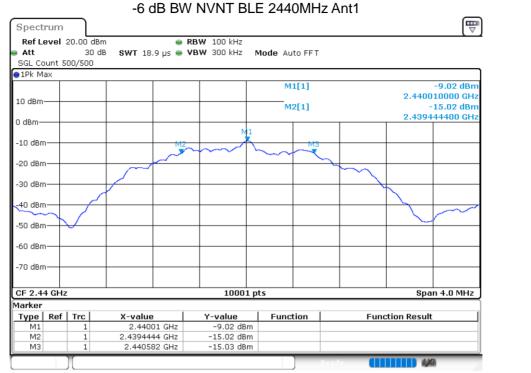
8.2.1 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	-2.28	0.98	30	Pass
NVNT	BLE	2402	Ant 2	-1.8	0.90	50	r ass
NVNT	BLE	2440	Ant 1	-0.97	1.87	20	Deee
NVNT	BLE	2440	Ant 2	-1.31	1.07	30	Pass
NVNT	BLE	2480	Ant 1	-1.43	1 76	20	Deee
NVNT	BLE	2480	Ant 2	-1.08	1.76	30	Pass

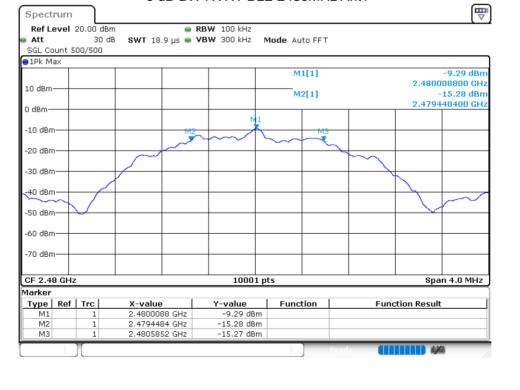

Power NVNT BLE 2402MHz Ant1



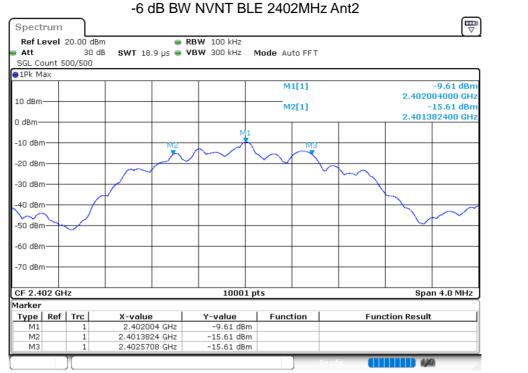
® ilac-M

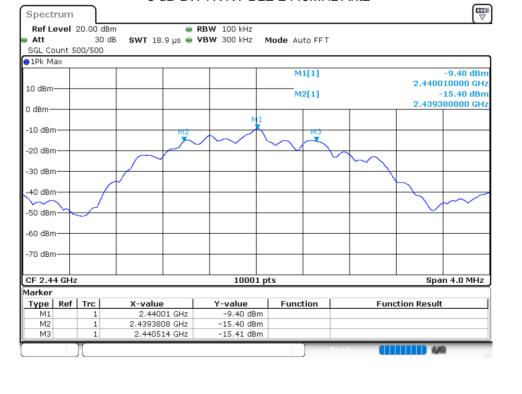

R

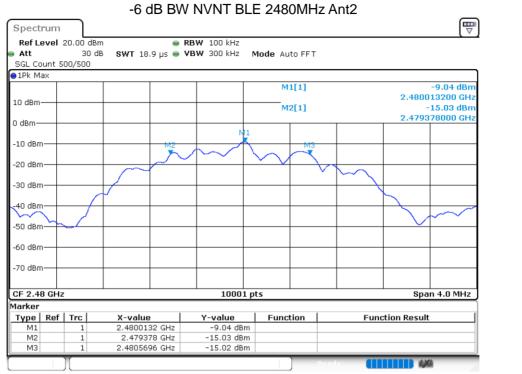
ilac-M

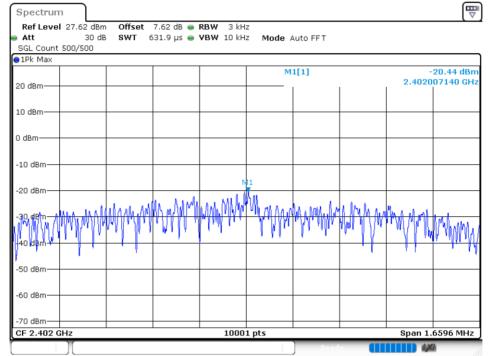


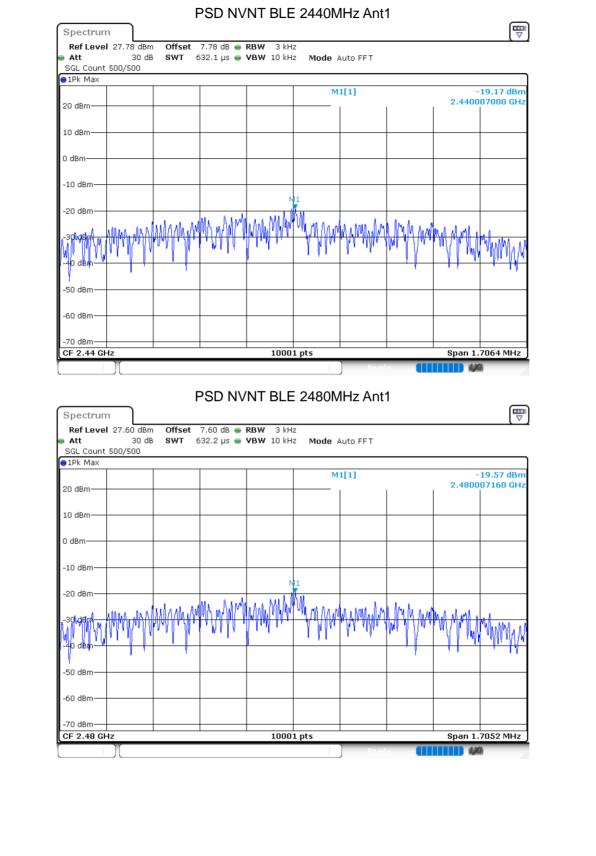
		CHANNEL BAI		6 dD Daadwidth	Limit 6 dD Dandwidth	1/0
ondition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdi
NVNT	BLE	2402	Ant 1	1.1064	0.5	Pass
NVNT	BLE	2440	Ant 1	1.1376	0.5	Pass
NVNT	BLE	2480	Ant 1	1.1368	0.5	Pass
NVNT	BLE	2402	Ant 2	1.1884	0.5	Pass
NVNT	BLE	2440	Ant 2	1.1332	0.5	Pass
NVNT	BLE	2480	Ant 2	1.1916	0.5	Pase
		-6	dB BW NVN	T BLE 2402MHz Ar	_	
	Spectru		- BBUL 100	bu-		
	🖷 Att	el 20.00 dBm 30 dB SWT 18 t 500/500	● RBW 100 3.9 µs ● VBW 300	kHZ kHz Mode Auto FFT		
	• 1Pk Max			M1[1]	-10.14 dBm	
	10 dBm			M2[1]	2.402004400 GHz -16.12 dBm	
	0 dBm			M1	2.401452000 GHz	
	-10 dBm—		M2	M3		
	-20 dBm—				\sim	
	-30 dBm—					
	-40 dBm—					
	-50 dBm—	\bigvee				
	-60 dBm—					
	-70 dBm—					
	CF 2.402	GHz	1	10001 pts	Span 4.0 MHz	
	Marker Type R				Function Result	
	M1 M2		52 GHz -16.1	14 dBm 12 dBm		
	МЗ	1 2.40255	84 GHz -16.1	12 dBm		
				Keauy		



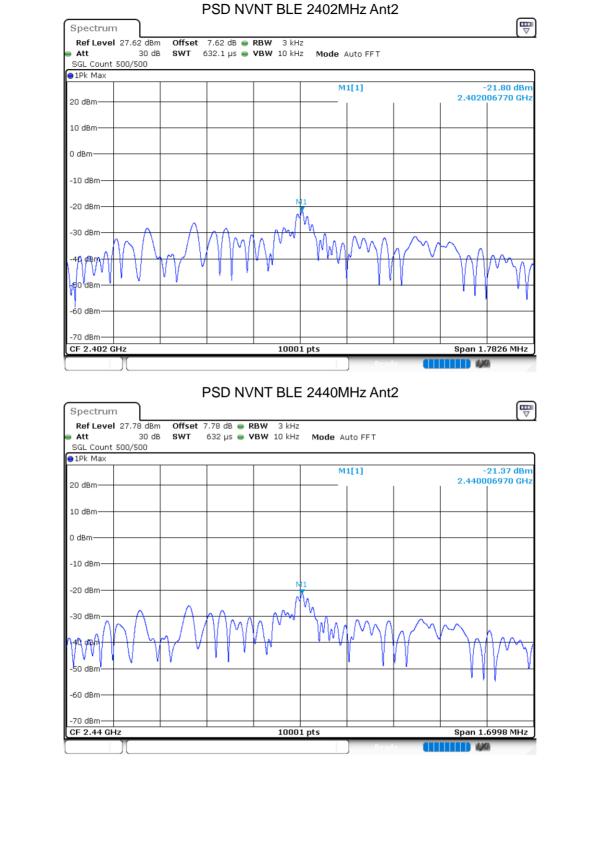


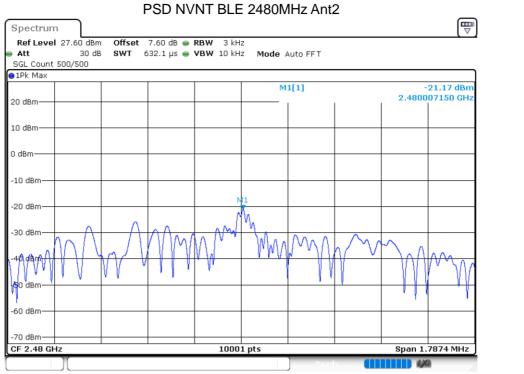




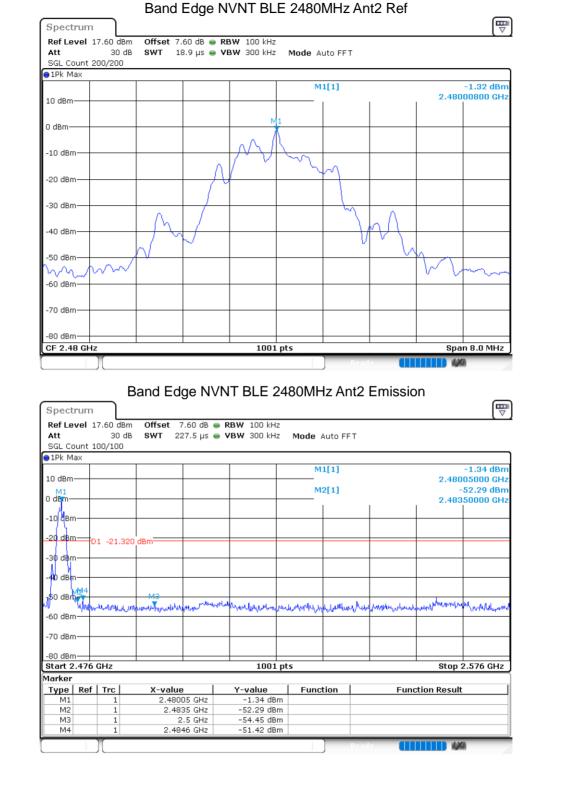


8.2														
	Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/3kHz)	Total PSD (dBm/3MHz)	Limit (dBm/3kHz)	Verdict						
	NVNT	BLE	2402	Ant 1	-17.76	-15.71	8	Deee						
	NVNT	BLE	2402	Ant 2	-19.95	-15.71	0	Pass						
	NVNT	BLE	2440	Ant 1	-16.74	-14.91	8	Pass						
	NVNT	BLE	2440	Ant 2	-19.56	-14.91	0	F d 5 5						
	NVNT	BLE	2480	Ant 1	-17	-15.02	8	Docc						
	NVNT	BLE	2480	Ant 2	-19.39	-15.02	0	Pass						

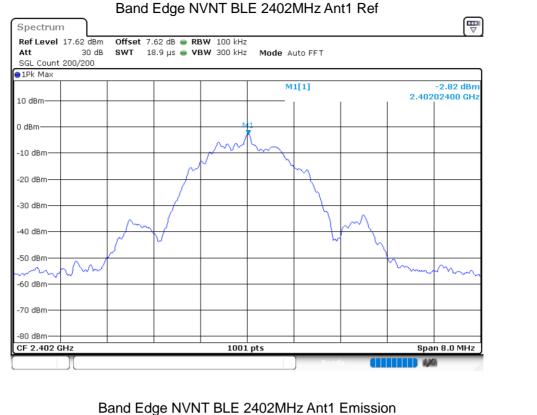

PSD NVNT BLE 2402MHz Ant1

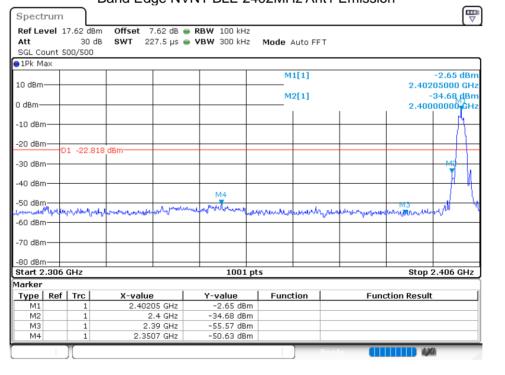


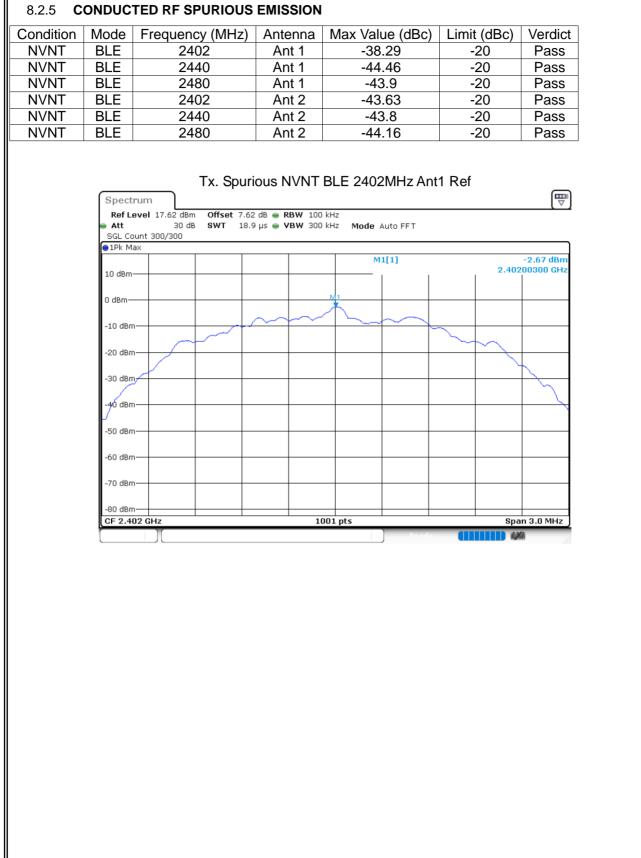
NTEK 北测


8.2.4 BAND EDGE

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-47.81	-20	Pass
Condition NVNT NVNT NVNT NVNT	BLE	2480	Ant 1	-50.56	-20	Pass
NVNT	BLE	2402	Ant 2	-48.49	-20	Pass
NVNT	BLE	2480	Ant 2	-50.09	-20	Pass

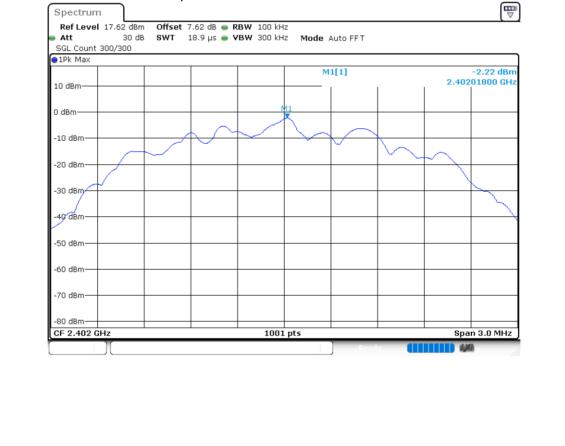






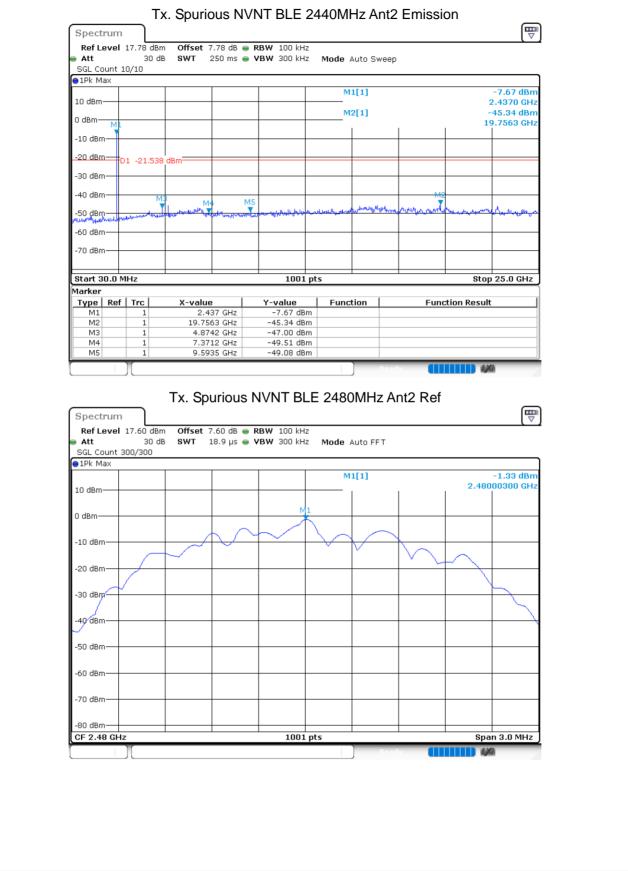
			Tx. Spuric	ous N	VNT BLE	24	02MF	Ηz Α	nt1	Emiss	sion		
Spect	rum												
Ref Le	evel	17.62	dBm Offset 7	7.62 dB (RBW 100 kH	z							
Att 🛛		30	IdB SWT :	250 ms (🗉 VBW 300 kH	z	Mode A	uto Sv	weep				
SGL Co	unt 1	0/10											
⊖1Pk Ma	эх												
							M	[1]					-9.75 dBm
10 dBm-												2	.4120 GHz
							M2	2[1]					40.97 dBm
0 dBm—	м											4	.7993 GHz
-10 dBm													
-20 dBm													
-20 UBII	D	1 -22.6	572 dBm										
-30 dBm	·										_		
			MB										
-40 dBm	·		1	<u> </u>									
50 ID			M4		M5		. I. h	www	Wmu.	Mund	nun	a data a	that was
-50 dBm	norther	the Relater	Calinoman CH	onstatikista	CONTRACTOR OF CONTRACT OF CONTRACT								
-60 dBm	<u> </u>										_		
-70 dBm											-		
-80 dBm					1001							01	
Start 3	U.U M	HZ			1001	pts						stop	25.0 GHz
Marker						,		-			-		
Туре	Ref		X-value		Y-value		Funct	ion		Fu	nction	Result	
M1		1		12 GHz	-9.75 dB								
M2		1		93 GHz	-40.97 dB								
M3 M4		1		93 GHz	-40.97 dB								
M4 M5		1		15 GHz 86 GHz	-49.67 dB -50.64 dB								
IVIS		1	9.51	ou GHZ	-30.04 UB								
									Read	Y 🚺		1,00	

			Tx. Spurio	ous N	VNT BLE 2	440MHz	Ant1	Emissi	on	
Spectr	um									
Ref Le	vel	17.78	dBm Offset	7.78 dB	🔵 RBW 100 kHz					
Att		30	db SWT	250 ms	🔵 VBW 300 kHz	Mode Auto	Sweep			
SGL Cou	unt 10	0/10								
∋1Pk Ma	iх]
						M1[1]				-4.83 dBm
10 dBm-				<u> </u>						2.4370 GHz
0 dBm—						M2[1]				-45.68 dBm
									_ 1	7.6838 GHz
-10 dBm-	_									
-20 dBm-		1 -21.	213 dBm							
-30 dBm·										
-40 dBm·								**		
io abiii			M3M	4	M5					
-50 dBm·		and a grant way	www.lunewelstalth	www.www	and the second	nearly the same the form	wind	APPLASANC	1974 موجعا بيكاليار 1973	ap ^{ra} ldyby wystawy ra
den han	AD AT									
-60 dBm·										
-70 dBm-										
70 abiii										
Start 30	0.0 M	Hz			1001 p	ts			Stop	25.0 GHz
/larker										
Type	Ref	Trc	X-value	9	Y-value	Function		Fund	tion Result	t
M1		1	2.4	37 GHz	-4.83 dBm					
M2		1	17.68	38 GHz	-45.68 dBm					
MЗ		1		42 GHz	-47.57 dBm					
M4		1		62 GHz	-49.34 dBm					
M5		1	9.59	35 GHz	-50.53 dBm					
							Bond			(A)



Spectrum Ref Level 17.60 dBm Att 30 dB SGL Count 10/10 IPk Max 0 0 dBm MI 10 dBm 01 -20 dBm 01 -21.675 30 dBm 40 dBm MI	SWT 250 ms	RBW 100 kHz VBW 300 kHz	Mode Auto Sv M1[1] M2[1]	veep	-6.85 dBm 2.4870 GHz
Att 30 dB SGL Count 10/10 1Pk Max .0 dBm .0 dBm	SWT 250 ms		M1[1]	veep	
SGL Count 10/10 11Pk Max 0 dBm		• VBW 300 kHz	M1[1]	veep	
1Pk Max 10 dBm					
0 dBm 0 dBm 10 dBm 20 dBm01 -21.675 30 dBm 40 dBmM					
) dBm 10 dBm 20 dBm01 -21.675 30 dBm 40 dBmM					
) dBm 10 dBm 20 dBm01 -21.675 30 dBm 40 dBmM			M2[1]		2.4870 GHz
10 dBm 01 -21.675 20 dBm 01 -21.675 30 dBm 12 ME			M2[1]		
10 dBm 01 -21.675 20 dBm 01 -21.675 30 dBm 12 ME					-45.57 dBm
20 dBm-01 -21.675 30 dBm-02 M			1		2.6019 GHz
30 dBm 40 dBm					
30 dBm 40 dBm					
40 dBm 12 M	dBm	_			
40 dBm 12 M					
T State	0				
50 dBm	M ⁴	M5	L. L. J. Alle M.	way Mayne worth	an an an tao an a
50 dBm	who was a service the service of the	and the second	had a free to be and	and the second second	Mangalaha Cikala ang Katala
60 dBm					
50 abin					
70 dBm					
80 dBm					
Start 30.0 MHz		1001 pt:	5		Stop 25.0 GHz
larker		- 1	-		
Type Ref Trc	X-value	Y-value	Function	Funct	tion Result
M1 1	2.487 GHz	-6.85 dBm			
M2 1 M3 1	2.6019 GHz 4.9491 GHz	-45.57 dBm -47.21 dBm			
M4 1	7.4461 GHz	-49.78 dBm			
M5 1	10.1179 GHz	-49.51 dBm			
	2012210 0112	19101 abiit			





			Tx. Spurio	ous N	VNT BLE	24	102M	Hz A	nt2	Emiss	sion	
Spectr	um											
Ref Le	vel	17.62 c	Bm Offset 7	7.62 dB	🔵 RBW 100 k	Hz						
Att 🗧		30	dB SWT :	250 ms	🔵 VBW 300 ki	Hz	Mode 4	uto S	weep			
SGL Cou		0/10										
⊖1Pk Ma	×			_								
							M:	1[1]				-19.81 dBm
10 dBm-						+		_				2.4120 GHz
0 dBm—							M	2[1]				-45.85 dBm
o abiii											1	15.4115 GHz
-10 dBm-	-					+						
	M											
-20 dBm-	TD:	1 -22.2	22 dBm			+						
-30 dBm-												
00 40111												
-40 dBm-						-		1712				
			MB M4		M5			. Incord		handred	here and	
-50 dBm-		North Harden	white the second s	المجمدور بالمطاط كلواح	at a function of the second of the		Aceter to Pressor	10 Q	re ouper	The ADA A	an all the bolt of	Allon and a state of the second s
-60 dBm-						_						
-70 dBm-	-		_								-	
-80 dBm- Start 30					100	1	-					
	.U M	HZ			100	1 pt	<u> </u>				5	top 25.0 GHz
Marker	n-61	T [- 1	F		1			
Type M1	Kef	Trc 1	X-value	9 12 GHz	<u>Y-value</u> -19.81 d	in m	Funct	tion		Fu	nction Re	suit
M1 M2		1		12 GHZ 15 GHZ	-19.81 d							
M3		1		41 GHz	-43.85 d							
M4		1		66 GHz	-49.32 d				-			
M5		1		34 GHz	-50.06 d							
	_	1										4.565
		Л)				

	Т	x. Spurious N	IVNT BLE 2	480MHz A	nt2 Emissio	on
Spectrum						
Ref Level	17.60 dB	m Offset 7.60 dB	RBW 100 kHz			
Att	30 0	dB SWT 250 ms	VBW 300 kHz	Mode Auto SV	weep	
SGL Count 1	LO/10					
●1Pk Max						J
				M1[1]		-1.57 dBm
10 dBm						2.4870 GHz
				M2[1]		-45.49 dBm
0 ubiii—						19.6814 GHz
-10 dBm						
-20 dBm	01 -21.32	6 dBm				
-30 dBm						
SO GDIII						
-40 dBm						
		MB M4	M5	مرالالالال المعادر باراحيدارا	Man hanger with	the structure in the
-50 dBm	muntan	and the second of the second o	www.lofands.com/	amethe rank for a co		The share and the second se
-60 dBm						
-00 abiii						
-70 dBm						
-80 dBm						
Start 30.0 M	1HZ		1001 p	ts		Stop 25.0 GHz
Marker	1 - 1			1		
Type Ref M1		2.487 GHz	<u>Y-value</u> -1.57 dBm	Function	Func	tion Result
M1 M2	1	2.487 GHZ 19.6814 GHz	-1.57 dBm -45.49 dBm			
M3	1	4.9741 GHz	-43.49 dBm			
M4	1	7.546 GHz	-49.55 dBm			
M5	1	10.043 GHz	-49.35 dBm			
	1					4.9/2
					Ready	

END OF REPORT

Version.1.3