APPENDIX C: SAR TISSUE SPECIFICATIONS

FCC ID: 2ADAL-WPT1	POINTEST Provid to be point of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates:	DUT Type:		APPENDIX C:
06/15/2021	Wireless Charger		Page 1 of 3
© 2021 PCTEST			REV 21.3 M 02/15/2019

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity c can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho' \cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

3 Composition / Information on ingredients

3.2 Mixtures		
Description: Aqueous solution with	surfactants and inhibitors	
Declarable, or hazardous compon	ents:	
CAS: 107-21-1	Ethanediol	>1.0-4.9%
EINECS: 203-473-3	STOT RE 2, H373;	
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
EINECS: 271-781-5	Eye Irrit. 2, H319	
Reg.nr.: 01-2119527859-22-0000		
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Reg.nr.: 01-2119539582-35-0000		
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%
NLP: 500-236-9	Aquatic Chronic 2, H411;	
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Additional information:		

For the wording of the listed risk phrases refer to section 16. Not mentioned CAS-, EINECS- or registration numbers are to be regarded as Proprietary/Confidential. The specific chemical identity and/or exact percentage concentration of proprietary components is withheld as a trade secret.

Figure C-1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

FCC ID: 2ADAL-WPT1		SAR EVALUATION REPORT	Approved by: Quality Manager		
Test Dates:	DUT Type:		APPENDIX C:		
06/15/2021	Wireless Charger	Wireless Charger			
© 2021 PCTEST			REV 21.3 M 02/15/2019		

Schmid	&	Partner	Engine	ering	AG
--------	---	---------	--------	-------	----

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name	Head Tissue Simulating Liquid (HBBL600-10000V6)
Product No.	SL AAH U16 BC (Batch: 200805-4)
Manufacturer	SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

rest condition			
Ambient Conditio	n 22°C ; 30% humidity		
TSL Temperature	22°C		
Test Date	6-Aug-20		
Operator	CL		
Additional Inform	nation		
TSL Density			
TSL Heat-capacit	y		

Results

	Measu	ired		Targe	et	Diff.to Tar	get [%]	15.0							
[MHz]	e'	e"	sigma	eps	sigma	∆-eps	∆-sigma	10.0		The Mark	에르면	(SS) Horn	1 19	- Asial	
600	44.7	25.7	0.86	42.7	0.88	4.6	-2.5	\$ 5.0							133
750	44.1	21.7	0.90	41.9	0.89	5.1	0.7				-	-			
800	44.0	20.7	0.92	41.7	0.90	5.6	2.5	Permittivity 0.0	a d			194	-	51.5	22
825	43.9	20.3	0.93	41.6	0.91	5.6	2.6	E -5.0	1000						-
835	43.9	20.1	0.94	41.5	0.91	5.7	3.1	210.0 0-15.0		Sec. 10	10.0			1.1.1.1	
850	43.8	19.9	0.94	41.5	0.92	5.5	2.6			0.0500	0500.45		500 7500	0500.00	
900	43.7	19.1	0.96	41.5	0.97	5.3	-1.0	2	500 150	0 2500	Frequen		500 7500	8500 95	000
1400	42.7	15.1	1.18	40.6	1.18	5.2	0.0	15.0							
1450	42.6	14.9	1.20	40.5	1.20	5.2	0.0	10.0	SEAN			A REAL PROPERTY			
1600	42.4	14.4	1.28	40.3	1.28	5.2	-0.3	20		٨					
1625	42.4	14.4	1.30	40.3	1.30	5.3	0.1	5.0 0.0 0.0 0.0 0.0	1	$ \rangle$		-			-
1640	42.4	14.3	1.31	40.3	1.31	5.3	0.3	duction of the	p	/	-				
1650	42.3	14.3	1.31	40.2	1.31	5.1	-0.2	0.0					a section		
1700	42.2	14.2	1.34	40.2	1.34	5.1	-0.2	A15.0	der te			MAR AND	Participation of the	S. T. A.	
1750	42.2	14.1	1.37	40.1	1.37	5.3	-0.1		00 150	0 2500 :	3500 450	0 5500 6	500 7500	8500 95	500
1800	42.1	14.0	1.40	40.0	1.40	5.3	0.0				Freque	ncy MHz		5 (Cara) / 5 (Car	
1810	42.1	14.0	1.41	40.0	1.40	5.3	0.7	3500	39.4	14.2	2.77	37.9	2.91	3.7	-5
1825	42.1	13.9	1.42	40.0	1.40	5.3	1.4	3700	39.0	14.3	2.95	37.7	3.12	3.5	-5
1850	42.0	13.9	1.43	40.0	1.40	5.0	2.1	5200	36.4	15.9	4.61	36.0	4.66	1.3	-1
1900	41.9	13.8	1.46	40.0	1.40	4.7	4.3	5250	36.4	16.0	4.67	35.9	4.71	1.2	-0
1950	41.9	13.8	1.49	40.0	1.40	4.7	6.4	5300	36.3	16.0	4.72	35.9	4.76	1.1	-0
2000	41.8	13.7	1.53	40.0	1.40	4.5	9.3	5500	35.9	16.2	4.96	35.6	4.96	0.7	-0
2050	41.7	13.7	1.56	39.9	1.44	4.5	8.0	5600	35.7	16.3	5.07	35.5	5.07	0.5	0
2100	41.7	13.7	1.60	39.8	1.49	4.7	7.5	5700	35.5	16.4	5.19	35.4	5.17	0.3	0
2150	41.6	13.6	1.63	39.7	1.53	4.7	6.3	5800	35.4	16.5	5.31	35.3	5.27	0.1	0
2200	41.5	13.6	1.67	39.6	1.58	4.7	5.8	6000	35.0	16.6	5.54	35.1	5.48	-0.2	1
2250	41.5	13.6	1.70	39.6	1.62	4.9	4.8	6500	34.1	17.1	6.17	34.5	6.07	-1.1	1
2300	41.4	13.6	1.74	39.5	1.67	4.9	4.4	7000	33.2	17.4	6.78	33.9	6.65	-2.0	2
2350	41.3	13.6	1.78	39.4	1.71	4.9	4.0	7500	32.3	17.7	7.40	33.3	7.24	-2.9	2
2400	41.2	13.6	1.82	39.3	1.76	4.9	3.7	8000	31.5	18.0	8.01	32.7	7.84	-3.8	2
2450	41.2	13.6	1.85	39.2	1.80	5.1	2.8	8500	30.6	18.2	8.63	32.1	8.45	-4.7	2
2500	41.1	13.6	1.89	39.1	1.85	5.0	1.9	9000	29.8	18.4	9.24	31.5	9.08	-5.6	1
2550	41.0	13.7	1.94	39.1	1.91	4.9	1.6	9500	29.0	18.6	9.84	31.0	9.71	-6.5	1
2600	40.9	13.7	1.98	39.0	1.96	4.8	0.8	10000	28.1	18.8	10.44	30.4	10.36	-7.4	0

Figure C-2 600 – 5800 MHz Head Tissue Equivalent Matter

FCC ID: 2ADAL-WPT1	POINTEST Provid to be part of (() element	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates:	DUT Type:		APPENDIX C:
06/15/2021	Wireless Charger		Page 3 of 3
© 2021 PCTEST			REV 21.3 M 02/15/2019