FCC TEST REPORT

For

MINIX TECHNOLOGY LIMITED

Mini PC with Android OS

Test Model: NEO U9-H

Additional Model No.:/

Prepared for : MINIX TECHNOLOGY LIMITED

Address : Unit 01, 15/F, Chevalier Commercial Center, No.8 Wang Hoi

Road, Kowloon Bay, Kowloon, Hong Kong

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : Jan 09, 2017

Number of tested samples : 1

Serial number : Prototype

Date of Test : Jan 09, 2017~Feb 14, 2017

Date of Report : Feb 14, 2017

FCC TEST REPORT

FCC CFR 47 PART 15 E(15.407)

Report Reference No.: LCS1701090941E

Date of Issue.....: Feb 14, 2017

Testing Laboratory Name......: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address.....: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure: Full application of Harmonised standards

Partial application of Harmonised standards \Box

Other standard testing method \Box

Applicant's Name.....: MINIX TECHNOLOGY LIMITED

Address.....: Unit 01, 15/F, Chevalier Commercial Center, No.8 Wang Hoi

Road, Kowloon Bay, Kowloon, Hong Kong

Test Specification

Standard: FCC CFR 47 PART 15 E(15.407) / ANSI C63.10: 2013

Test Report Form No.....: LCSEMC-1.0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF: Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: : Mini PC with Android OS

Trade Mark....: MINIX

Test Model: NEO U9-H

Ratings: DC 5V/3A by adapter

Adapter input: 100~240VAC, 50/60Hz, 0.5A

Result: Positive

Compiled by:

Supervised by:

Approved by:

Calvin Weng/ Administrators

Glin Lu/ Technique principal

Gavin Liang/ Manager

FCC -- TEST REPORT

Test Report No.: LCS1701090941E Feb 14, 2017

Date of issue

Test Model....: NEO U9-H EUT..... : Mini PC with Android OS Applicant.....:: : MINIX TECHNOLOGY LIMITED Address..... : Unit 01, 15/F, Chevalier Commercial Center, No.8 Wang Hoi Road, Kowloon Bay, Kowloon, Hong Kong Telephone..... Fax..... Manufacturer.....: : XIANGUAN ELECTRONICS LIMITED Address..... : 13F, Building B, Haisong Edifice, Tairan 9th Rd, Futian District, Shenzhen, China Telephone..... : / Fax..... : / Factory.....: : XIANGUAN ELECTRONICS LIMITED Address..... : 13F, Building B, Haisong Edifice, Tairan 9th Rd, Futian District, Shenzhen, China Telephone..... : / Fax..... : /

Test Result	Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

SHENZHEN LCS COMPLIANCE TESTING LA	RORATORY LTD	FCC ID:2ADACNEOU9-H	Report No.: LCS1701090941F
SHENZHEN LUS UUMFLIANUE TESTING LA	DUNATUKI LID.	TCC ID. ZADACNEOU9-H	Kebon No., LCS1/01090941E

Revision History

Revision	Issue Date	Revisions	Revised By
00	Feb 14, 2017	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1. DESCRIPTION OF DEVICE (EUT) 1.2. SUPPORT EQUIPMENT LIST 1.3. EXTERNAL I/O 1.4. DESCRIPTION OF TEST FACILITY 1.5. LIST OF MEASURING EQUIPMENT 1.6. STATEMENT OF THE MEASUREMENT UNCERTAINTY 1.7. MEASUREMENT UNCERTAINTY 1.8. DESCRIPTION OF TEST MODES	
2. TEST METHODOLOGY	12
2.1. EUT CONFIGURATION	
3. SYSTEM TEST CONFIGURATION	13
3.1. JUSTIFICATION 3.2. EUT EXERCISE SOFTWARE 3.3. SPECIAL ACCESSORIES 3.4. BLOCK DIAGRAM/SCHEMATICS 3.5. EQUIPMENT MODIFICATIONS 3.6. TEST SETUP	
4. SUMMARY OF TEST RESULTS	14
5. TEST RESULT	
5.1. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT 5.2. POWER SPECTRAL DENSITY MEASUREMENT 5.3. 6DB & 26DB BANDWIDTH MEASUREMENT 5.4. RADIATED EMISSIONS MEASUREMENT 5.6. POWER LINE CONDUCTED EMISSIONS	
5.7. Antenna Requirements	

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : Mini PC with Android OS

Test Model : NEO U9-H

Hardware Version : JX912AV1.1

Software Version : V1.0

Power Supply : DC 5V/3A by adapter

Adapter input: 100~240VAC, 50/60Hz, 0.5A

EUT Supports : 2.4GHz WIFI/5G WIFI/Bluetooth 4.1

Radios Application

Bluetooth

Operating Frequency : 2.402-2.480GHz

Channel Number : 40 channels for Bluetooth V4.1 (DTS)

Channel Spacing : 2MHz for Bluetooth V4.1 (DTS)

Modulation Type : GFSK for Bluetooth V4.1 (DTS)

Bluetooth Version : V4.1

Antenna Description : R-SMA Antenna, 2.5dBi(Max.)

WIFI(2.4GHz Band) :

Operating Frequency : 2412-2462MHz

Channel Spacing : 5MHz

Channel Number : 11 Channel for 20MHz bandwidth(2412~2462MHz)

7 channels for 40MHz bandwidth(2422~2452MHz)

Modulation Type : 802.11b: DSSS; 802.11g/n: OFDM

Antenna Description : R-SMA Antenna, 2.5dBi(Max.)

FPC Antenna, 2.5dBi(Max.)

WIFI(5GHz Band) :

Operating Frequency : 5180.00-5240.00MHz

Channel Number : 4 Channel for 20MHz Bandwidth

2 channels for 40MHz Bandwidth 1 channels for 80MHz Bandwidth

Modulation Type : 802.11a/n/ac: OFDM

Antenna Description : R-SMA Antenna, 2.5dBi(Max.)

FPC Antenna, 2.5dBi(Max.)

1.2. Support Equipment List

Manufacturer	Description	Model	Serial Number	Certificate
Shenzhen City				
Yunsheng Plastic	Power Adapter	YS03-050300U		FCC VoC
Electronics Co., Ltd				

1.3. External I/O

I/O Port Description	Quantity	Cable
USB Port	3	0.5m, unshielded
TF Card Port	1	N/A
OTG Port	1	0.2m, unshielded
RJ45 Port	1	N/A
HDMI Port	1	0.5m, unshielded
DC in Port	1	1.2m, unshielded
Earphone Port	1	N/A
Mic Port	1	N/A

1.4. Description of Test Facility

CNAS Registration Number. is L4595.

FCC Registration Number. is 899208.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

There is one 3m semi-anechoic chamber and one line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.10: 2013, CISPR 22/EN 55022 and CISPR16-1-4 SVSWR requirements.

1.5. List Of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Cal Date	Due Date
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	Jun 18, 2016	Jun 17, 2017
Signal analyzer	Agilent	E4448A(Externa I mixers to	US443004 69	9kHz~40GHz	Jul 16, 2016	Jul 15, 2017
LISN	MESS Tec	NNB-2/16Z	99079	9KHz-30MHz	Jun 18, 2016	Jun 17, 2017
LISN	EMCO	3819/2NM	9703-1839	9KHz-30MHz	Jun 18, 2016	Jun 17, 2017
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9KHz-30MHz	Jun 18, 2016	Jun 17, 2017
ISN	SCHAFFNER	ISN ST08	21653	9KHz-30MHz	Jun 18, 2016	Jun 17, 2017
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-H Y	30M-18GHz	Jun 18, 2016	Jun 17, 2017
Amplifier	SCHAFFNER	COA9231A	18667	9kHz-2GHzz	Apr 18, 2016	Apr 17, 2017
Amplifier	Agilent	8449B	3008A021 20	1GHz-26.5GHz	Apr 18, 2016	Apr 17, 2017
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5GHz-40GHz	Apr 18, 2016	Apr 17, 2017
Loop Antenna	R&S	HFH2-Z2	860004/00 1	9k-30MHz	Apr 18, 2016	Apr 17, 2017
By-log Antenna	SCHWARZBEC	VULB9163	9163-470	30MHz-1GHz	Apr 18, 2016	Apr 17, 2017
Horn Antenna	EMCO	3115	6741	1GHz-18GHz	Apr 18, 2016	Apr 17, 2017
Horn Antenna	SCHWARZBEC K	BBHA9170	BBHA9170 154	15GHz-40GHz	Apr 18, 2016	Apr 17, 2017
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz-1GHz	Jun 18, 2016	Jun 17, 2017
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-H	1GHz-40GHz	Jun 18, 2016	Jun 17, 2017
Power Meter	R&S	NRVS	100444	DC-40GHz	Jun 18, 2016	Jun 17, 2017
Power Sensor	R&S	NRV-Z51	100458	DC-30GHz	Jun 18, 2016	Jun 17, 2017
Power Sensor	R&S	NRV-Z32	10057	30MHz-6GHz	Jun 18, 2016	Jun 17, 2017
AC Power Source	HPC	HPA-500E	HPA-9100	AC 0~300V	Jun 18, 2016	Jun 17, 2017
DC power Soure	GW	GPC-6030D	C671845	DC 1V-60V	Jun 18, 2016	Jun 17, 2017
Temp. and Humidigy Chamber	Giant Force	GTH-225-20-S	MAB0103- 00	N/A	Jun 18, 2016	Jun 17, 2017
RF CABLE-1m	JYE Bao	RG142	CB034-1m	20MHz-7GHz	Jun 18, 2016	Jun 17, 2017
RF CABLE-2m	JYE Bao	RG142	CB035-2m	20MHz-1GHz	Jun 18, 2016	Jun 17, 2017
Signal Generator	R&S	SMR40	10016	10MHz~40GHz	Jul 16, 2016	Jul 15, 2017
Universal Radio Communication Tester	R&S	CMU200	112012	N/A	Oct 27, 2016	Oct 26, 2017
Wideband Radia Communication Tester	R&S	CMW500	1201.0002 K50	N/A	Nov 19, 2016	Nov 18, 2017

SHENZHEN LCS COMP	LIANCE TESTING	LABORATORY LTD.	FCC ID:2AI	DACNEOU9-H R	eport No.: LCS17	<u>01090941E</u>
MXG Vector Signal Generator	Agilent	N5182A	MY470711 51	250KHz~6GHz	Oct 27, 2016	Oct 26, 2017
MXG Vector Signal Generator	Agilent	E4438C	MY420813 96	250KHz~6GHz	Oct 27, 2016	Oct 26, 2017
PSG Analog Signal Generator	Agilent	N8257D	MY465205 21	250KHz~20GHz	Nov 19, 2016	Nov 18, 2017
MXA Signal Analyzer	Agilent	N9020A	MY505101 40	10Hz~26.5GHz	Oct 27, 2016	Oct 26, 2017
DC Power Supply	Agilent	E3642A	1	0-8V,5A/0-20V,2 .5A	May 20, 2016	May 19, 2017
RF Control Unit	Tonscend	JS0806-1	1	1	Nov 19, 2016	Nov 18, 2017
LTE Test Software	Tonscend	JS1120-1	1	Version: 2.5.7.0	N/A	N/A
X-series USB Peak and Average Power Sensor Agilent	Agilent	U2021XA	MY540800 22	1	Oct 27, 2016	Oct 26, 2017
4 Ch.Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	MY540800 16	1	Oct 27, 2016	Oct 26, 2017
Test Software	Ascentest	AT890-SW	20141230	Version: 20160630	N/A	N/A
Splitter/Combiner(Q ty: 2)	Mini-Circuits	ZAPD-50W 4.2-6.0 GHz	NN256400 424	1	Oct 27, 2016	Oct 26, 2017
Splitter/Combine(Qt y: 2)	MCLI	PS3-7	4463/4464	1	Oct 27, 2016	Oct 26, 2017
ATT (Qty: 1)	Mini-Circuits	VAT-30+	30912	1	Oct 27, 2016	Oct 26, 2017
Radiated Emission test software	Audix	e3	1	1	N/A	N/A

1.6. Statement of The Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.7. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	3.10dB	(1)
		30MHz~200MHz	2.96dB	(1)
Radiation Uncertainty	:	200MHz~1000MHz	3.10dB	(1)
	-	1GHz~26.5GHz	3.80dB	(1)
		26.5GHz~40GHz	3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	1.63dB	(1)
Power disturbance	:	30MHz~300MHz	1.60dB	(1)

^{(1).} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.8. Description Of Test Modes

The EUT has been tested under operating condition.

The EUT was set to transmit at 100% duty cycle. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in Y position.

For pre-testing, when performed power line conducted emission measurement, the input Voltage/Frequency AC 120V/60Hz and AC 240V/60Hz were used. Only recorded the worst case in this report.

Worst-case mode and channel used for 150kHz-30 MHz power line conducted emissions was determined to be 802.11a mode(High Channel).

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was determined to be 802.11a mode(High Channel).

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

802.11a Mode: 6 Mbps, OFDM.

802.11n(HT20) Mode: MCS0, OFDM. 802.11n(HT40) Mode: MCS0, OFDM. 802.11ac(VHT20) Mode: MCS0, OFDM. 802.11ac(VHT40) Mode: MCS0, OFDM. 802.11ac(VHT80) Mode: MCS0, OFDM.

Support Bandwidth For 5G WIFI Part:

Bandwidth Mode	20MHz	40MHz	80MHz
802.11a	$\overline{\mathbf{V}}$		
802.11n(HT20)	\square		
802.11n(HT40)			
802.11ac(VHT20)	Ø		
802.11ac(VHT40)		Ø	
802.11ac(VHT80)			$\overline{\mathbf{V}}$

Channel & Frequency:

Frequency Band	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)
5180~5240MHz	36	5180	44	5220
	38	5190	46	5230
	40	5200	48	5240
	42	5210	/	/

For 802.11a/n(HT20)/ac(VHT20), Channel 36, 44 and 48 were tested.

For 802.11n(HT40)/ac(VHT40), Channel 38 and 46 were tested.

For 802.11ac(VHT80), Channel 42 was tested.

Note: for BLE, only R-SMA antenna is used, for 2.4G & 5G Wi-Fi, both the R-SMA and FPC antenna are used.

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10: 2013, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd..

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to FCC's request, Test Procedure 789033 D02 General UNII Test Procedures New Rules v01r03 is required to be used for this kind of FCC 15.407 UII device.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.407 under the FCC Rules Part 15 Subpart E

2.3. General Test Procedures

2.3.1 Conducted Emissions

According to the requirements in Section 6.2 of ANSI C63.10: 2013, AC power-line conducted emissions shall be measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table and the turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10: 2013

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmit condition.

3.2. EUT Exercise Software

The system was configured for testing in a continuous transmits condition and change test channels by software (RF test tool) provided by applicant.

3.3. Special Accessories

No.	Equipment	Manufacturer	Model No.	Serial No.	Length	shielded/ unshielded	Notes
1	PC	Lenovo	Ideapad	A131101550	/	1	DOC
2	Power adapter	Lenovo	CPA-A090	36200414	1.00m	unshielded	DOC

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart E					
FCC Rules	Result				
§15.407(a)	Maximum Conducted Output Power	Compliant			
§15.407(a)	Power Spectral Density	Compliant			
§15.407(e)	6dB & 26dB Bandwidth	Compliant			
§15.205, §15.407(b)	Radiated Spurious Emissions and Band Edge	Compliant			
§15.407(g)	Frequency Stability	N/A			
§15.407(h)	Transmit Power Control (TPC)	N/A			
§15.207(a)	Line Conducted Emissions	Compliant			
§15.203	Antenna Requirements	Compliant			

Note: The customer declared frequency stability is better than 20ppm which ensures that the signal remains in the allocated bands under all operational conditions stated in the user manual.

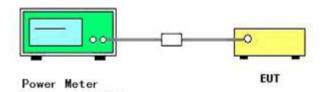
5. TEST RESULT

5.1. Maximum Conducted Output Power Measurement

5.1.1. Standard Applicable

According to §15.407(a)(1)(i), For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

According to §15.407(a)(1)(ii), For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.


According to §15.407(a)(1)(iv), For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.

According to §15.407(a)(3), For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

5.1.2. Test Procedures

The transmitter output (antenna port) was connected to the power meter.

5.1.3. Test Setup Layout

5.1.4. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.1.5. Test Result of Maximum Conducted Output Power

Temperature	25°C	Humidity	60%
Test Engineer	Chaz Liu	Configurations	802.11a/n/ac

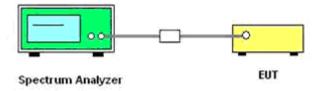
Maximum Conducted Output Power Measurement Result For 5180~5240MHz Band

Mode	Channel	Frequency (MHz) Conducted Power (dBm, Average)		Channel Frequency (MHz)	rage)	Max. Limit (dBm)	Result
		(1711 12)	Ant 0	Ant 1	Sum	(dDIII)	
	36	5180	14.78	14.82	1	24	Complies
802.11a	44	5220	14.76	14.19	1	24	Complies
	48	5240	15.09	14.54	1	24	Complies
	36	5180	14.12	13.87	17.01	24	Complies
802.11n(HT20)	44	5220	14.02	13.73	16.89	24	Complies
	48	5240	14.25	13.60	16.95	24	Complies
000 44=/UT40)	38	5190	14.31	13.97	17.16	24	Complies
802.11n(HT40)	46	5230	14.25	13.71	17.00	24	Complies
	36	5180	14.06	13.79	16.94	24	Complies
802.11ac(VHT20)	44	5220	14.10	13.49	16.82	24	Complies
	48	5240	14.70	13.98	17.36	24	Complies
902 11cc(\/\UT40\	38	5190	14.27	13.92	17.11	24	Complies
802.11ac(VHT40)	46	5230	14.23	14.16	17.21	24	Complies
802.11ac(VHT80)	42	5210	14.07	13.55	16.83	24	Complies

5.2. Power Spectral Density Measurement

5.2.1. Standard Applicable

According to §15.407(a)(1)(i), For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.


According to §15.407(a)(1)(ii), For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

According to §15.407(a)(1)(iv), For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

According to §15.407(a)(3), For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

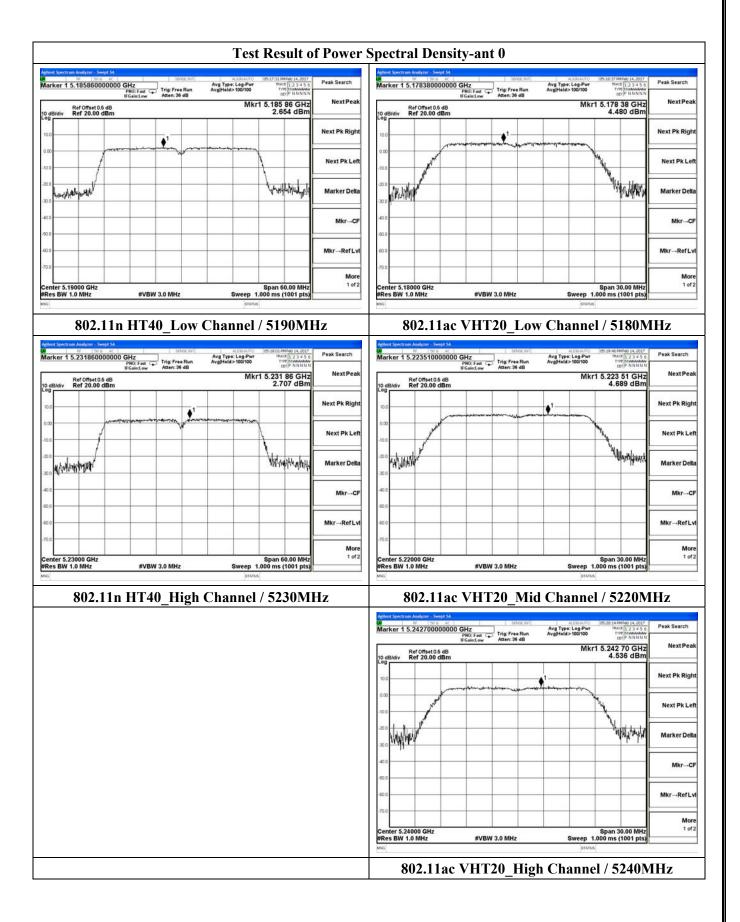
5.2.2. Test Procedures

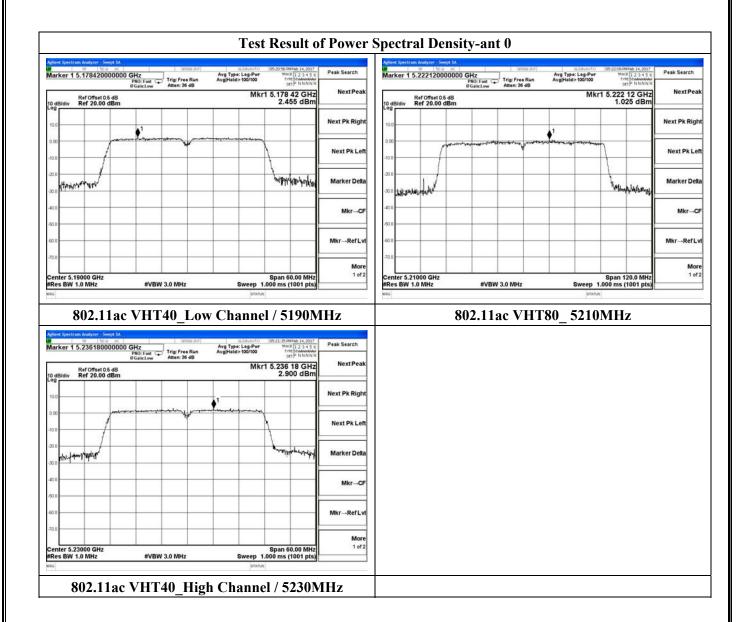
- 1) The transmitter was connected directly to a Spectrum Analyzer through a directional couple.
- 2) The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.
- 3) Set the RBW/VBW = 1MHz/3MHz For the 5.15-5.25GHz band; Set the RBW/VBW = 100KHz/300KHz For the 5.725-5.85GHz band.
- 4) Set the span to encompass the entire emission bandwidth of the signal.
- 5) Detector = RMS.
- 6) Sweep time = auto couple.
- 7) Trace mode = \max hold.
- 8) Allow trace to fully stabilize.
- 9) Use the peak marker function to determine the maximum amplitude level.
- 5.2.3. Test Setup Layout

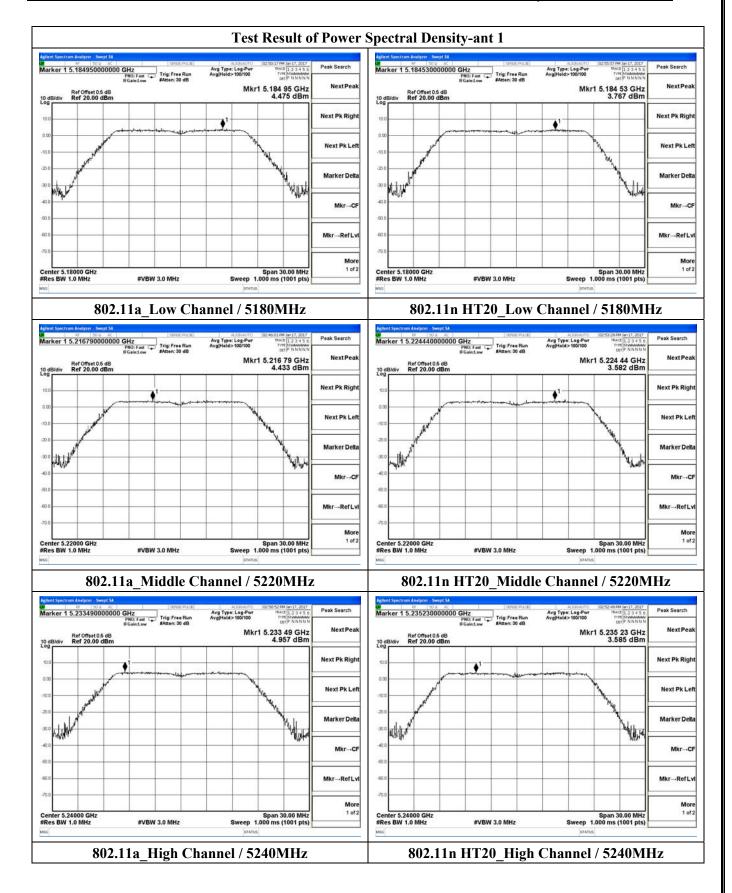
5.2.4. EUT Operation during Test

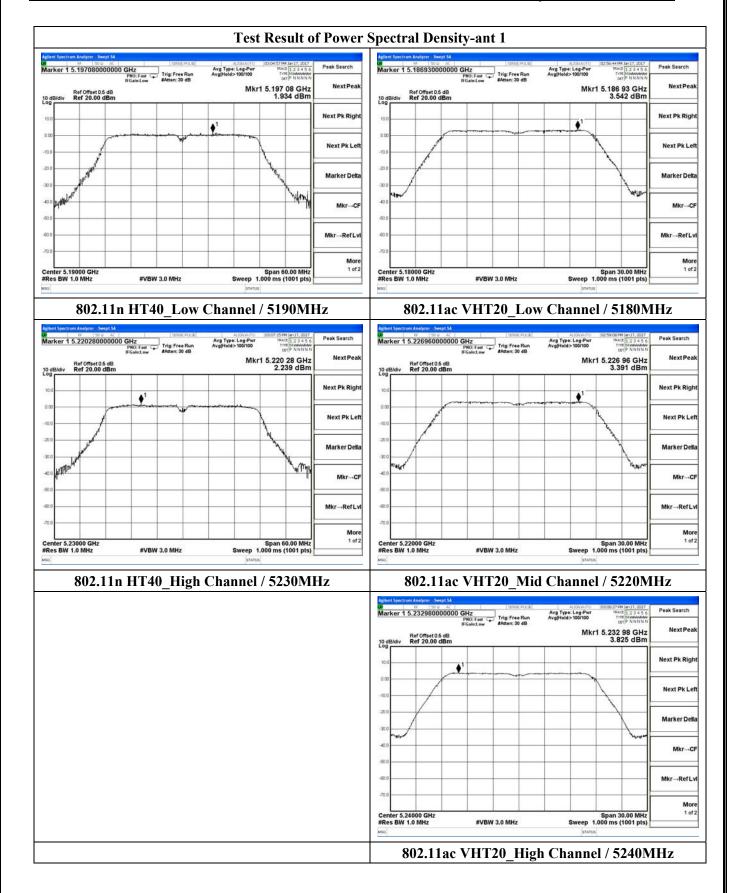
The EUT was programmed to be in continuously transmitting mode.

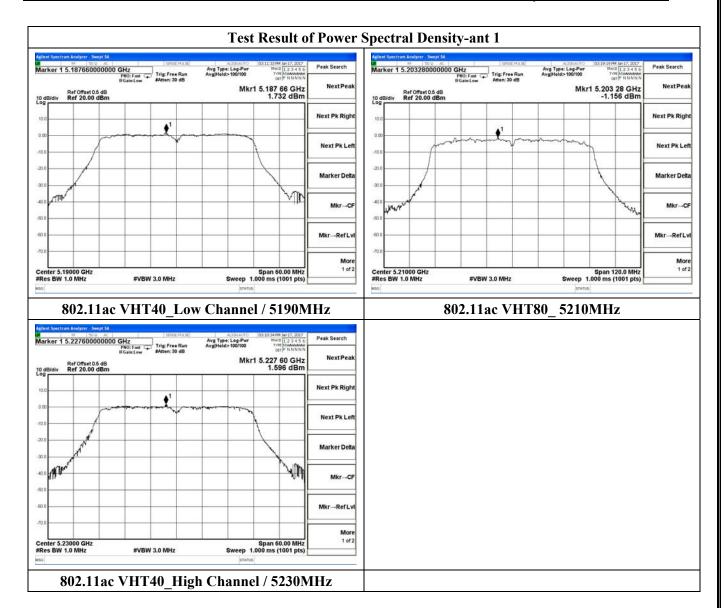
5.2.5. Test Result of Power Spectral Density


Temperature	25°C	Humidity	60%
Test Engineer	Chaz Liu	Configurations	802.11a/n/ac


Power Spectral Density Measurement Result For 5180~5240MHz Band


Mode	Channel	Frequency (MHz)	Power Density (dBm/MHz) Ant 0 Ant 1 Sum		Max. Limit (dBm/MHz)	Result	
	36	5180	4.870	4.475	/	11	Complies
802.11a	44	5220	4.472	4.433	/	11	Complies
	48	5240	4.767	4.957	/	11	Complies
	36	5180	4.474	3.767	7.15	11	Complies
802.11n(HT20)	44	5220	4.095	3.582	6.86	11	Complies
	48	5240	4.971	3.585	7.34	11	Complies
902 11p(UT40)	38	5190	2.654	1.934	5.32	11	Complies
802.11n(HT40)	46	5230	2.707	2.239	5.49	11	Complies
	36	5180	4.480	3.542	7.05	11	Complies
802.11ac(VHT20)	44	5220	4.689	3.391	7.10	11	Complies
	48	5240	4.536	3.825	7.21	11	Complies
802.11ac(VHT40)	38	5190	2.455	1.732	5.12	11	Complies
002.11aC(VH140)	46	5230	2.900	1.596	5.31	11	Complies
802.11ac(VHT80)	42	5210	1.025	-1.156	3.08	11	Complies


The measured power density (dBm) has the offset with cable loss already.


Test Result of Power Spectral Density-ant 0 Marker 1 5.175680000000 GHz PHO: Fast Attent any Attent: 36 dB Marker 1 5.175050000000 GHz PN0: Fast Atten: 36 dB Peak Search Peak Search Avg Type: Log-Pwi Avg|Hold>100/100 Avg Type: Log-Pwi Avg|Hold>100/100 NextPea Mkr1 5.175 68 GHz 4.870 dBm Mkr1 5.175 05 GHz 4.474 dBm Ref Offset 0.5 dB Ref 20.00 dBn Ref Offset 0.5 dB Ref 20.00 dBm Next Pk Righ Next Pk Righ **♦**¹ Next Pk Let Next Pk Let " I THINK Viryal As Marker Delt Marker Delt Mkr-Ref Lv Mkr--RefLv Mor Center 5.18000 GHz #Res BW 1.0 MHz 1 of 2 Center 5.18000 GHz #Res BW 1.0 MHz 1 of 2 Span 30.00 MHz Sweep 1.000 ms (1001 pts) Span 30.00 MHz Sweep 1.000 ms (1001 pts #VBW 3.0 MHz #VBW 3.0 MHz 802.11a Low Channel / 5180MHz 802.11n HT20 Low Channel / 5180MHz Marker 1 5.218890000000 GHz Mill Fast Agent Agent Agent 36 dB Peak Search Peak Search Avg Type: Log-Pwi Avg|Hold>100/100 Avg Type: Log-Pw Avg|Hold>100/100 Mkr1 5.215 80 GHz 4.472 dBm Next Pea Mkr1 5.198 89 GHz 4.095 dBm NextPea **Next Pk Righ** Next Pk Righ Next Pk Let Next Pk Left W Lave A Park Park Marker Delt Marker Delt Mkr-CF Mkr-C Mkr-Ref Lv Mkr-Ref Lv More 1 of 2 Span 30.00 MHz Sweep 1.000 ms (1001 pts) Span 30.00 MHz Sweep 1.000 ms (1001 pts) 802.11a Middle Channel / 5220MHz 802.11n HT20 Middle Channel / 5220MHz Trig: Free Run ##0: Fast Trig: Free Run Atten: 36 dB arker 1 5.237810000000 GHz PRO: Fast Trig: Free Run Atten: 36 dB Peak Search Avg Type: Log-Pw Avg|Hold>100/100 Avg Type: Log-Pw Avg|Hold>100/100 NextPea NextPea Mkr1 5.238 17 GHz 4.767 dBm Mkr1 5.237 81 GHz 4.971 dBm Ref Offset 0.5 dB Ref 20.00 dBm Ref Offset 0.5 dB Ref 20.00 dBm Next Pk Righ Next Pk Righ Next Pk Lef Next Pk Lef phylo PHINIS IN NAMP P Marker Del Marker Delt Mkr→CF Mkr→RefL Mkr→RefLv More 1 of 2 802.11a High Channel / 5240MHz 802.11n HT20_High Channel / 5240MHz

5.3. 6dB & 26dB Bandwidth Measurement

5.3.1. Standard Applicable

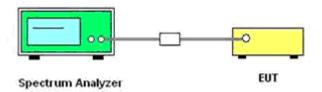
According to §15.407(e): Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

There is no restriction limits for 26dB & 99% occupied bandwidth, report only for reference.

5.3.2. Instruments Setting

The following table is the setting of the Spectrum Analyzer.

6dB Bandwidth Measurement (Only For 5745~5825MHz Band)			
Spectrum Parameter	Setting		
Attenuation	Auto		
RBW	100KHz		
VBW	≥ 3 x RBW		
Detector	Peak		
Trace	Max Hold		


26dB & 99%Bandwidth Measurement (Only For 5180~5240MHz Band)				
Spectrum Parameter	Setting			
Attenuation	Auto			
RBW	approximately 1% of the emission bandwidth			
VBW	≥ RBW			
Detector	Peak			
Trace	Max Hold			

5

5.3.3. Test Procedures

- 1) The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- 2) The resolution bandwidth and the video bandwidth were set according to KDB 789033 D02 General UNII Test Procedures New Rules v01r03
- 3) For 5745~5825MHz Band, Measured the maximum width of the emission that is 6dB down from the peak of the emission.
- 4) For 5180~5240MHz Band, Measured the maximum width of the emission that is 26dB down from the peak of the emission. Record the 26dB & 99% Bandwidth.

5.3.4. Test Setup Layout

5.3.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.3.6. Test Result of Spectrum Bandwidth

Temperature	25°C	Humidity	60%
Test Engineer	Chaz Liu	Configurations	802.11a/n/ac

Mode	Channel	Frequency		B BW Hz)		BW Hz)	Limit
		(MHz)	Ant 0	Ant 1	Ant 0	Ant 1	
	36	5180	22.66	21.56	17.054	17.074	
802.11a	44	5220	22.42	21.71	17.119	17.086	
	48	5240	22.16	21.76	17.022	17.077	
	36	5180	22.39	25.70	18.051	18.126	
802.11n(HT20)	44	5220	22.25	25.99	18.024	18.202	
	48	5240	22.41	26.24	18.061	18.180	
000 44(UT40)	38	5190	43.85	49.49	36.207	36.426	Non aposition
802.11n(HT40)	46	5230	42.72	48.21	36.205	36.412	Non-specified
	36	5180	22.34	23.23	18.065	17.183	
802.11ac(VHT20)	44	5220	22.16	23.11	18.067	18.096	
	48	5240	22.18	22.36	18.026	18.049	
902 11cc(\/\UT40\	38	5190	42.28	40.38	36.191	36.412	
802.11ac(VHT40)	46	5230	42.40	48.34	36.211	36.368	
802.11ac(VHT80)	38	5190	84.36	91.58	74.674	75.956	

Test Result of 26dB Bandwidth & 99% Bandwidth-ant 0 Center Freq: 5 Trig: Free Run #Atten: 30 dB Center Freq 5.180000000 GHz Center Freq: 5. Trig: Free Run #Atten: 30 dB 000 GHz Avg|Hold>10/10 Center Freq 5.180000000 GHz 000 GHz Avg|Hold>10/10 Radio Device: BTS Radio Device: BTS #IFGain:Lev Ref 10.00 dBm Ref 10.00 dBm Mark SIL Max Ho Span 30 MHz Sweep 1 ms Span 30 Mi Min Ho Occupied Bandwidth Total Power 14.0 dBm Occupied Bandwidth Total Powe 13.7 dBm 17.054 MHz 18.051 MHz -53.121 kHz -19.609 kHz Transmit Freq Error Transmit Freq Error **OBW Power** 99.00 % **OBW Power** 99.00 % 22.66 MHz 22.39 MHz x dB Bandwidth x dB Bandwidth -26.00 dB x dB -26.00 dB x dB 802.11a Low Channel / 5180MHz 802.11n HT20 Low Channel / 5180MHz Radio Std: None Radio Std: None Center Freq 5.220000000 GHz Trig: Free Ru Clear Writ Clear Writ W Par Ачега Averag Max Ho Max Hol Res BW 300 kHz #VBW 1 MHz #VBW 1 MHz Min Ho Min Ho Occupied Bandwidth **Total Power** 14.1 dBm Occupied Bandwidth **Total Power** 13.5 dBm 17.119 MHz 18.024 MHz Transmit Freq Error OBW Power Transmit Freq Error -75.389 kHz OBW Power 99.00 % -51.683 kHz 99.00 % x dB Bandwidth 22.42 MHz -26.00 dB x dB Bandwidth 22.25 MHz x dB -26.00 dB 802.11a Middle Channel / 5220MHz 802.11n HT20 Middle Channel / 5220MHz enter Freq 5.240000000 GHz enter Freq 5.240000000 GHz Radio Device: BTS Center Free Clear Writ المالاه Averag WILL. ሳዚኒሲ Max Hol Span 30 MHz Sweep 1 ms Center 5.24 GHz #Res BW 300 kHz Center 5.24 GHz #Res BW 300 kHz CF Step 3,000000 MHz #VBW 1 MHz #VBW 1 MHz Min Ho 14.4 dBm Occupied Bandwidth Occupied Bandwidth 17.022 MHz 18.061 MHz Detecto Freq Offs

802.11a_High Channel / 5240MHz

99.00 %

-26.00 dB

OBW Power

x dB

Transmit Freg Error

x dB Bandwidth

-61.377 kHz

22.16 MHz

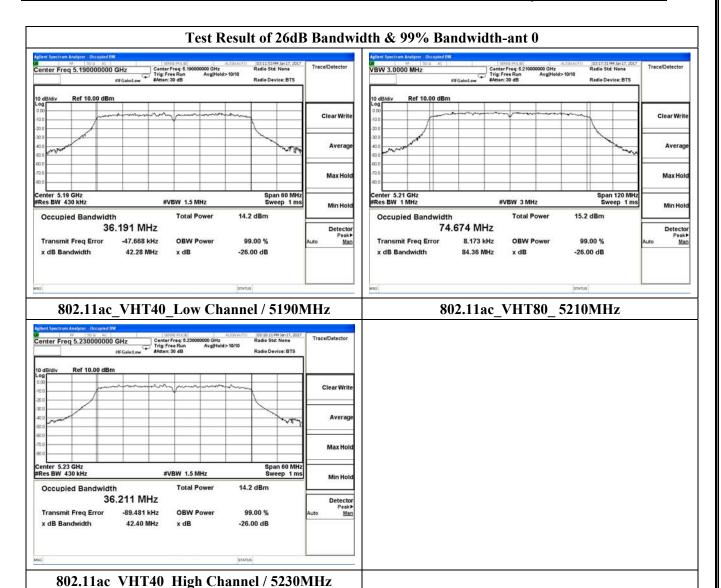
802.11n HT20_High Channel / 5240MHz

OBW Power

x dB

99.00 %

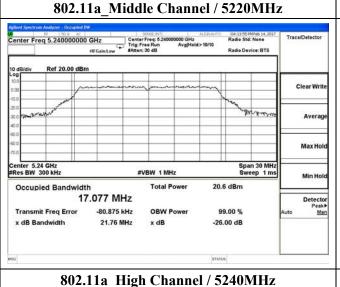
-26.00 dB

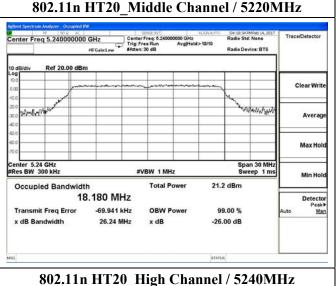

Transmit Freg Error

x dB Bandwidth

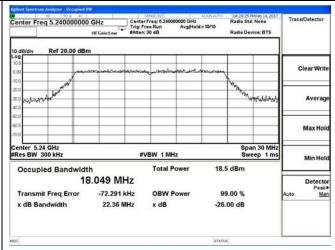
-28.420 kHz

22.41 MHz


Test Result of 26dB Bandwidth & 99% Bandwidth-ant 0 VBW 1.5000 MHz Center Freq: 5 Trig: Free Run #Atten: 30 dB Center Freq 5.180000000 GHz Center Freq: 5. Trig: Free Run #Atten: 30 dB 000 GHz Avg|Hold>10/10 000 GHz Avg|Hold>10/10 Radio Device: BTS Radio Device: BTS Ref 10.00 dBm Max Ho Span 60 MHz Sweep 1 ms Min Ho Occupied Bandwidth Total Power 14.3 dBm Occupied Bandwidth Total Powe 13.7 dBm 36.207 MHz 18.065 MHz -9.537 kHz -52.405 kHz Transmit Freq Error Transmit Freq Error **OBW Power** 99.00 % **OBW Power** 99.00 % 43.85 MHz 22.34 MHz x dB Bandwidth x dB Bandwidth -26.00 dB x dB -26.00 dB x dB 802.11n HT40 Low Channel / 5190MHz 802.11ac VHT20 Low Channel / 5180MHz 03:07:36 PM Jan 17 Radio Std: None Center Freq 5.220000000 GHz Radio Std: None Center Freq 5.230000000 GHz Clear Wri Clear Writ Ачега Averag WAR Max Ho Max Hol #Res BW 430 kHz **#VBW 1.5 MHz** #VBW 1 MHz Min Ho Min Ho Occupied Bandwidth **Total Power** 14.3 dBm Occupied Bandwidth **Total Power** 13.8 dBm 36.205 MHz 18.067 MHz Transmit Freq Error Transmit Freq Error -54.790 kHz OBW Power 99.00 % -70.266 kHz **OBW Power** 99.00 % x dB Bandwidth 42.72 MHz -26.00 dB x dB Bandwidth 22.16 MHz x dB -26.00 dB 802.11n HT40 High Channel / 5230MHz 802.11ac VHT20 Middle Channel / 5220MHz enter Freq 5.240000000 GHz Clear Writ Ачегар Max Hol Center 5.24 GHz #Res BW 300 kHz #VBW 1 MHz Min Ho 14.0 dBm Occupied Bandwidth 18.026 MHz Detector Transmit Freg Error -71.890 kHz **OBW Power** 99.00 % x dB Bandwidth 22.18 MHz x dB -26.00 dB 802.11ac_VHT20_High Channel / 5240MHz



Test Result of 26dB Bandwidth & 99% Bandwidth-ant 1 Center Freq 5.180000000 GHz Center Freq: 5 Trig: Free Run Center Freq: 5. Trig: Free Run Clear Writ Clear Write Averag Averag Max Ho Max Ho r 5.18 GHz r 5.18 GHz Span 30 MH Res BW 300 kHz #VBW 1 MHz #VBW 1 MHz Min Ho Min Ho Occupied Bandwidth Occupied Bandwidth 17.074 MHz 18.126 MHz Transmit Freq Error -90.345 kHz **OBW Power** 99.00 % Transmit Freq Error -69.441 kHz **OBW Power** 99.00 % x dB Bandwidth 21.56 MHz x dB -26.00 dB x dB Bandwidth 25.70 MHz x dB -26.00 dB 802.11a Low Channel / 5180MHz 802.11n HT20 Low Channel / 5180MHz Center Freq 5.220000000 GHz Radio Device: BTS



Test Result of 26dB Bandwidth & 99% Bandwidth-ant 1 Center Freq 5.180000000 GHz Center Freq: 5 Trig: Free Run Center Freq: 5. Trig: Free Run Clear Writ Clear Writ Averag Averag Max Ho Max Ho enter 5.19 GHz Res BW 430 kHz r 5.18 GHz **#VBW 1.5 MHz** #VBW 1 MHz Min Ho Min Ho Occupied Bandwidth Occupied Bandwidth 36.426 MHz 18.183 MHz Transmit Freq Error -52.539 kHz **OBW Power** 99.00 % Transmit Freq Error -77.928 kHz **OBW Power** 99.00 % x dB Bandwidth 49.49 MHz x dB -26.00 dB x dB Bandwidth 23.23 MHz x dB -26.00 dB 802.11n HT40 Low Channel / 5190MHz 802.11ac VHT20 Low Channel / 5180MHz Center Freq 5.230000000 GHz VBW 1.0000 MHz Ref 20.00 dBm Clear Writ Japan Maryan Mulley March MMA #VBW 1.5 MHz #VBW 1 MHz Total Power 20.2 dBm **Total Powe** 18,9 dBm 36.412 MHz 18.096 MHz **OBW Power** Transmit Freg Error -38.878 kHz **OBW Power** 99.00 % Transmit Freg Error -70.625 kHz 99.00 % 23.11 MHz x dB Bandwidth 48.21 MHz x dB x dB Bandwidth -26.00 dB -26.00 dB x dB 802.11n HT40 High Channel / 5230MHz 802.11ac VHT20 Middle Channel / 5220MHz

802.11ac VHT20 High Channel / 5240MHz

5.4. Radiated Emissions Measurement

5.4.1. Standard Applicable

According to §15.407 (b)(1) to (6):

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz (68.2dBuV/m at 3m).

For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz (78.2dBuV/m at 3m); for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz (68.2dBuV/m at 3m).

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies(MHz)	Field Strength(microvolts/meter)	Measurement Distance(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

5.4.2. Instruments Setting

The following table is the setting of spectrum analyzer and receiver.

0	Cotting
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for QP

5.4.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 0.8 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

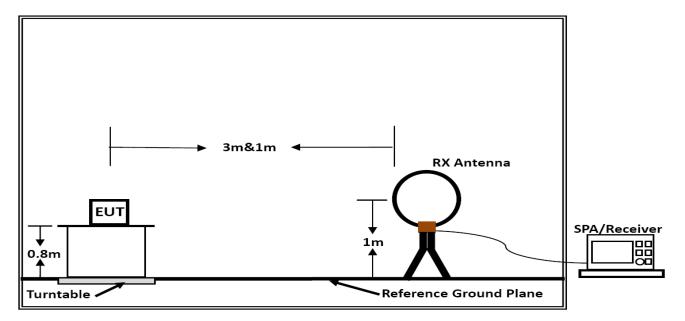
Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

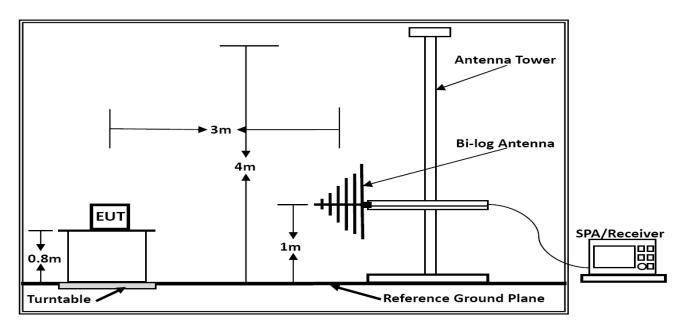
4) Sequence of testing above 18 GHz

Setup:

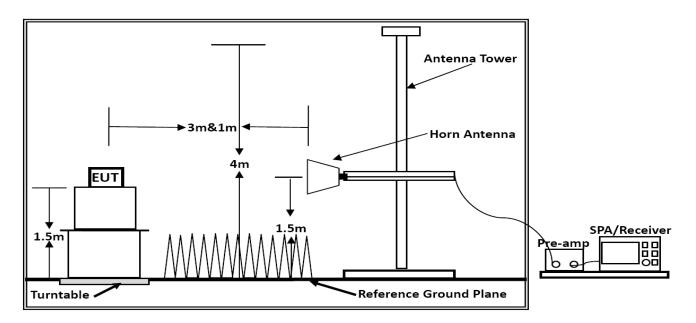
- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.


Premeasurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.


Final measurement:

- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.


5.4.4. Test Setup Layout

Below 30MHz

Below 1GHz

Above 1GHz

Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1.5m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

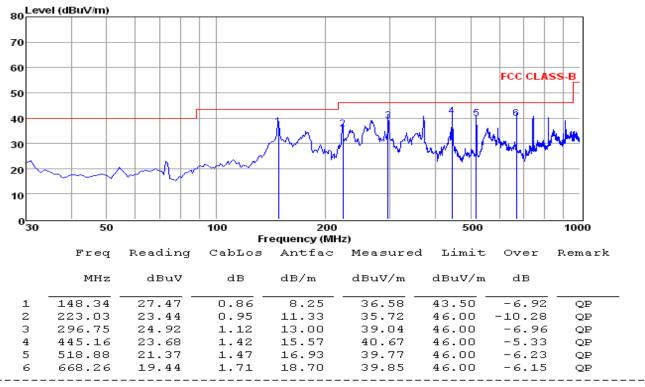
5.4.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.4.6. Results of Radiated Emissions (9kHz~30MHz)

Temperature	25°C	Humidity	60%
Test Engineer	Chaz Liu	Configurations	802.11a/n

Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

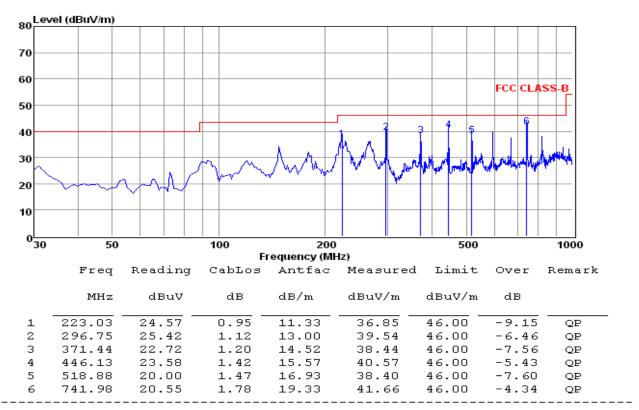

Note:

The radiated emissions from 9kHz to 30MHz are at least 20dB below the official limit and no need to report.

5.4.7. Results of Radiated Emissions (30MHz~1GHz)

Note: Only record the worst test result in this report.

Horizontal:



Note: 1. All readings are Quasi-peak values.

^{2.} Measured= Reading + Antenna Factor + Cable Loss

^{3.} The emission that ate 20db blow the offficial limit are not reported

Vertical:

Note: 1. All readings are Quasi-peak values.

***Note:

Pre-scan all mode and recorded the worst case results in this report (802.11a mode(High Channel)@AC120V).

Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

^{2.} Measured= Reading + Antenna Factor + Cable Loss

^{3.} The emission that ate 20db blow the offficial limit are not reported

5.4.8. Results for Radiated Emissions (Above 1GHz)

Note: Only recorded the worst test result of ant 0 in this report.

The Worst Test Result For 5180~5240MHz Band.

802.11a / Channel 36

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.36	45.56	33.21	35.82	9.52	52.47	68.20	-15.73	Peak	Horizontal
10.36	34.84	33.21	35.82	9.52	41.75	54.00	-12.25	Average	Horizontal
10.36	46.57	32.82	35.82	9.52	53.09	68.20	-15.11	Peak	Vertical
10.36	35.12	32.82	35.82	9.52	41.64	54.00	-12.36	Average	Vertical

802.11a / Channel 44

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.44	46.12	33.21	35.82	9.52	53.03	68.20	-15.17	Peak	Horizontal
10.44	35.38	33.21	35.82	9.52	42.29	54.00	-11.71	Average	Horizontal
10.44	47.24	32.82	35.82	9.52	53.76	68.20	-14.44	Peak	Vertical
10.44	35.65	32.82	35.82	9.52	42.17	54.00	-11.83	Average	Vertical

802.11a / Channel 48

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.48	46.54	33.21	35.82	9.52	53.45	68.20	-14.75	Peak	Horizontal
10.48	35.86	33.21	35.82	9.52	42.77	54.00	-11.23	Average	Horizontal
10.48	47.86	32.82	35.82	9.52	54.38	68.20	-13.82	Peak	Vertical
10.48	36.32	32.82	35.82	9.52	42.84	54.00	-11.16	Average	Vertical

802.11n(HT20) / Channel 36

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.36	45.24	33.21	35.82	9.52	52.15	68.20	-16.05	Peak	Horizontal
10.36	34.40	33.21	35.82	9.52	41.31	54.00	-12.69	Average	Horizontal
10.36	46.38	32.82	35.82	9.52	52.90	68.20	-15.30	Peak	Vertical
10.36	34.90	32.82	35.82	9.52	41.42	54.00	-12.58	Average	Vertical

802.11n(HT20) / Channel 44

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.44	45.98	33.21	35.82	9.52	52.89	68.20	-15.31	Peak	Horizontal
10.44	34.80	33.21	35.82	9.52	41.71	54.00	-12.29	Average	Horizontal
10.44	46.86	32.82	35.82	9.52	53.38	68.20	-14.82	Peak	Vertical
10.44	35.41	32.82	35.82	9.52	41.93	54.00	-12.07	Average	Vertical

802.11n(HT20) / Channel 48

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.48	46.35	33.21	35.82	9.52	53.26	68.20	-14.94	Peak	Horizontal
10.48	35.32	33.21	35.82	9.52	42.23	54.00	-11.77	Average	Horizontal
10.48	47.35	32.82	35.82	9.52	53.87	68.20	-14.33	Peak	Vertical
10.48	35.95	32.82	35.82	9.52	42.47	54.00	-11.53	Average	Vertical

802.11n(HT40) / Channel 38

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.38	45.75	33.21	35.82	9.52	52.66	68.20	-15.54	Peak	Horizontal
10.38	34.91	33.21	35.82	9.52	41.82	54.00	-12.18	Average	Horizontal
10.38	47.20	32.82	35.82	9.52	53.72	68.20	-14.48	Peak	Vertical
10.38	35.71	32.82	35.82	9.52	42.23	54.00	-11.77	Average	Vertical

802.11n(HT40) / Channel 46

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.46	46.14	33.21	35.82	9.52	53.05	68.20	-15.15	Peak	Horizontal
10.46	35.59	33.21	35.82	9.52	42.50	54.00	-11.50	Average	Horizontal
10.46	47.18	32.82	35.82	9.52	53.70	68.20	-14.50	Peak	Vertical
10.46	35.66	32.82	35.82	9.52	42.18	54.00	-11.82	Average	Vertical

802.11ac VHT20 / Channel 36

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.36	45.23	33.21	35.82	9.52	52.14	68.20	-16.06	Peak	Horizontal
10.36	34.53	33.21	35.82	9.52	41.44	54.00	-12.56	Average	Horizontal
10.36	46.34	32.82	35.82	9.52	52.86	68.20	-15.34	Peak	Vertical
10.36	35.14	32.82	35.82	9.52	41.66	54.00	-12.34	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd..

Page 43 of 55

802.11ac VHT20 / Channel 44

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.44	45.82	33.21	35.82	9.52	52.73	68.20	-15.47	Peak	Horizontal
10.44	35.02	33.21	35.82	9.52	41.93	54.00	-12.07	Average	Horizontal
10.44	47.05	32.82	35.82	9.52	53.57	68.20	-14.63	Peak	Vertical
10.44	35.63	32.82	35.82	9.52	42.15	54.00	-11.85	Average	Vertical

802.11ac VHT20 / Channel 48

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.48	46.40	33.21	35.82	9.52	53.31	68.20	-14.89	Peak	Horizontal
10.48	35.45	33.21	35.82	9.52	42.36	54.00	-11.64	Average	Horizontal
10.48	47.51	32.82	35.82	9.52	54.03	68.20	-14.17	Peak	Vertical
10.48	36.16	32.82	35.82	9.52	42.68	54.00	-11.32	Average	Vertical

802.11ac VHT40 / Channel 38

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.38	45.34	33.21	35.82	9.52	52.25	68.20	-15.95	Peak	Horizontal
10.38	34.54	33.21	35.82	9.52	41.45	54.00	-12.55	Average	Horizontal
10.38	46.60	32.82	35.82	9.52	53.12	68.20	-15.08	Peak	Vertical
10.38	34.93	32.82	35.82	9.52	41.45	54.00	-12.55	Average	Vertical

802.11ac VHT40 / Channel 46

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.46	45.94	33.21	35.82	9.52	52.85	68.20	-15.35	Peak	Horizontal
10.46	35.11	33.21	35.82	9.52	42.02	54.00	-11.98	Average	Horizontal
10.46	47.37	32.82	35.82	9.52	53.89	68.20	-14.31	Peak	Vertical
10.46	35.79	32.82	35.82	9.52	42.31	54.00	-11.69	Average	Vertical

802.11ac VHT80 / Channel 42

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.42	45.09	33.21	35.82	9.52	52.00	68.20	-16.20	Peak	Horizontal
10.42	34.19	33.21	35.82	9.52	41.10	54.00	-12.90	Average	Horizontal
10.42	46.54	32.82	35.82	9.52	53.06	68.20	-15.14	Peak	Vertical
10.42	34.59	32.82	35.82	9.52	41.11	54.00	-12.89	Average	Vertical

Notes:

- 1. Measuring frequencies from 9k~40GHz, No emission found between lowest internal used/generated frequency to 30MHz.
- 2. Radiated emissions measured in frequency range from 30MHz~40GHz were made with an instrument using Peak detector mode.
- 3. The radiated emissions from 18GHz to 40GHz are at least 20dB below the official limit and no need to report.

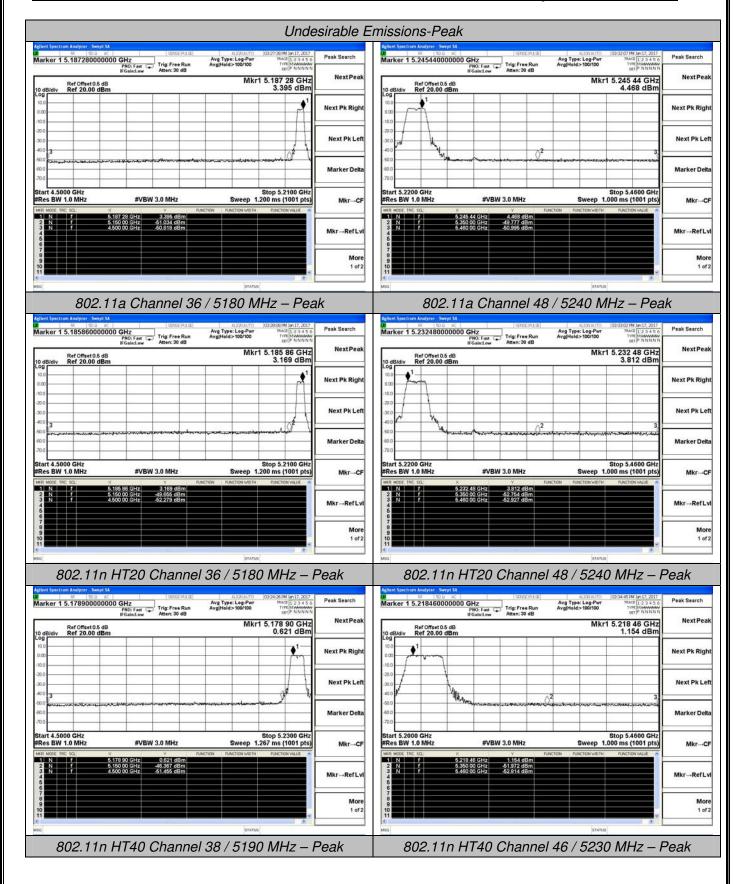
5.4.9. Results of Band Edges Test (Restricted Band)

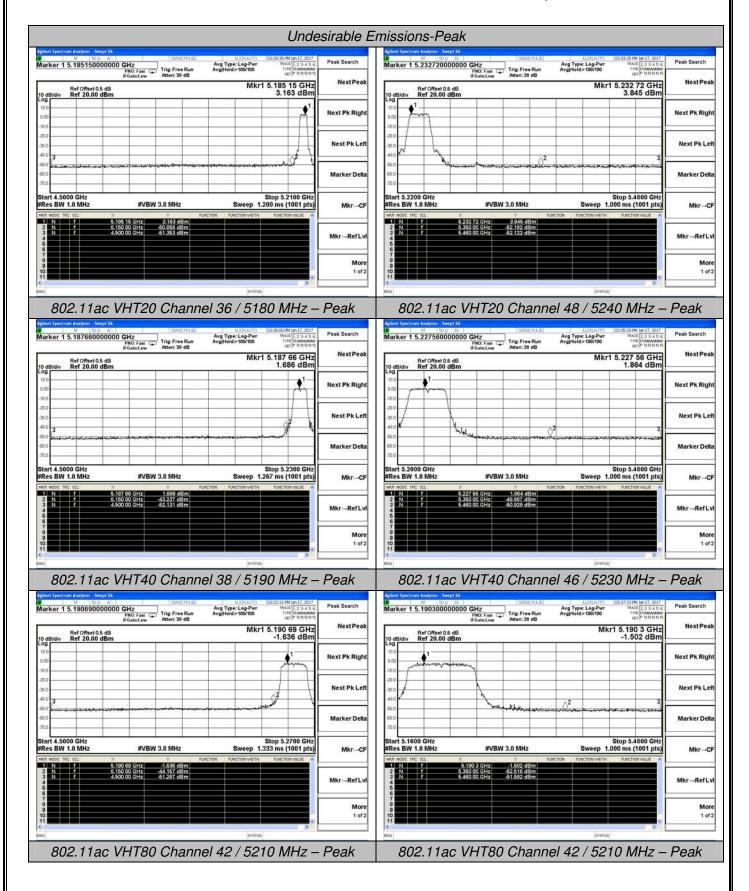
Note: Only recorded the worst test result of ant 0 in this report.

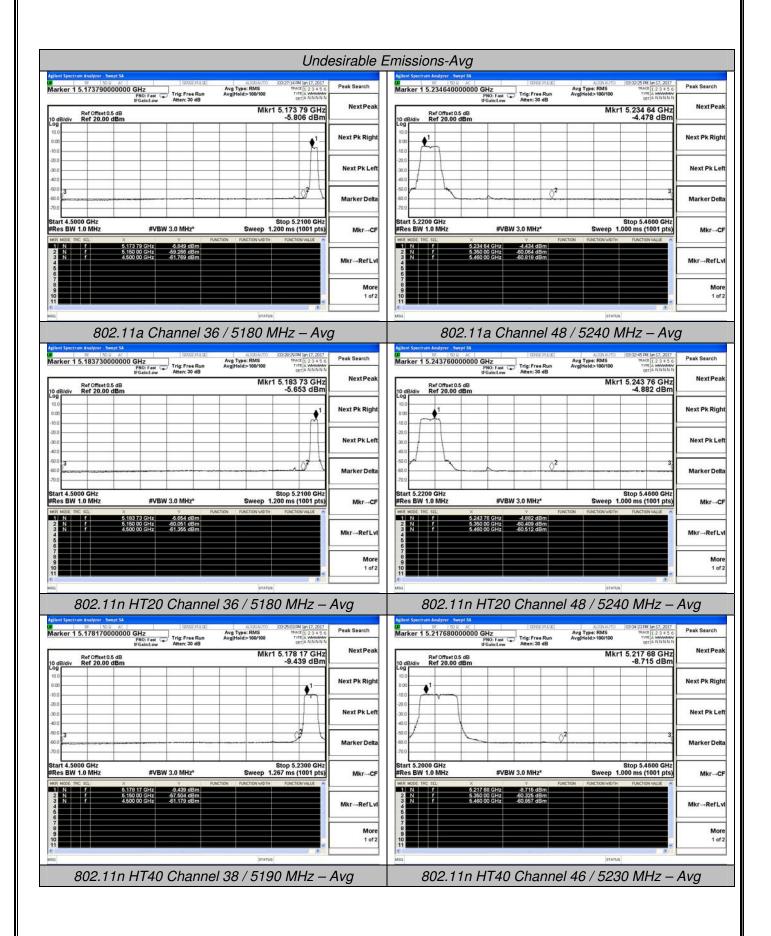
	IEEE 802.11a								
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Converted Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict			
4500.000	-50.818	2.50	46.88	Peak	68.20	PASS			
4500.000	-61.769	2.50	35.93	Avg	54.00	PASS			
5150.000	-51.034	2.50	46.67	Peak	68.20	PASS			
5150.000	-59.266	2.50	38.43	Avg	54.00	PASS			
5350.000	-49.777	2.50	47.92	Peak	68.20	PASS			
5350.000	-60.064	2.50	37.64	Avg	54.00	PASS			
5460.000	-50.995	2.50	46.71	Peak	68.20	PASS			
5460.000	-60.818	2.50	36.88	Avg	54.00	PASS			

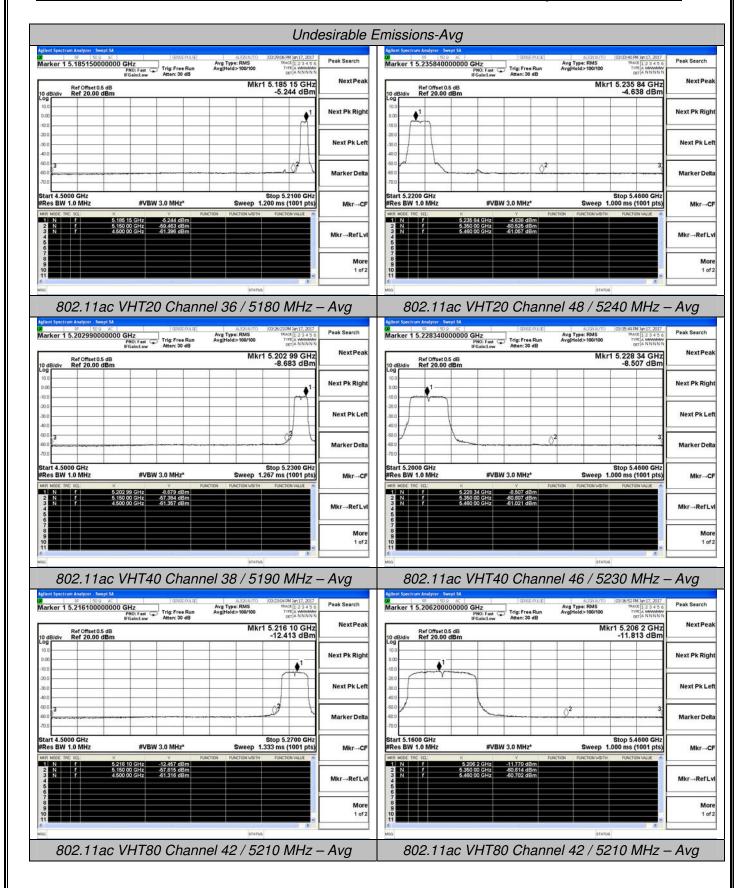
	IEEE 802.11n HT20									
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Converted Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict				
4500.000	-52.279	2.50	45.42	Peak	68.20	PASS				
4500.000	-61.355	2.50	36.35	Avg	54.00	PASS				
5150.000	-49.655	2.50	48.05	Peak	68.20	PASS				
5150.000	-60.051	2.50	37.65	Avg	54.00	PASS				
5350.000	-52.754	2.50	44.95	Peak	68.20	PASS				
5350.000	-60.409	2.50	37.29	Avg	54.00	PASS				
5460.000	-52.927	2.50	44.77	Peak	68.20	PASS				
5460.000	-60.512	2.50	37.19	Avg	54.00	PASS				

	IEEE 802.11n HT40									
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Converted Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict				
4500.000	-51.455	2.50	46.25	Peak	68.20	PASS				
4500.000	-61.179	2.50	36.52	Avg	54.00	PASS				
5150.000	-46.367	2.50	51.33	Peak	68.20	PASS				
5150.000	-57.504	2.50	40.20	Avg	54.00	PASS				
5350.000	-51.972	2.50	45.73	Peak	68.20	PASS				
5350.000	-60.325	2.50	37.38	Avg	54.00	PASS				
5460.000	-52.814	2.50	44.89	Peak	68.20	PASS				
5460.000	-60.857	2.50	36.84	Avg	54.00	PASS				

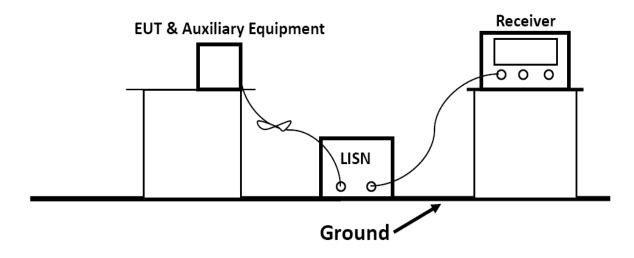

	IEEE 802.11ac VHT20								
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Converted Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict			
4500.000	-51.353	2.50	46.35	Peak	68.20	PASS			
4500.000	-61.396	2.50	36.30	Avg	54.00	PASS			
5150.000	-50.859	2.50	46.84	Peak	68.20	PASS			
5150.000	-59.463	2.50	38.24	Avg	54.00	PASS			
5350.000	-52.182	2.50	45.52	Peak	68.20	PASS			
5350.000	-60.525	2.50	37.18	Avg	54.00	PASS			
5460.000	-52.122	2.50	45.58	Peak	68.20	PASS			
5460.000	-61.057	2.50	36.64	Avg	54.00	PASS			


	IEEE 802.11ac VHT40									
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Converted Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict				
4500.000	-52.131	2.50	45.57	Peak	68.20	PASS				
4500.000	-61.357	2.50	36.34	Avg	54.00	PASS				
5150.000	-43.237	2.50	54.46	Peak	68.20	PASS				
5150.000	-57.384	2.50	40.32	Avg	54.00	PASS				
5350.000	-49.867	2.50	47.83	Peak	68.20	PASS				
5350.000	-60.607	2.50	37.09	Avg	54.00	PASS				
5460.000	-50.929	2.50	46.77	Peak	68.20	PASS				
5460.000	-61.021	2.50	36.68	Avg	54.00	PASS				


	IEEE 802.11ac VHT80								
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Convert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict			
4500.000	-51.287	2.50	46.41	Peak	68.20	PASS			
4500.000	-61.316	2.50	36.38	Avg	54.00	PASS			
5150.000	-44.157	2.50	53.54	Peak	68.20	PASS			
5150.000	-57.815	2.50	39.89	Avg	54.00	PASS			
5350.000	-52.516	2.50	45.18	Peak	68.20	PASS			
5350.000	-60.614	2.50	37.09	Avg	54.00	PASS			
5460.000	-51.592	2.50	46.11	Peak	68.20	PASS			
5460.000	-60.702	2.50	37.00	Avg	54.00	PASS			


Remark:

- 1. $EIRP [dBm] = E [dB\mu V/m] 95.23$
- 2. Measured undesirable emission at difference data rate for each mode and recorded worst case for each mode.
- 3. Test results including cable loss;
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.

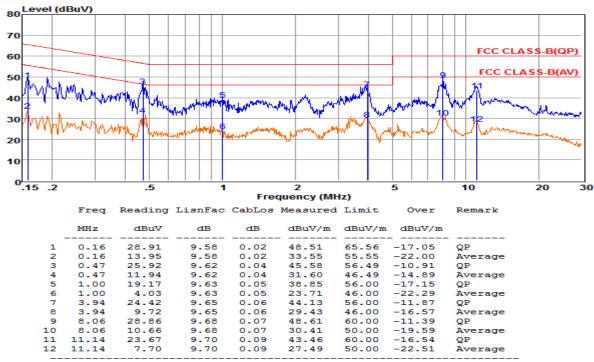

5.6. Power line conducted emissions

5.6.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits (dBµV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

5.6.2 Block Diagram of Test Setup


5.6.3 Test Results

PASS.

Only recorded the worst test case in this report.

The test data please refer to following page.

Test Result For Line Power Input AC 120V/60Hz (Worst Case)
Live Line:

Remarks: 1. C.F (Correction Factor) = Insertion loss + Cable loss.
2. Measured = Reading + Lisn Factor +Cable Loss.

Neutral:

Note: Pre-scan all modes and recorded the worst case results in this report.

5.7. Antenna Requirements

5.7.1. Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

5.7.2. Antenna Connector Construction

The antenna used for transmitting is permanently attached and no consideration of replacement. Please see EUT photo for details.

The 5.2GHz WLAN use a R-SMA antenna and FPC antenna, the maximum gain is 2.5dBi for each antenna.

5.7.3. Results: Compliance.

Measurement parameters

Measurement parameter					
Detector:	Peak				
Sweep Time:	Auto				
Resolution bandwidth:	1MHz				
Video bandwidth:	3MHz				
Trace-Mode:	Max hold				

Note: The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal WLAN devices, the IEEE 802.11a mode is used.

Limits

FCC	IC					
Antenna Gain						
6 dBi						

Tnom	Vnom	lowest channel 5180 MHz		middle channel 5220 MHz		highest channel 5240 MHz	
		Ant 0	Ant 1	Ant 0	Ant 1	Ant 0	Ant 1
Conducted power [dBm] Measured with OFDM modulation		14.78	14.82	14.76	14.19	15.09	14.54
Radiated power [dBm] Measured with OFDM modulation		15.91	16.03	16.27	15.72	17.06	15.89
Gain [dBi] Calculated		1.13	1.21	1.51	1.53	1.20	1.35
Measurement uncertainty			± 1.6 dB (cond.) / ± 3.8 dB (rad.)				

Result: -/-

-----THE END OF REPORT-----