EMC TEST REPORT

Report No.: 18071055-FCC-E Supersede Report No: N/A

Applicant	MOBIWIRE	MOBIWIRE MOBILES (NINGBO) CO.,LTD		
Product Name	3G feature phone			
Model No.	HW3020			
Serial No.	N/A			
Test Standard	FCC Part 15 Subpart B Class B, ANSI C63.4: 2014			
Test Date	November 20 to December 04, 2018			
Issue Date	December 07, 2018			
Test Result	Pass Fail			
Equipment complied with the specification				
Equipment did not comply with the specification				
mas. He		David Huang		
Evans He Test Engineer		David Huang Checked By		

This test report may be reproduced in full only

Test result presented in this test report is applicable to the tested sample only

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park
South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108

Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Test Report	18071055-FCC-E
Page	2 of 24

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope	
USA	EMC, RF/Wireless, SAR, Telecom	
Canada	EMC, RF/Wireless, SAR, Telecom	
Taiwan	EMC, RF, Telecom, SAR, Safety	
Hong Kong	RF/Wireless, SAR, Telecom	
Australia	EMC, RF, Telecom, SAR, Safety	
Korea	EMI, EMS, RF, SAR, Telecom, Safety	
Japan	EMI, RF/Wireless, SAR, Telecom	
Singapore	EMC, RF, SAR, Telecom	
Europe	EMC, RF, SAR, Telecom, Safety	

Test Report	18071055-FCC-E
Page	3 of 24

This page has been left blank intentionally.

Test Report	18071055-FCC-E
Page	4 of 24

CONTENTS

1.	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	5
3.	TEST SITE INFORMATION	5
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5.	TEST SUMMARY	8
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
6.1	AC POWER LINE CONDUCTED EMISSIONS	9
6.2	RADIATED EMISSIONS	15
ANI	NEX A. TEST INSTRUMENT	19
INA	NEX B. TEST SETUP AND SUPPORTING EQUIPMENT	20
ANI	NEX C. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST	23
ANI	NEX D. DECLARATION OF SIMILARITY	24

Test Report	18071055-FCC-E
Page	5 of 24

1. Report Revision History

Report No.	Report Version	Description	Issue Date
18071055-FCC-E	NONE	Original	December 07, 2018

2. Customer information

Applicant Name	MOBIWIRE MOBILES (NINGBO) CO.,LTD	
Applicant Add	Ningbo Fenghua No.999, Dacheng East Road, Fenghua, Zhejiang, China	
Manufacturer	MOBIWIRE MOBILES (NINGBO) CO.,LTD	
Manufacturer Add	Ningbo Fenghua No.999,Dacheng East Road,Fenghua,Zhejiang,China	

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES	
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park	
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China	
	518108	
FCC Test Site No.	535293	
IC Test Site No.	4842E-1	
Test Software of		
Radiated Emission	Radiated Emission Program-To Shenzhen v2.0	
Test Software of	E7 FMO(
Conducted Emission	EZ-EMC(ver.lcp-03A1)	

Test Report	18071055-FCC-E
Page	6 of 24

4. Equipment under Test (EUT) Information

3G feature phone

Main Model: HW3020

Serial Model: N/A

GSM850: -1dBi

PCS1900: -0.5dBi Antenna Gain:

UMTS-FDD Band V: -1dBi

UMTS-FDD Band II: -0.5dBi

Antenna Type: PIFA antenna

Equipment Category: JBP

GSM / GPRS: GMSK Type of Modulation:

UMTS-FDD: QPSK

GSM850 TX: 824.2 ~ 848.8 MHz; RX: 869.2 ~ 893.8 MHz

PCS1900 TX: 1850.2 ~ 1909.8 MHz; RX: 1930.2 ~ 1989.8 MHz

RF Operating Frequency (ies): UMTS-FDD Band V TX: 826.4 ~ 846.6 MHz; RX: 871.4 ~ 891.6 MHz

UMTS-FDD Band II TX:1852.4 \sim 1907.6 MHz;

RX: 1932.4 ~ 1987.6 MHz

GSM 850: 124CH

PCS1900: 299CH

Number of Channels: UMTS-FDD Band V: 102CH

UMTS-FDD Band II: 277CH

Adapter:

Model: A31A-050055U-US1

Input: AC100-240V~50/60Hz,0.2A

Input Power:

Output: DC 5.0V, 550mA

Battery:

Model: HW3020

Test Report	18071055-FCC-E
Page	7 of 24

Spec: 3.7V, 800mAh/2.96Wh Limited charge voltage: 4.2V

Port: Please refer to the user's manual

Trade Name : bind.u

FCC ID: 2ADA4HW3020

Date EUT received: November 19, 2018

Test Date(s): November 20 to December 04, 2018

Test Report	18071055-FCC-E
Page	8 of 24

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.107; ANSI C63.4: 2014	AC Power Line Conducted Emissions	Compliance
§15.109; ANSI C63.4: 2014	Radiated Emissions	Compliance

Measurement Uncertainty

Parameter	Uncertainty	
AC Power Line Conducted Emissions	±3.11dB	
(150kHz~30MHz)		
Radiated Emission(30MHz~1GHz)	±5.12dB	
Radiated Emission(1GHz~6GHz)	±5.34dB	

Test Report	18071055-FCC-E
Page	9 of 24

6. Measurements, Examination And Derived Results

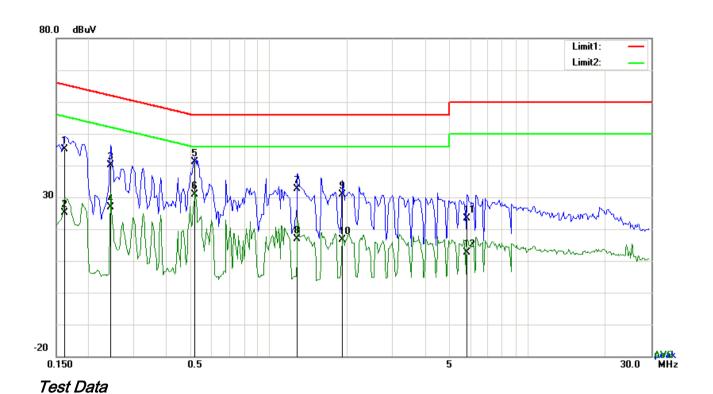
6.1 AC Power Line Conducted Emissions

Temperature	26°C		
Relative Humidity	59%		
Atmospheric Pressure	1015mbar		
Test date :	December 03, 2018		
Tested By :	Evans He		

Requirement(s):

Item	Requirement Applicable						
a)	connected to the public voltage that is conducte frequency or frequencie not exceed the limits in [mu] H/50 ohms line im	<u> </u>					
	Frequency ranges	Limit (dBμV)				
	(MHz)	QP	Average				
	0.15 ~ 0.5	66 – 56	56 – 46				
	0.5 ~ 5	56	46				
	5 ~ 30	60	50				
	Refe	rence Plane	Test Receiver				
 The EUT and supporting equipment were set up in accordance with the requirement the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. The power supply for the EUT was fed through a 50Ω/50mH EUT LISN, connected 							
	a) 1. The the 2. The	For Low-power radio-fr connected to the public voltage that is conducte frequency or frequencie not exceed the limits in [mu] H/50 ohms line im lower limit applies at th Frequency ranges (MHz) 0.15 ~ 0.5 0.5 ~ 5 5 ~ 30 Note: 1.Support 2.Both of L from othe 1. The EUT and supporting extended the standard on top of a 1.5	For Low-power radio-frequency devices that is connected to the public utility (AC) power line voltage that is conducted back onto the AC post frequency or frequencies, within the band 150 not exceed the limits in the following table, as [mu] H/50 ohms line impedance stabilization relower limit applies at the boundary between the frequency ranges	For Low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 [mu] H/50 ohms line impedance stabilization network (LISN). The lower limit applies at the boundary between the frequencies ranges. Frequency ranges Limit (dBμV) (MHz) QP Average 0.15 ~ 0.5 66 - 56 56 - 46 0.5 ~ 30 60 50 Vertical Ground Reference Plane Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80cm from EUT and at least 80cm from ther units and other metal planes support units. 1. The EUT and supporting equipment were set up in accordance with the rethe standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. 2. The power supply for the EUT was fed through a 50Ω/50mH EUT LISN, compared to the standard on top of the EUT was fed through a 50Ω/50mH EUT LISN, compared to the standard on top of the EUT was fed through a 50Ω/50mH EUT LISN, compared to the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table.			

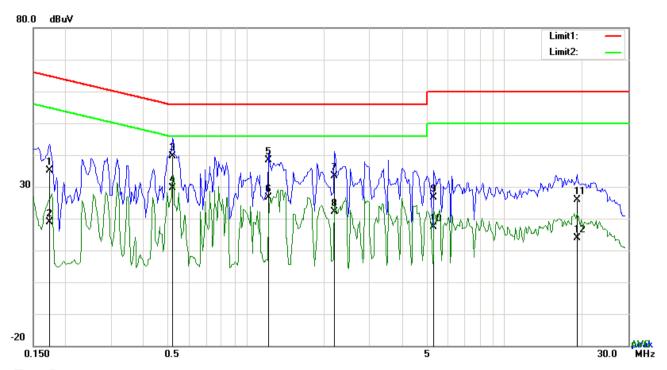
Test Report	18071055-FCC-E
Page	10 of 24


_						
	3.	The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss				
	coaxial cable.					
	4.	All other supporting equipment were powered separately from another main supply.				
	5.	The EUT was switched on and allowed to warm up to its normal operating condition.				
	6.	A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power)				
		over the required frequency range using an EMI test receiver.				
	7.	7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the				
		selected frequencies and the necessary measurements made with a receiver bandwidth				
		setting of 10 kHz.				
	8.	Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).				
Remark						
Result	<	Pass Fail N/A				
Tool Date	Vs					

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Test Report	18071055-FCC-E
Page	11 of 24

Test Mode: Charging Mode

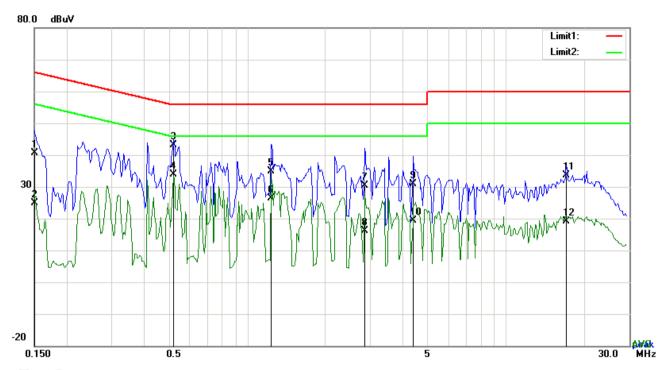


Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB}	(dBuV)	(dBuV)	(dB)
1	L1	0.1617	34.99	QP	10.03	45.02	65.38	-20.36
2	L1	0.1617	15.12	AVG	10.03	25.15	55.38	-30.23
3	L1	0.2436	30.22	QP	10.03	40.25	61.97	-21.72
4	L1	0.2436	16.94	AVG	10.03	26.97	51.97	-25.00
5	L1	0.5166	31.20	QP	10.03	41.23	56.00	-14.77
6	L1	0.5166	20.79	AVG	10.03	30.82	46.00	-15.18
7	L1	1.2888	22.57	QP	10.03	32.60	56.00	-23.40
8	L1	1.2888	6.86	AVG	10.03	16.89	46.00	-29.11
9	L1	1.9128	20.93	QP	10.04	30.97	56.00	-25.03
10	L1	1.9128	6.51	AVG	10.04	16.55	46.00	-29.45
11	L1	5.8158	13.27	QP	10.09	23.36	60.00	-36.64
12	L1	5.8158	2.54	AVG	10.09	12.63	50.00	-37.37

Test Report	18071055-FCC-E
Page	12 of 24

Test Data

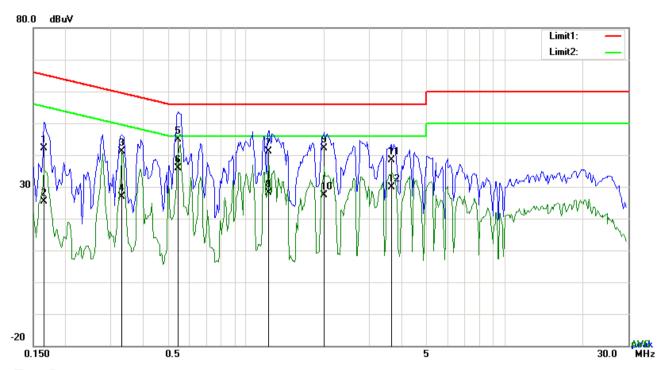

Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB}	(dBuV)	(dBuV)	(dB)
1	N	0.1734	25.10	QP	10.02	35.12	64.80	-29.68
2	N	0.1734	8.79	AVG	10.02	18.81	54.80	-35.99
3	N	0.5205	29.58	QP	10.02	39.60	56.00	-16.40
4	N	0.5205	19.60	AVG	10.02	29.62	46.00	-16.38
5	N	1.2186	28.41	QP	10.03	38.44	56.00	-17.56
6	Ν	1.2186	16.55	AVG	10.03	26.58	46.00	-19.42
7	N	2.1975	23.27	QP	10.04	33.31	56.00	-22.69
8	N	2.1975	12.02	AVG	10.04	22.06	46.00	-23.94
9	N	5.3127	16.65	QP	10.07	26.72	60.00	-33.28
10	N	5.3127	7.30	AVG	10.07	17.37	50.00	-32.63
11	N	19.0368	15.68	QP	10.25	25.93	60.00	-34.07
12	N	19.0368	3.73	AVG	10.25	13.98	50.00	-36.02

Test Report	18071055-FCC-E
Page	13 of 24

Test Mode : Charging Mode

Test Data


Phase Line Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	L1	0.1500	30.53	QP	10.03	40.56	66.00	-25.44
2	L1	0.1500	14.80	AVG	10.03	24.83	56.00	-31.17
3	L1	0.5205	33.22	QP	10.03	43.25	56.00	-12.75
4	L1	0.5205	23.81	AVG	10.03	33.84	46.00	-12.16
5	L1	1.2420	24.82	QP	10.03	34.85	56.00	-21.15
6	L1	1.2420	16.34	AVG	10.03	26.37	46.00	-19.63
7	L1	2.8410	20.26	QP	10.05	30.31	56.00	-25.69
8	L1	2.8410	6.14	AVG	10.05	16.19	46.00	-29.81
9	L1	4.3923	20.83	QP	10.07	30.90	56.00	-25.10
10	L1	4.3923	9.28	AVG	10.07	19.35	46.00	-26.65
11	L1	17.1648	23.39	QP	10.26	33.65	60.00	-26.35
12	L1	17.1648	8.77	AVG	10.26	19.03	50.00	-30.97

Test Report	18071055-FCC-E
Page	14 of 24

Test Mode : Charging Mode

Test Data

Phase Neutral Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	N	0.1656	32.21	QP	10.02	42.23	65.18	-22.95
2	N	0.1656	15.25	AVG	10.02	25.27	55.18	-29.91
3	N	0.3294	31.09	QP	10.02	41.11	59.47	-18.36
4	N	0.3294	16.85	AVG	10.02	26.87	49.47	-22.60
5	N	0.5439	34.91	QP	10.02	44.93	56.00	-11.07
6	N	0.5439	25.76	AVG	10.02	35.78	46.00	-10.22
7	N	1.2225	31.01	QP	10.03	41.04	56.00	-14.96
8	N	1.2225	18.20	AVG	10.03	28.23	46.00	-17.77
9	N	2.0025	32.12	QP	10.04	42.16	56.00	-13.84
10	N	2.0025	17.25	AVG	10.04	27.29	46.00	-18.71
11	N	3.6513	28.21	QP	10.06	38.27	56.00	-17.73
12	N	3.6513	19.89	AVG	10.06	29.95	46.00	-16.05

Test Report	18071055-FCC-E
Page	15 of 24

6.2 Radiated Emissions

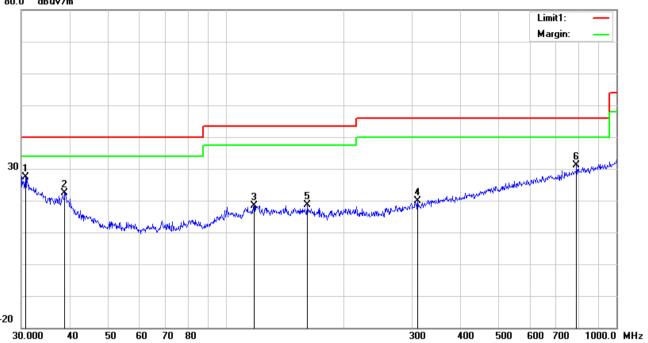
Temperature	26°C
Relative Humidity	59%
Atmospheric Pressure	1015mbar
Test date :	December 03, 2018
Tested By :	Evans He

Requirement(s):

Spec	Item	Requirement	Requirement Applicable				
47CFR§15.	a)	Except higher limit as specified else emissions from the low-power radio exceed the field strength levels spe the level of any unwanted emission the fundamental emission. The tigh edges	>				
109(d)	,	Frequency range (MHz)	Field Strength (μV/m)				
		30 - 88	100				
		88 – 216	150				
		216 - 960	200				
		Above 960	500				
Test Setup	Ant. Tower 1-4m Variable Support Units Ground Plane Test Receiver						
Procedure	 The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT characterization. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: Vertical or horizontal polarization (whichever gave the higher emission level 						

Test Report	18071055-FCC-E
Page	16 of 24

			over a full rotation of the EUT) was chosen.
		b.	The EUT was then rotated to the direction that gave the maximum
			emission.
		C.	Finally, the antenna height was adjusted to the height that gave the maximum
			emission.
	3.	The res	olution bandwidth and video bandwidth of test receiver/spectrum analyzer is
		120 kHz	z for Quasiy Peak detection at frequency below 1GHz.
	4.	The reso	olution bandwidth of test receiver/spectrum analyzer is 1MHz and video
		bandwid	dth is 3MHz with Peak detection for Peak measurement at frequency above
		1GHz.	
		The re	solution bandwidth of test receiver/spectrum analyzer is 1MHz and the video
		bandw	idth with Peak detection for Average Measurement as below at frequency
		above	1GHz.
		■ 1 kH	z (Duty cycle < 98%) □ 10 Hz (Duty cycle > 98%)
	5.	Steps 2	and 3 were repeated for the next frequency point, until all selected frequency
		points v	vere measured.
Remark			
Remark			
Result	☑ Pa	SS	Fail
	1		
Test Data	Yes		N/A
Test Plot	Yes (S	ee belov	_N) $\square_{N/A}$



Test Report	18071055-FCC-E
Page	17 of 24

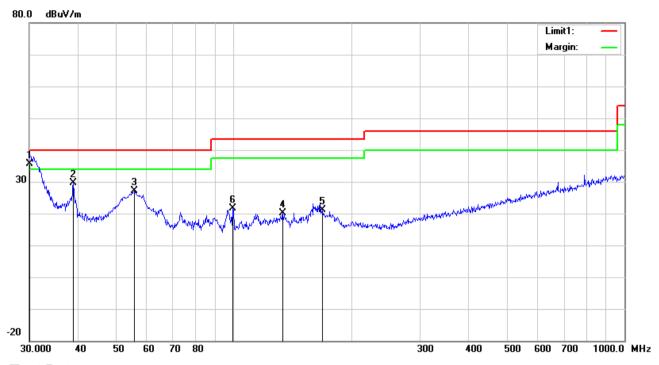
Test Mode : Charging Mode

Below 1GHz

Test Data

Horizontal Polarity Plot @3m

No.	P/L	Frequency	Reading	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
		(MHz)	(dBuV/m)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	(cm)	()
1	Η	30.7455	28.10	20.83	22.28	0.64	27.29	40.00	-12.71	100	358
2	Н	38.7518	28.97	14.81	22.27	0.78	22.29	40.00	-17.71	100	128
3	Н	118.1862	26.12	13.58	22.36	1.16	18.50	43.50	-25.00	100	96
4	Н	309.9977	26.61	13.81	22.26	1.84	20.00	46.00	-26.00	200	292
5	Н	162.0414	27.00	12.44	22.27	1.38	18.55	43.50	-24.95	100	232
6	Н	790.6188	28.10	21.29	21.17	2.94	31.16	46.00	-14.84	100	295


Above 1GHz

Note: The frequency that above 1GHz is mainly from the environment noise.

Test Report	18071055-FCC-E
Page	18 of 24

Below 1GHz

Test Data

Vertical Polarity Plot @3m

No.	P/L	Frequency	Reading	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
		(MHz)	(dBuV/m)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	(cm)	()
1	V	30.0000	35.77	21.40	22.28	0.62	35.51	40.00	-4.49	100	147
2	٧	38.8879	36.50	14.71	22.27	0.78	29.72	40.00	-10.28	100	58
3	V	55.6094	40.91	7.78	22.40	0.78	27.07	40.00	-12.93	100	323
4	V	133.6188	28.28	13.01	22.39	1.23	20.13	43.50	-23.37	100	33
5	٧	169.0054	30.09	11.88	22.26	1.36	21.07	43.50	-22.43	100	172
6	V	99.5281	32.55	10.29	22.32	1.11	21.63	43.50	-21.87	100	327

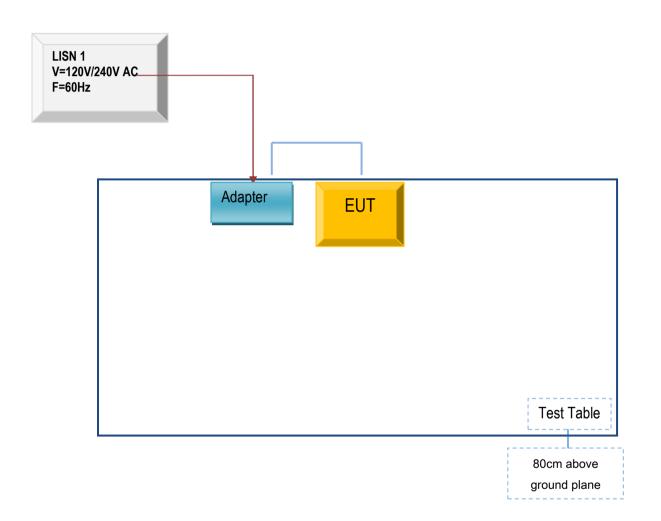
Above 1GHz

Note: The frequency that above 1GHz is mainly from the environment noise.

Test Report	18071055-FCC-E
Page	19 of 24

Annex A. TEST INSTRUMENT

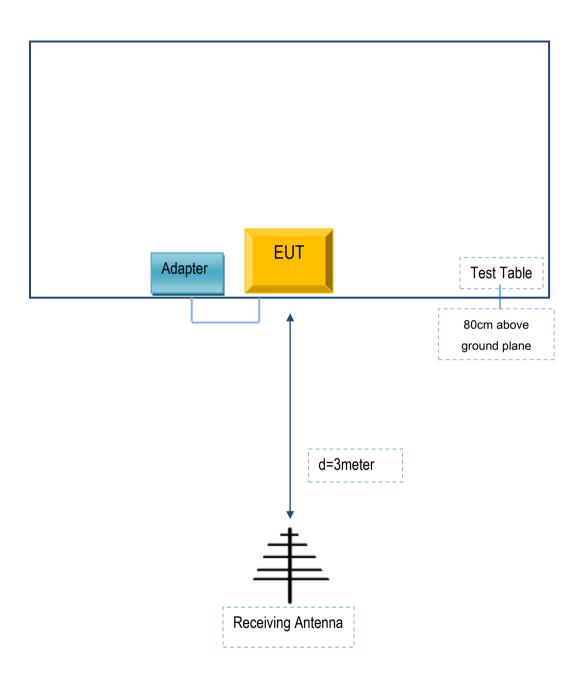
Instrument	Model	Serial #	Cal Date	Cal Due			
AC Line Conducted Emissions							
EMI test receiver	ESCS30	8471241027	01/05/2018	01/04/2019			
Artificial Mains Network	8127	8127713	01/05/2018	01/04/2019			
ISN	ISN T800	34373	01/05/2018	01/04/2019			
Radiated Emissions	Radiated Emissions						
EMI took voocii tov	ESLE	1300.5001K06-	04/05/2040	01/04/2019			
EMI test receiver	ESL6 100262-eQ	01/05/2018	01/04/2019				
Active Antenna	AL-130	121031	02/08/2018	02/07/2019			
3m Semi-anechoic Chamber	9m*6m*6m	N/A	10/18/2018	10/17/2019			
Signal Amplifier	8447E	443008	01/25/2018	01/24/2019			
MXA signal analyzer	N9020A	MY49100060	01/05/2018	01/04/2019			
Horn Antenna	HAH-118	71259	01/26/2018	01/25/2019			
Horn Antenna	HAH-118	71283	02/02/2018	02/01/2019			
AMPLIFIER	EM01G26G	60613	01/25/2018	01/24/2019			
AMPLIFIER	Emc012645	980077	01/05/2018	01/04/2019			
Bilog Antenna (30MHz~6GHz)	JB6	A110712	02/08/2018	02/07/2019			



Test Report	18071055-FCC-E
Page	20 of 24

Annex B. TEST SETUP AND SUPPORTING EQUIPMENT

Annex B.i. TEST SET UP BLOCK


Block Configuration Diagram for AC Line Conducted Emissions

Test Report	18071055-FCC-E
Page	21 of 24

Block Configuration Diagram for Radiated Emissions

Test Report	18071055-FCC-E
Page	22 of 24

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
Dongguan Aohai Technology Co.,Ltd	Adapter	A31A-050055U-US1	N/A

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
Power Cables	Un-shielding	No	0.8m	N/A

Test Report	18071055-FCC-E
Page	23 of 24

Annex C. User Manual / Block Diagram / Schematics / Partlist

Please see the attachment

Test Report	18071055-FCC-E
Page	24 of 24

Annex D. DECLARATION OF SIMILARITY

N/A