MPE Calculation for FCC ID: 2AD9PACN1000 PRC

Remark: Average \leq Peak, which means that calculating the power density with Peak power is worst case. The worst operation mode generating the highest power in each frequency range is taken for calculation.

#1: WIFI 11bgn(HT20/40) radio, worst case: Frequency range: 2412-2462 MHz Typical use distance: $d \ge 20$ cm Power density limit for mobile devices at 2.4 GHz: $S \le 1$ mW/cm² Maximum measured conducted power (Peak): Pconducted = 13.69 dBm = 23.39 mW Antenna Gain: G = 0.88 dBi = 1.22 on the linear scale Calculation: $P_{radiated} = P_{conducted} + G_{linear} = 13.69 \text{ dBm} + 0.88 \text{ dBi} = 14.57 \text{ dBm} = 28.64 \text{ mW}$ Power density S = $(P_{radiated}) / (4\pi x d^2) = 28.64 / 5026 = 0.0057 \text{ mW/cm}^2 < 1 => below limit$ #2: BLE (40Ch) radio under rule part 15.247, worst case: Frequency range: 2402-2480 MHz Typical use distance: $d \ge 20$ cm Power density limit for mobile devices at 2.4 GHz: $S \le 1 \text{ mW/cm}^2$ Maximum measured conducted power (Peak): Pconducted = -0.39 dBm = 0.91 mW Antenna Gain: G = 0.88 dBi = 1.22 on the linear scale Calculation: $P_{radiated} = P_{conducted} + G_{linear} = -0.39 \text{ dBm} + 0.88 \text{ dBi} = 0.49 \text{ dBm} = 1.12$ mW Power density S = $(P_{radiated}) / (4\pi x d^2) = 1.12$ / 5026 = 0.0002 mW/cm² < 1 => below limit #3: BT (79 Ch) radio under rule part 15.247, worst case: Frequency range: 2402-2480 MHz Typical use distance: $d \ge 20$ cm Power density limit for mobile devices at 2.4 GHz: $S \le 1$ mW/cm² Maximum measured conducted power (Peak): Pconducted = 0.7 dBm = 1.17 mW Antenna Gain: G = 0.88 dBi = 1.22 on the linear scale Calculation: $P_{radiated} = P_{conducted} + G_{linear} = 0.7$ dBm + 0.88 dBi = 1.58 dBm = 1.44 mW Power density S = $(P_{radiated}) / (4\pi x d^2) = 1.44$ / 5026 = 0.0003 mW/cm² < 1 => below limit #4: RFID 13.56 MHz radio, worst case: Tested under 15.225, with a max. emission of 96.93 dBµV/m, RF exposure is not applicable. #5: Single Modular Module under 15.247 with FCC ID: QOQWT32AE (BT (79 Ch) radio), worst case: Frequency range: 2402-2480 MHz Typical use distance: $d \ge 20$ cm Power density limit for mobile devices at 2.4 GHz: $S \le 1 \text{ mW/cm}^2$ Maximum measured conducted power (Peak): Pconducted = 1.93 dBm = 1.56 mW Antenna Gain: G = 2.05 dBi = 1.6 on the linear scale (= 2.05 dBi ceramic on-board antenna) Calculation: $P_{radiated} = P_{conducted} + G_{linear} = 1.93$ dBm + 2.05 dBi = 3.98 dBm = 2.5 mW Power density S = ($P_{radiated}$) / ($4\pi \times d^2$) = 2.5 / 5026 = 0.0005 mW/cm² < 1 => below limit

#6: Single Modular Module with FCC ID: UYI24 (2.4GHz GFSK modulated), worst case: Tested under 15.249, with a max. emission of 92.08 dBµV/m, RF exposure is not applicable.

Conclusion: At 20 cm, the sum of powers and the sum of power densities both remain far under the maximum power allowed in 15.247 (1W) and also remain also far below 1 mW/cm².