Debugging Report of SWARD Antenna

Customer name: Estone Technology LTD.,

Project name: A800-40

Date: April 26, 2022

IATF16949:2016&IS09001:2015 Dual-System

Certification Enterprise

Project introduction

1. Brief description of the project

Number of antennas	Machine type
Wifi 2.4G & BT	Tablet
Wifi AUX	Tablet

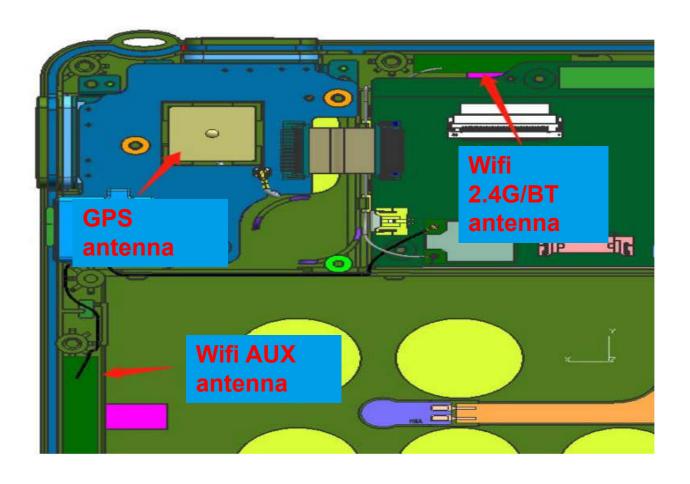
The back shell is plastic and the front shell is metallic with LCD and TP.

IATF16949:2016&IS09001:2015 Dual-System

Certification Enterprise

Project introduction

2. Brief description of antenna

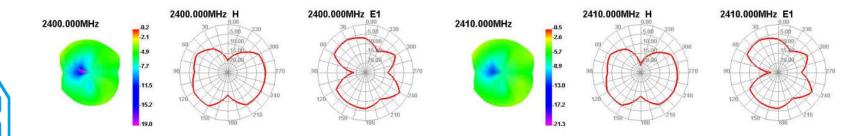

Antenna number	Name	Working frequency band /MHZ	Material/struct ure
1	WIFI&BT&5Gwifi	2400MHz/2500MHz&5.8GHz	PCB
2	WIFI&BT&5Gwifi	2400MHz/2500MHz&5.8GHz	РСВ
3	GPS	1575MHz	Ceramic

SWARD

SWD-FM-RD-002 A. 0/2020.1 IATF16949:2016&IS09001:2015 Dual-System

Certification Enterprise

Antenna layout

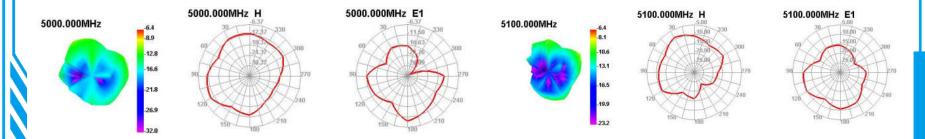


IATF16949:2016&IS09001:2015 Dual-System

Certification Enterprise

WiFi antenna efficiency --- Main Antenna

			Passi	ve Test For 2.	4Gwifi			
Freq	Effi	Effi	Gain	Gain	UHIS	DHIS	Max	Min
(MHz)	(%)	(dB)	(dBi)	(dBd)	(%)	(%)	(dB)	(dB)
2400	26. 8	-5. 72	-0.24	-2. 39	13.893	12.909	-0.24	-18.95
2410	25. 26	-5. 97	-0.52	-2. 67	13. 237	12.027	-0.52	-21.35
2420	24. 73	-6. 07	-0.72	-2. 87	13.054	11.672	-0.72	-23.44
2430	23. 26	-6. 33	-1.02	-3. 17	12. 329	10. 929	-1.02	-21.08
2440	22. 44	-6. 49	-1.21	-3. 36	11.816	10.625	-1.21	-18. 24
2450	22. 36	-6. 5	-1.19	-3. 34	11.706	10.658	-1.19	-17.1
2460	22. 23	-6. 53	-1.34	-3. 49	11.619	10.611	-1.34	-17.23
2470	21. 96	-6. 58	-1.52	-3. 67	11.547	10.41	-1.52	-16.5
2480	21	-6. 78	-1.91	-4. 06	11. 102	9.897	-1.91	-15.98
2490	20. 46	-6.89	-2.23	-4. 38	10.888	9. 573	-2.23	-15.96
2500	18. 09	-7. 43	-2.76	-4. 91	9.698	8.392	-2.76	-15.9

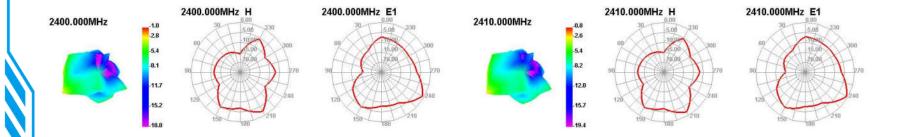


IATF16949:2016&IS09001:2015 Dual-System

Certification Enterprise

5G wifi Main antenna efficiency

			Pass	ive Test For 5	Gwifi			
Freq	Effi	Effi	Gain	Gain	UHIS	DHIS	Max	Min
(MHz)	(%)	(dB)	(dBi)	(dBd)	(%)	(%)	(dB)	(dB)
5000	4. 03	-13.94	-6.37	-8. 52	1. 391	2.642	-6. 37	-32. 02
5100	5. 1	-12.93	-6.41	-8. 56	1.856	3.24	-6. 41	-23. 24
5200	5. 78	-12.38	-5.81	-7.96	2. 055	3.73	-5 . 81	-26. 59
5300	6. 15	-12.11	-5.97	-8. 12	2. 141	4.004	-5. 97	-21. 61
5400	6.83	-11.66	-6. 25	-8.4	2. 642	4.188	-6. 25	-25. 49
5500	7. 52	-11.24	-5.4	-7.55	2. 961	4. 561	-5. 4	-20. 62
5600	10	-10	-3.54	-5. 69	4. 244	5.753	-3. 54	-20, 05
5700	15. 28	-8. 16	-2.09	-4.24	6. 465	8.811	-2.09	-21 . 03
5800	17. 72	-7. 52	-1.41	-3.56	6. 929	10.792	-1. 41	-21. 08
5900	18. 7	-7. 28	-1.08	-3.23	6. 933	11.765	-1. 08	-19. 54
6000	23. 79	-6. 24	-0.72	-2.87	10.902	12.888	-0. 72	-17.7

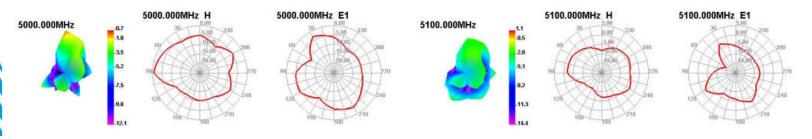


IATF16949:2016&IS09001:2015 Dual-System

Certification Enterprise

BT antenna efficiency --- AUX antenna

			Passi	ve Test For 2.	4Gwifi			
Freq	Effi	Effi	Gain	Gain	UHIS	DHIS	Max	Min
(MHz)	(%)	(dB)	(dBi)	(dBd)	(%)	(%)	(dB)	(dB)
2400	18. 07	-7. 43	-0. 97	-3.12	6. 674	11.394	-0.97	-18.78
2410	19. 08	-7. 19	-0. 77	-2.92	7. 148	11.936	-0.77	-19.42
2420	20. 76	-6. 83	-0. 64	-2.79	7. 883	12.873	-0.64	-19.97
2430	21. 51	-6. 67	-0. 51	-2.66	8.11	13. 4	-0. 51	-20.86
2440	22. 84	-6. 41	-0. 48	-2.63	8. 676	14. 167	-0.48	-21.97
2450	24. 39	-6. 13	-0. 32	-2.47	9. 359	15.03	-0.32	-22.53
2460	25.7	-5. 9	-0. 42	-2.57	10.13	15. 574	-0.42	-21.84
2470	26. 57	-5. 76	-0. 37	-2. 52	10.647	15.922	-0.37	-20.53
2480	27. 78	-5. 56	-0. 32	-2.47	11. 345	16. 434	-0.32	-19.43
2490	28. 33	-5. 48	-0. 29	-2.44	11.724	16.609	-0.29	-18.22
2500	26. 11	-5. 83	-0. 67	-2.82	11.066	15.039	-0.67	-18.58



IATF16949:2016&IS09001:2015 Dual-System

Certification Enterprise

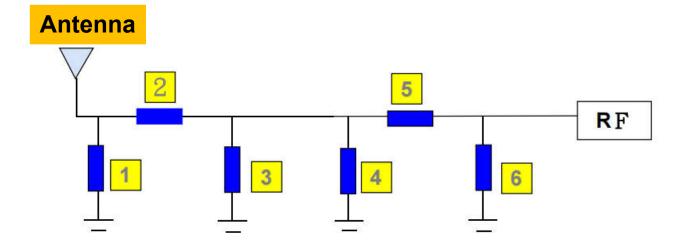
5G antenna efficiency --- AUX antenna

Freq	Effi	Effi	Gain	Gain	UHIS	DHIS	Max	Min
(MHz)	(%)	(dB)	(dBi)	(dBd)	(%)	(%)	(dB)	(dB)
5000	23. 62	-6. 27	-0.65	-2.8	12. 287	11. 338	-0.65	-12.12
5100	29. 27	-5. 34	1.06	-1.09	14. 275	14. 994	1.06	-14. 42
5200	30.02	-5. 23	1.96	-0.19	13. 165	16. 855	1. 96	-12
5300	26.62	-5. 75	1.7	-0.45	11.528	15. 097	1.7	-12.51
5400	28.63	-5. 43	1.8	-0.35	13. 421	15. 212	1.8	-14.01
5500	27. 4	-5. 62	1.42	-0.73	13.922	13. 481	1. 42	-14.57
5600	31. 1	-5.07	1.49	-0.66	16. 589	14. 507	1. 49	-24.13
5700	40.51	-3.92	2.17	0.02	20.738	19. 772	2. 17	-13.43
5800	46. 8	-3. 3	2.09	-0.06	23.224	23. 578	2. 09	-15.55
5900	42. 2	-3, 75	2.03	-0.12	21. 228	20. 972	2. 03	-12.97
6000	45. 21	-3. 45	1.72	-0.43	22, 189	23, 016	1. 72	-16.73

IATF16949:2016&IS09001:2015 Dual-System

Certification Enterprise

WIFI Antenna active data


机型编号 信道		b模式(11MHz) b mode (11MHz)		g模式(g mode	5 <mark>4MHz)</mark> (54MHz)	n模式(n mode (I		a模式(54MHz) a mode (54MHz)	
Model code	channel	TRP	TIS	TRP	TIS	TRP	TIS	TRP	TIS
	1	4. 27	-71. 48	3. 22	-61. 65	3. 84	-57. 08	NA	NA
	7	5. 3	-73. 83	6. 41	-61. 31	6. 43	-59. 17	NA	NA
	13	5. 58	-74. 85	2. 26	-54. 52	1.56	-59. 89	NA	NA
1	36	NA	NA	NA	NA	5. 61	-58. 4	7. 3	-68.84
	100	NA	NA	NA	NA	11. 63	-68. 15	12. 18	-68. 33
[[136	NA	NA	NA	NA	10. 37	-68. 01	8. 82	-69.72
	165	NA	NA	NA	NA	12. 9	-67. 7	12. 08	-69.58

SWD-FM-RD-002 A. 0/2020.1 IATF16949:2016&IS09001:2015 Dual-System

Certification Enterprise

Antenna matching

SWD-FM-RD-002 A. 0/2020. 1 IATF16949:2016&IS09001:2015 Dual-System

Certification Enterprise

Note: 1. This report is based on the actual debugging and testing of prototype, including environmental treatment, antenna position and the assembly position of each device can not be changed at random;

- 2. If there is any change in the materials used in the prototype, it is necessary to feed back to our company for re-verification in time;
 - 3. List of sensitive components:

TP (material, coating, wiring, etc.)

Screen (amplifying circuit, led, layout design, etc.)

Shell material (antenna assembly mode, structure interference, shell material, antenna position, height and area, etc.)

Main board (main board conduction, RF circuit matching, PA, Duplexer, filter, LNA, power circuit, etc.)

Camera, battery, motor, MIC, fingerprint identification module, etc

4. Due to the small quantity or only one sample during debugging machine, some probability problems can not be completely found out. It is suggested to conduct small batch trial production before mass production to find out the problem (such as flashing screen and crashing screen, horn noise, TP jump point, black screen crash, signal diving, etc.)