

TEST REPORT

- Accent® 1000
- : Accent
- : ACN1000-40
- : N/A
- EED32O81494001
- : 2AD9PA-A100040PRC
- : Nov. 17, 2022
- : 47 CFR Part 15 Subpart C
- : PASS

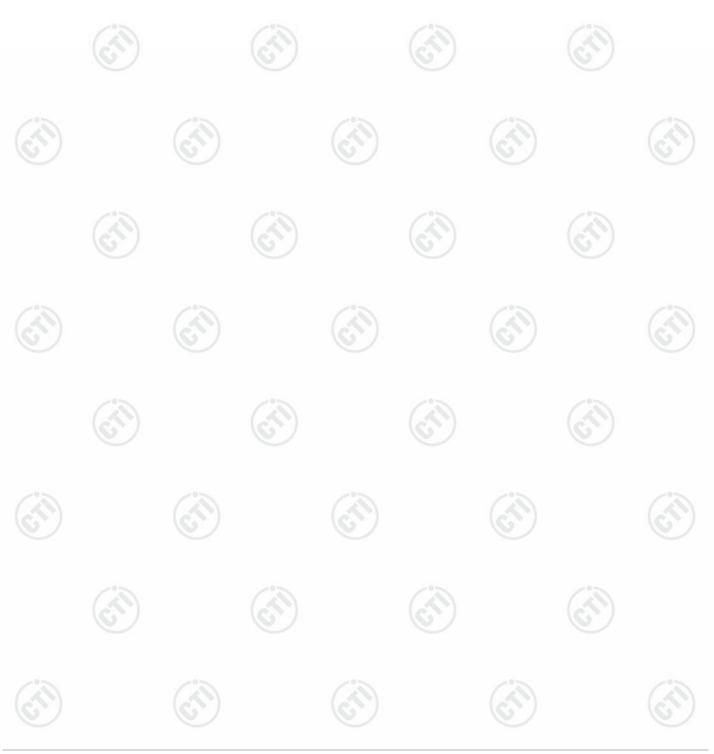
Prepared for:

Prentke Romich Company 1022 Heyl Rd. Wooster, Ohio 44691, United States of America

> Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668

FAX: +86-755-3368 3385

Tom C Firazer. Lo Compiled by: Reviewed by: Frazer Li Tom Chen Aavon Ma Nov. 17, 2022 Date: Aaron Ma Check No.:9424220922 Report Seal


Page 2 of 57

2 Conte	int int						
1 COVER PA	GE		••••••				
4 TEST SUM	/IARY	••••••				••••••	
5 GENERAL	NFORMATION	••••••	••••••		••••••	••••••	
5.2 GENER/ 5.3 TEST C 5.4 TEST E 5.5 DESCRI 5.6 TEST LC	INFORMATION L DESCRIPTION (DNFIGURATION VIRONMENT PTION OF SUPPOR DCATION REMENT UNCERT/	OF EUT		٢		0	
6 EQUIPMEN	T LIST						
			ATAS				
7.2 CONDUC 7.3 MAXIMU 7.4 DTS BA 7.5 MAXIMU 7.6 BAND E	A REQUIREMENT CTED EMISSIONS M CONDUCTED C NDWIDTH M POWER SPECT DGE MEASUREME	OUTPUT POWER. RAL DENSITY NTS AND CONDU	JCTED SPURIC	DUS EMISSION.		0	
7.1 ANTENN 7.2 CONDUC 7.3 MAXIMU 7.4 DTS BA 7.5 MAXIMU 7.6 BAND E 7.7 RADIATE 8 APPENDIX	A REQUIREMENT CTED EMISSIONS M CONDUCTED C NDWIDTH M POWER SPECT DGE MEASUREME ED SPURIOUS EM	OUTPUT POWER. RAL DENSITY INTS AND CONDU	JCTED SPURIC	DUS EMISSION.			
7.1 ANTENN 7.2 CONDUC 7.3 MAXIMU 7.4 DTS BA 7.5 MAXIMU 7.6 BAND E 7.7 RADIATE 8 APPENDIX 9 PHOTOGRA	A REQUIREMENT CTED EMISSIONS M CONDUCTED C NDWIDTH M POWER SPECT DGE MEASUREME ED SPURIOUS EM	DUTPUT POWER. TRAL DENSITY TINTS AND CONDU ISSION & RESTR	JCTED SPURIC	DUS EMISSION.			
7.1 ANTENN 7.2 CONDUC 7.3 MAXIMU 7.4 DTS BA 7.5 MAXIMU 7.6 BAND E 7.7 RADIATE 8 APPENDIX 9 PHOTOGRA	A REQUIREMENT CTED EMISSIONS M CONDUCTED C NDWIDTH M POWER SPECT DGE MEASUREME D SPURIOUS EM A	DUTPUT POWER. TRAL DENSITY TINTS AND CONDU ISSION & RESTR	JCTED SPURIC	DUS EMISSION.			
7.1 ANTENN 7.2 CONDUC 7.3 MAXIMU 7.4 DTS BA 7.5 MAXIMU 7.6 BAND E 7.7 RADIATI 8 APPENDIX 9 PHOTOGRA 10 PHOTOGRA	A REQUIREMENT CTED EMISSIONS M CONDUCTED C NDWIDTH M POWER SPECT DGE MEASUREME D SPURIOUS EM A	DUTPUT POWER. TRAL DENSITY INTS AND CONDU ISSION & RESTR SETUP CONSTRUCTI	JCTED SPURIC	DUS EMISSION.			

3 Version

	Version No.	Date	Description	57
	00	Nov. 17, 2022	Original	
5		·		
5	(c	S) (2	(c) (c)	(5)

4 Test Summary

Page 4 of 57

4 Test Summary			
Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	
		CONT.	

Remark:

Remark: Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

5 General Information

5.1 Client Information

Applicant:	Prentke Romich Company
Address of Applicant:	1022 Heyl Rd. Wooster, Ohio 44691, United States of America
Manufacturer:	Prentke Romich Company
Address of Manufacturer:	1022 Heyl Rd. Wooster, Ohio 44691, United States of America
Factory:	Estone Technology LTD
Address of Factory:	2F,Building No.1, Jia'an Industrial Park,No.2 Long Chang Road, Bao'an, Shenzhen 518101, China.

5.2 General Description of EUT

Product Name:	Accent® 10	000			
Model No.:	ACN1000-4	40		\smile	
Trade mark:	Accent				
Product Type:	Mobile	⊠ Portable	Fix Location		13
Operation Frequency:	2402MHz~	2480MHz	(5)		6
Modulation Type:	GFSK				
Transfer Rate:	⊠ 1Mbps	⊠2Mbps			
Number of Channel:	40		12	12	
Antenna Type:	internal an	ntenna	(25)		
Antenna Gain:	-0.24dBi		V	V	
Power Supply:		Model: MAN	IGO60S-18BB-PRC		
	Adapter:	Input: 100-2	40V~,50/60Hz,1.5A MA>	K	
		Output: 18V	7,3.33A,60W MAX		
C.	Dutter	Model: 3393	BA0		6
	Battery:	DC 7.6V,106	00mAh,80.56Wh		
Test Voltage:	DC 7.6V				
Sample Received Date:	Sep. 23, 20	022			
Sample tested Date:	Sep. 23, 20	022 to Nov. 08,	2022	(\mathcal{O})	

Page 5 of 57

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

5.3 Test Configuration

EUT Test Software	e Settings:			
Software:	DRTU_	install.exe	<u>(</u>)	(25)
EUT Power Grade:	Power Grade: Default(Power level is built-selected)			annot be changed and
Use test software to transmitting of the E		ency, the middle frequ	uency and the highest f	requency keep
Test Mode	Modulation	Rate	Channel	Frequency(MHz)
Mode a	GFSK	1Mbps	СНО	2402
Mode b	Mode b GFSK		CH19	2440
Mode c	GFSK	1Mbps	СН39	2480
Mode d	GFSK	2Mbps	СНО	2402
Mode e	GFSK	2Mbps	CH19	2440
Mode f	GFSK	2Mbps	CH39	2480

S

Page 7 of 57

5.4 Test Environment

	Operating Environment	t:					
-	Radiated Spurious Emissions:						
1	Temperature:	22~25.0 °C	(1)		(2)		(2)
2/	Humidity:	50~55 % RH	e		C		C
	Atmospheric Pressure:	1010mbar					
	Conducted Emissions:						
	Temperature:	22~25.0 °C					
	Humidity:	50~55 % RH		(\mathcal{O})		(\mathcal{O})	
	Atmospheric Pressure:	1010mbar					
	RF Conducted:						
2	Temperature:	22~25.0 °C	13		(:2)		13
(\mathbf{r})	Humidity:	50~55 % RH	(c^{γ})		(c^{γ})		(c^{γ})
	Atmospheric Pressure:	1010mbar	U		U		U

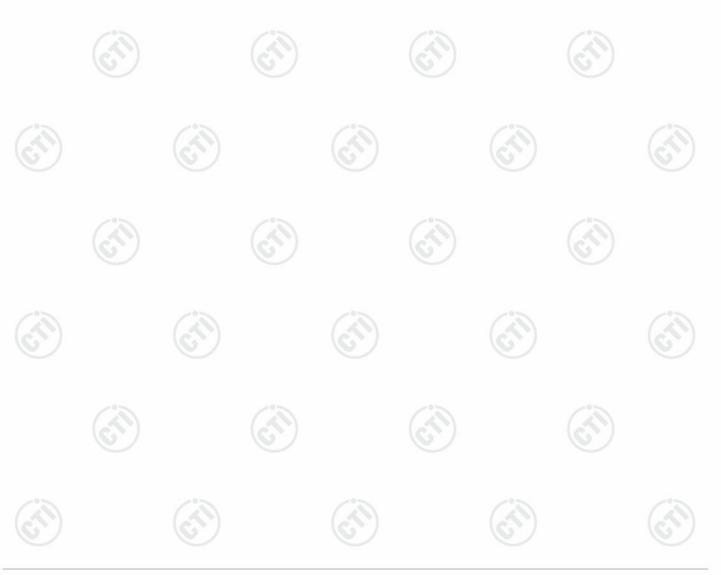
5.5 Description of Support Units

The EUT has been tested independently

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164



5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	PE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
a		3.4dB (18GHz-40GHz)
5	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

6 Equipment List

Page 9 of 57

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Communication test set	R&S	CMW500	107929	07-06-2022	07-05-2023
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-09-2022	09-08-2023
Spectrum Analyzer	R&S	FSV40	101200	07-29-2022	07-28-2023
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI- 42	07-06-2022	07-05-2023
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	2.0.0.0	- 6	- (I)

		Conducted distu	Irbance Test		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-04-2022	05-05-2023
Temperature/ Humidity Indicator	Defu	TH128	1		
LISN	R&S	ENV216	100098	03-01-2022	02-28-2023
Barometer	changchun	DYM3	1188		

				\sim		
	3M Semi-an	echoic Chamber (2)	Radiated distu	rbance Test		
Equipment	Manufacturer	Manufacturer Model S		Cal. Date	Due Date	
3M Chamber & Accessory Equipment	ток	SAC-3	(05/22/2022	05/21/2025	
Receiver	R&S	ESCI7	100938-003	10/14/2021 09/28/2022	10/13/2022 09/27/2023	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2023	
Multi device Controller	maturo	NCD/070/10711112	<u>e</u>		_	
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/17/2021	04/16/2024	
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2022	06/19/2023	

Page 10 of 57

		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023
Fully Anechoic Chamber	трк	FAC-3	$(\underline{\mathbf{o}})$	01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	- (a)	
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	9	0
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	- 3	(d
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		/
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	(k)	-
Cable line	Times	HF160-KMKM-3.00M	393493-0001	v	0

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

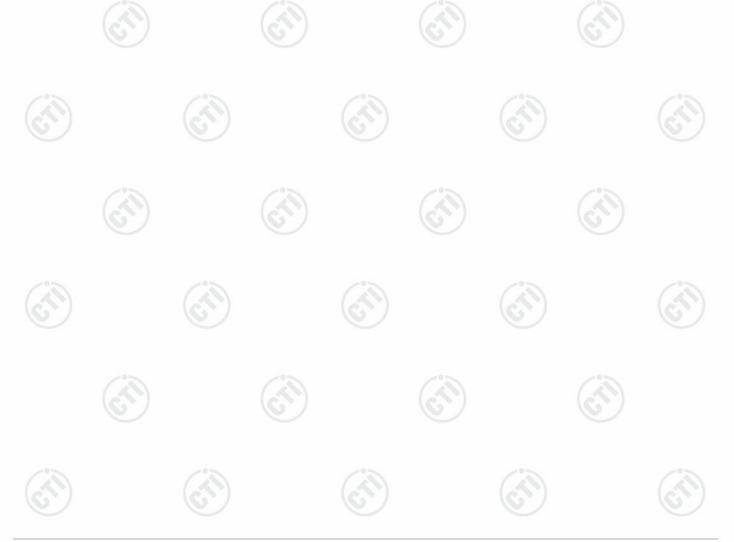
7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT	Antenna:	

Please see Internal photos

The antenna is internal antenna. The best case gain of the antenna is -0.24dBi.

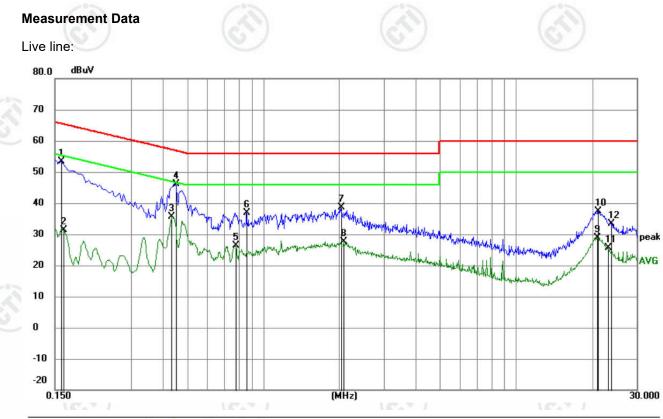
Page 12 of 57

	Test Requirement:	ANSI C63.10: 2013								
	Test Method:	ANSI C63.10: 2013								
	Test Frequency Range:	150kHz to 30MHz								
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto								
	Limit:		Limit (dBuV)						
-		Frequency range (MHz)	3.10: 2013 o 30MHz Hz, VBW=30 kHz, Sweep time=auto ency range (MHz) Quasi-peak 0.15-0.5 66 to 56* 530 60 5-30 60 5-30 60 5-30 60 5-30 60 5-30 60 5-30 60 5-30 60 5-30 60 5-5 5-6 4 5-30 60 5-5 5-6 4 5-30 60 5 5 60 5 5 60 5 60 5 60 5 60 61 62 63 64 65	Average						
	Test Method: ANSI C63 Test Frequency Range: 150kHz tr Receiver setup: RBW=9 k Limit: Frequency * Decrease Test Setup: * Decrease Test Procedure: 1) The m 1) The E Imped imped imped imped imped imped inped imped inped imped inped inped inped inped	0.15-0.5	56 to 46*							
		0.5-5	56	46						
		5-30 60 50								
		* Decreases with the logarith	m of the frequency.	56 to 46* 46 50 Test Receiver Image: Second ucted in a shielded through a LISN 1 (Line s a 50Ω/50µH + 5Ω linear units of the EUT were ed to the ground reference in unit being measured. A multiple power cables to a not exceeded. unit being measured. A multiple power cables to a not exceeded. unit table 0.8m above the rrangement, the EUT was ference plane. The rear of						
		AC Mains	Ground Reference Plane							
		 room. 2) The EUT was connected Impedance Stabilization I impedance. The power connected to a second LI plane in the same way multiple socket outlet strip single LISN provided the 3) The tabletop EUT was pl ground reference plane. A placed on the horizontal geometrical ground reference with the EUT shall be 0.4 m vertical ground reference plane. The LIS unit under test and bottom 	d to AC power source Network) which provide cables of all other SN 2, which was bond as the LISN 1 for the o was used to connect rating of the LISN was aced upon a non-met And for floor-standing a ground reference plane with a vertical ground re from the vertical gro e plane was bonded N 1 was placed 0.8 m nded to a ground re	e through a LISN 1 (Line es a $50\Omega/50\mu$ H + 5Ω linear units of the EUT were ed to the ground reference e unit being measured. A multiple power cables to a not exceeded. allic table 0.8m above the arrangement, the EUT was ference plane. The rear of und reference plane. The to the horizontal ground of from the boundary of the eference plane for LISNs						
		the closest points of the and associated equipmen5) In order to find the maximand all of the interface car	nt was at least 0.8 m fro num emission, the relat ables must be changed	All other units of the EUT om the LISN 2. ive positions of equipmen according to						

(A)

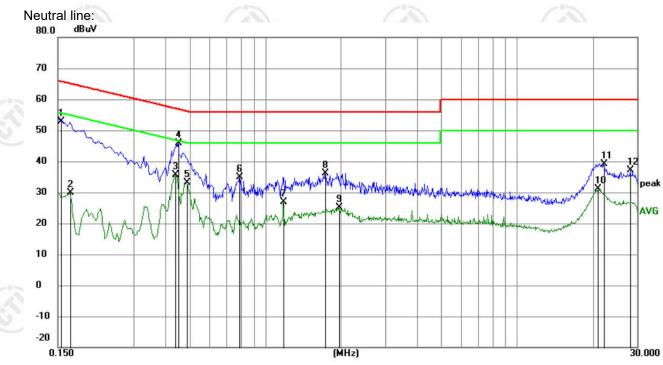
Page 13 of 57

Test Results:	Pass			


Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 14 of 57

No. Mł	k. Freq	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.159	90 43.63	9.87	53.50	65.52	-12.02	QP	
2	0.162	24 21.41	9.87	31.28	55.34	-24.06	AVG	
3	0.433	35 25.59	9.96	35.55	47.19	-11.64	AVG	
4 *	0.45	15 36.20	9.96	46.16	56.85	-10.69	QP	
5	0.77	55 16.60	9.86	26.46	46.00	-19.54	AVG	
6	0.86	10 26.95	9.85	36.80	56.00	-19.20	QP	
7	2.03	10 28.80	9.79	38.59	56.00	-17.41	QP	
8	2.080	05 17.90	9.79	27.69	46.00	-18.31	AVG	
9	20.953	35 18.93	9.98	28.91	50.00	-21.09	AVG	
10	21.097	75 27.41	9.98	37.39	60.00	-22.61	QP	
11	23.03	70 15.62	9.99	25.61	50.00	-24.39	AVG	
12	23.847	70 23.47	9.99	33.46	60.00	-26.54	QP	

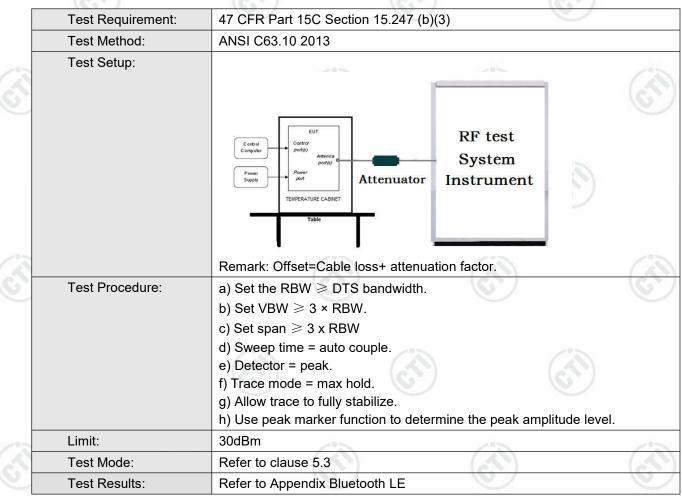

Remark:

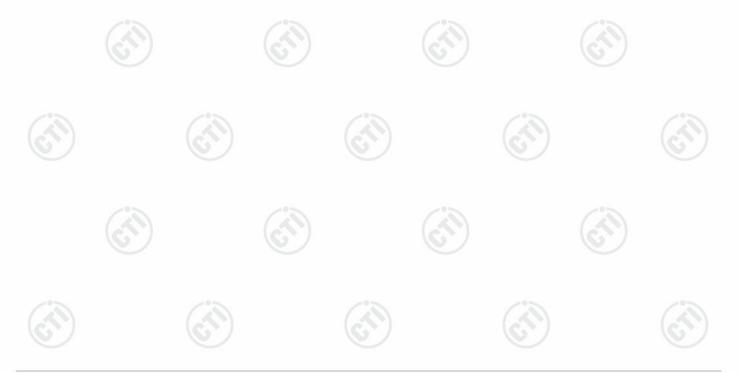
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 15 of 57

1.0.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1548	43.05	9.87	52.92	65.74	-12.82	QP	
2		0.1680	19.91	9.87	29.78	55.06	-25.28	AVG	
3		0.4380	25.63	9.96	35.59	47.10	-11.51	AVG	
4	*	0.4515	35.84	9.96	45.80	56.85	-11.05	QP	
5		0.4875	23.14	9.95	33.09	46.21	-13.12	AVG	
6		0.7890	24.98	9.85	34.83	56.00	-21.17	QP	
7		1.1805	17.08	9.82	26.90	46.00	-19.10	AVG	
8		1.7340	26.41	9.80	36.21	56.00	-19.79	QP	
9		1.9680	15.42	9.79	25.21	46.00	-20.79	AVG	
10		21.0345	21.13	9.98	31.11	50.00	-18.89	AVG	
11		22.0650	29.27	9.98	39.25	60.00	-20.75	QP	
12		28.2300	27.20	10.02	37.22	60.00	-22.78	QP	

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



Page 16 of 57

7.3 Maximum Conducted Output Power

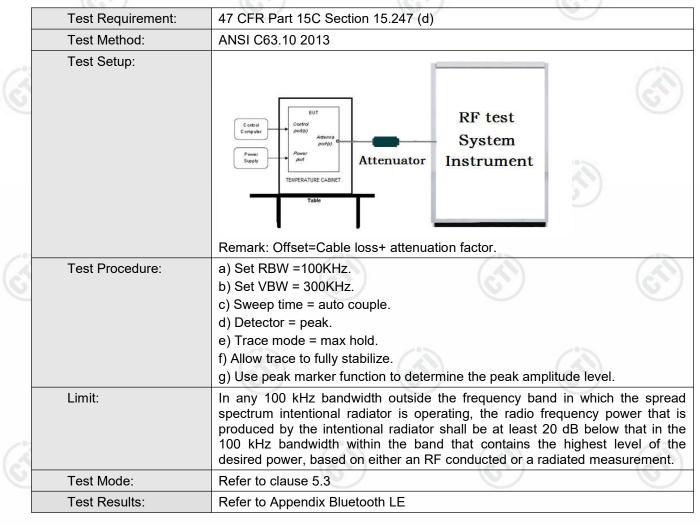
7.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Computer Double Supply Power Supply TEMPERATURE CABNET Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix Bluetooth LE

Page 18 of 57

7.5 Maximum Power Spectral Density

	Test Requirement:	47 CFR Part 15C Section 15.247 (e)
	Test Method:	ANSI C63.10 2013
3	Test Setup:	
		Control Computer Power Supply TemPERATURE CABINET Table
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
	Limit:	≤8.00dBm/3kHz
	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix Bluetooth LE

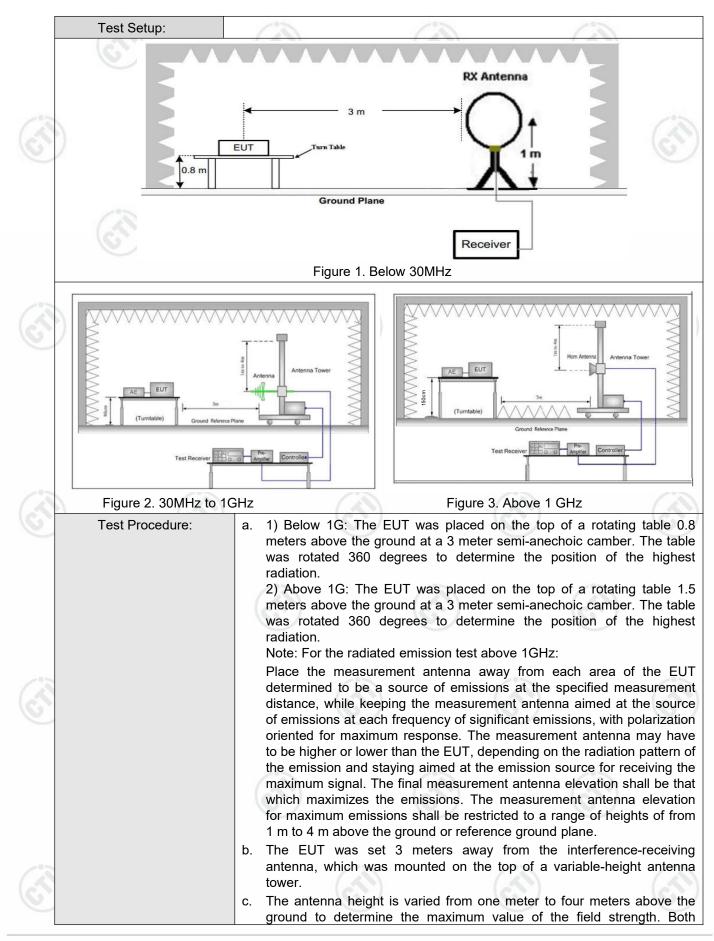


Page 19 of 57

7.6 Band Edge measurements and Conducted Spurious Emission

Page 20 of 57

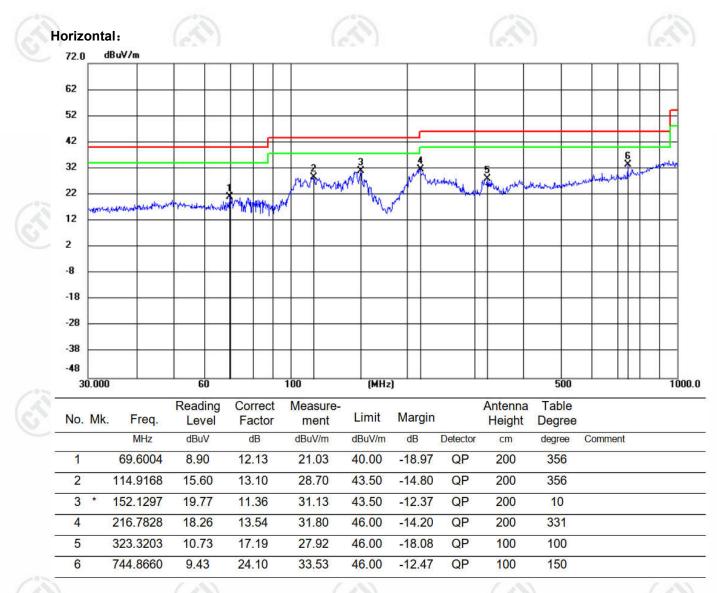
7.7 Radiated Spurious Emission & Restricted bands


	Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205		C	/		
	Test Method:	ANSI C63.10 2013								
	Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
	Receiver Setup:	Frequency	9	Detector	RBW	1	VBW	Remark		
<u>S</u>		0.009MHz-0.090MH	z	Peak	10kHz	z	30kHz	Peak		
		0.009MHz-0.090MH	z	Average	10kHz	z	30kHz	Average		
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	z	30kHz	Quasi-peak		
		0.110MHz-0.490MH	z	Peak	10kHz	z	30kHz	Peak		
		0.110MHz-0.490MH	z	Average	10kHz	z	30kHz	Average		
		0.490MHz -30MHz		Quasi-peak	10kHz	z	30kHz	Quasi-peak		
		30MHz-1GHz		Quasi-peak	100 kH	łz	300kHz	Quasi-peak		
13			Abaya 1011 Peak 1MHz			3MHz	Peak			
(c)		Above 1GHz		Peak	1MHz)	10kHz	Average		
	Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)		Remark	Measuremer distance (m		
		0.009MHz-0.490MHz	2	400/F(kHz)	-		- / 2	300		
		0.490MHz-1.705MHz	24	4000/F(kHz)	-		- 68	30		
		1.705MHz-30MHz		30	-		<u> </u>	30		
		30MHz-88MHz		100	40.0	C	uasi-peak	3		
		88MHz-216MHz		150	43.5	G	uasi-peak	3		
		216MHz-960MHz	1	200	46.0	G	uasi-peak	3		
(U)		960MHz-1GHz	1	500	54.0	G	uasi-peak	3		
		Above 1GHz		500	54.0		Average	3		
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	20d quip	B above the oment under t	maximum est. This p	pe	rmitted ave	erage emission		

CTI华测检测

Report No. : EED32O81494001

horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the f. limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz), the middle channel (2440MHz), the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. Repeat above procedures until all frequencies measured was complete. i. Refer to clause 5.3 Test Mode: Pass Test Results:

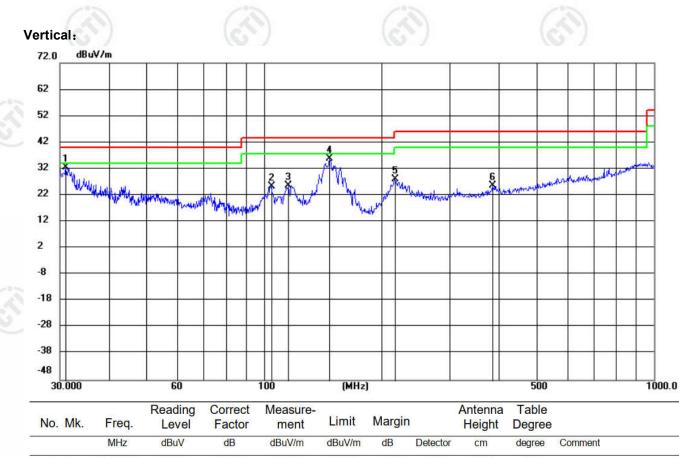


Page 22 of 57

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 1M was recorded in the report.

Hotline:400-6788-333



Page 24 of 57

1 *	31.0706	19.96	12.72	32.68	40.00	-7.32	QP	100	140	
2	104.5361	11.65	13.59	25.24	43.50	-18.26	QP	100	311	
3	115.7256	12.77	13.02	25.79	43.50	-17.71	QP	100	281	
4	147.4036	24.50	11.34	35.84	43.50	-7.66	QP	100	0	
5	216.0240	14.44	13.52	27.96	46.00	-18.04	QP	100	311	
6	385.2805	7.71	18.08	25.79	46.00	-20.21	QP	200	209	

Hotline:400-6788-333

Radiated Spurious Emission above 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case of GFSK 1M was recorded in the report.

Mode	:	E	BLE GFSK Trai	nsmitting		Channel:		2402 MH	Z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1148.4148	0.83	41.19	42.02	74.00	31.98	Pass	н	PK
2	1648.6649	2.61	39.15	41.76	74.00	32.24	Pass	Н	PK
3	3875.0583	-19.13	55.82	36.69	74.00	37.31	Pass	Н	PK
4	7261.2841	-11.75	52.04	40.29	74.00	33.71	Pass	Н	PK
5	9884.4590	-7.12	50.46	43.34	74.00	30.66	Pass	н	PK
6	14402.7602	1.18	46.78	47.96	74.00	26.04	Pass	Н	PK
7	1262.4262	0.96	41.02	41.98	74.00	32.02	Pass	V	PK
8	1944.8945	4.26	37.25	41.51	74.00	32.49	Pass	V	PK
9	4319.0879	-17.20	53.35	36.15	74.00	37.85	Pass	V	PK
10	5987.1991	-13.04	55.04	42.00	74.00	32.00	Pass	V	PK
11	8861.3908	-9.31	51.04	41.73	74.00	32.27	Pass	V	PK
12	11103.5402	-6.21	51.19	44.98	74.00	29.02	Pass	V	PK

	Mode	:		BLE GFSK Tr	ansmitting		Channel:		2440 MHz	
2	NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
-	1	1147.8148	0.83	40.81	41.64	74.00	32.36	Pass	н	PK
	2	1693.8694	2.90	38.82	41.72	74.00	32.28	Pass	Н	PK
	3	5377.1585	-14.60	53.84	39.24	74.00	34.76	Pass	н	PK
	4	7130.2754	-11.66	52.50	40.84	74.00	33.16	Pass	Н	PK
	5	9246.4164	-7.91	51.30	43.39	74.00	30.61	Pass	Н	PK
	6	12509.6340	-4.76	50.90	46.14	74.00	27.86	Pass	Н	PK
	7	1151.8152	0.82	41.55	42.37	74.00	31.63	Pass	V	PK
0	8	1905.8906	4.06	37.21	41.27	74.00	32.73	Pass	V	PK
0	9	4444.0963	-17.01	1 53.88	36.87	74.00	37.13	Pass	V	PK
2	10	5986.1991	-13.05	5 54.69	41.64	74.00	32.36	Pass	V	PK
	11	9266.4178	-7.93	51.02	43.09	74.00	30.91	Pass	V	PK
	12	12577.6385	-4.27	50.97	46.70	74.00	27.30	Pass	V	PK

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 26 of 57

	Mode	:		BLE GFSK Tra	ansmitting		Channel:		2480 MH	z
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1172.6173	0.81	41.45	42.26	74.00	31.74	Pass	н	PK
	2	1667.4667	2.73	39.45	42.18	74.00	31.82	Pass	Н	PK
	3	4227.0818	-17.81	54.88	37.07	74.00	36.93	Pass	Н	PK
	4	5938.1959	-13.36	53.28	39.92	74.00	34.08	Pass	Н	PK
	5	7752.3168	-11.22	2 51.94	40.72	74.00	33.28	Pass	Н	PK
Ī	6	10806.5204	-6.24	50.11	43.87	74.00	30.13	Pass	Н	PK
Ī	7	1275.8276	1.00	40.83	41.83	74.00	32.17	Pass	V	PK
	8	1931.4931	4.19	37.33	41.52	74.00	32.48	Pass	V	PK
Ī	9	4253.0835	-17.60	53.84	36.24	74.00	37.76	Pass	V	PK
Ī	10	5682.1788	-13.98	3 53.20	39.22	74.00	34.78	Pass	V	PK
3	11	9248.4166	-7.91	51.35	43.44	74.00	30.56	Pass	V	PK
	12	12554.6370	-4.44	51.14	46.70	74.00	27.30	Pass	V	PK
				6						

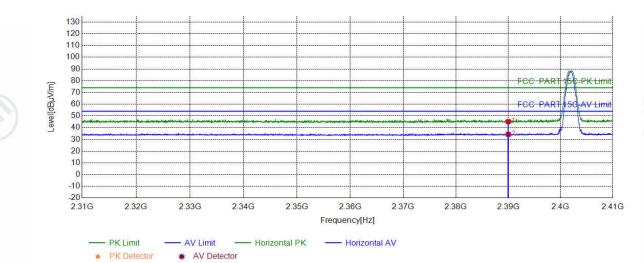
Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Page 27 of 57

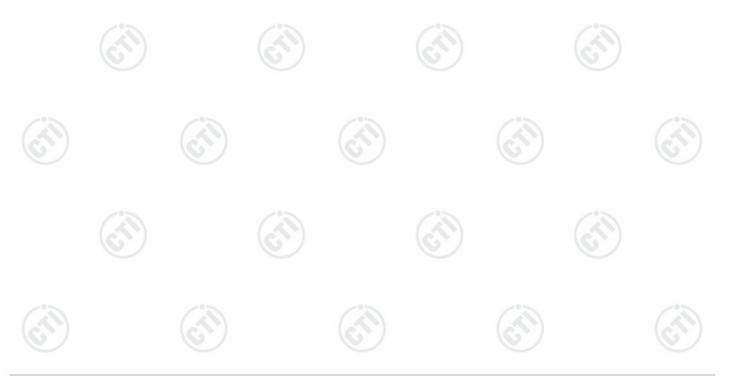


Test plot as follows:

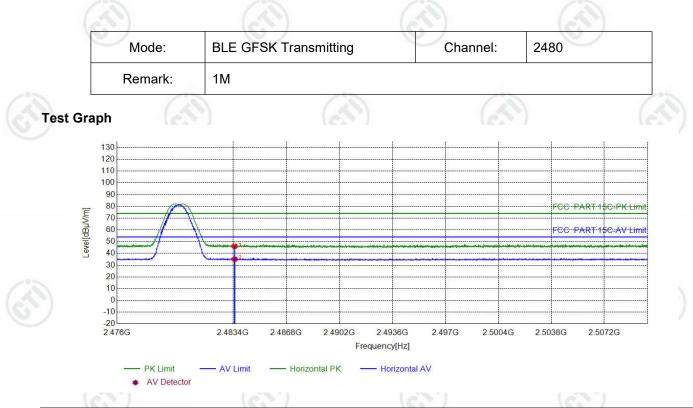
E.	Mode:	BLE GFSK Transmitting	Channel:	2402	
	Remark:	1M	U		

Test Graph

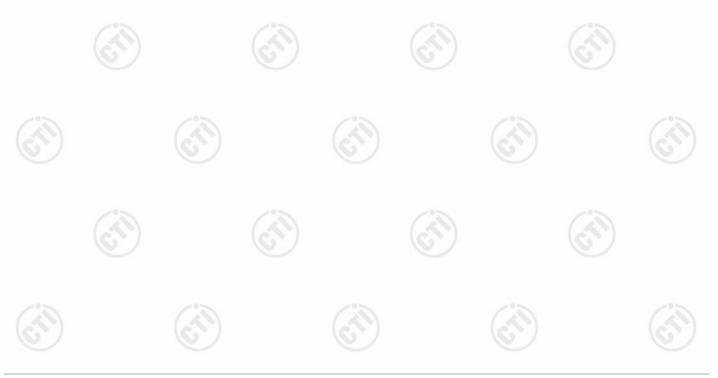
100	Suspe NO	ected List Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	39.37	45.14	74.00	28.86	PASS	Horizontal	PK
	2	2390.0000	5.77	28.56	34.33	54.00	19.67	PASS	Horizontal	AV
		(\mathcal{O})		(\mathcal{O})		6			67)	



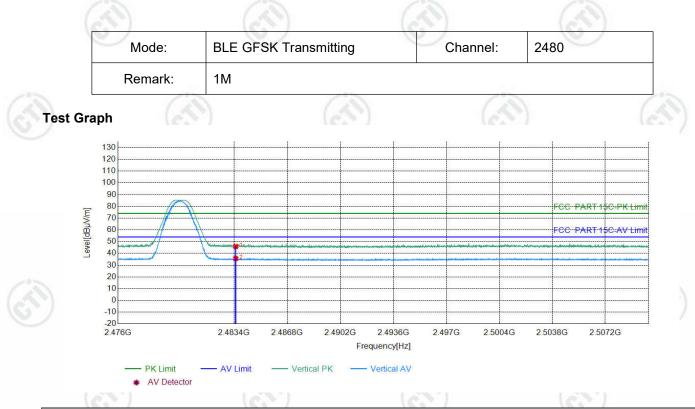
Page 28 of 57



	Suspe	ected List								
100	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(A)	1	2390.0000	5.77	39.36	45.13	74.00	28.87	PASS	Vertical	PK
6	2	2390.0000	5.77	28.03	33.80	54.00	20.20	PASS	Vertical	AV



Page 29 of 57



	Susp	ected List								
~~~	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(8	1	2483.5000	6.57	39.54	46.11	74.00	27.89	PASS	Horizontal	PK
6	2	2483.5000	6.57	28.50	35.07	54.00	18.93	PASS	Horizontal	AV

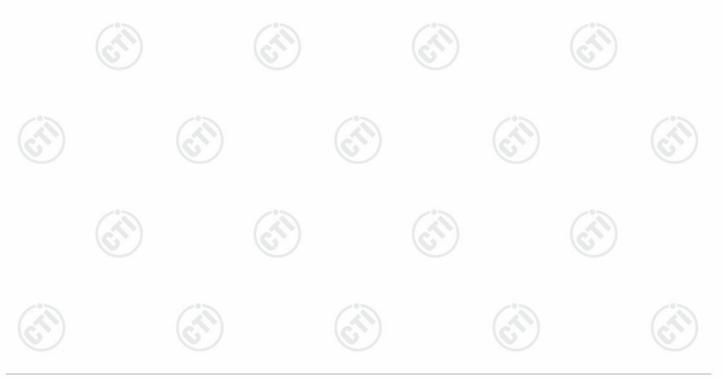





Page 30 of 57



	Suspe	cted List								
100	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(A)	1	2483.5000	6.57	39.33	45.90	74.00	28.10	PASS	Vertical	PK
6	2	2483.5000	6.57	29.07	35.64	54.00	18.36	PASS	Vertical	AV

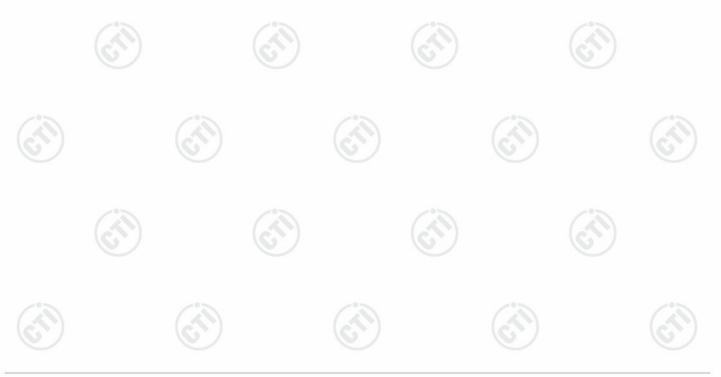




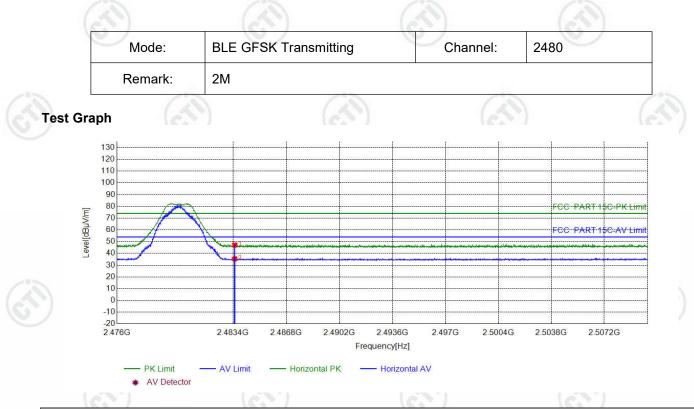

Page 31 of 57



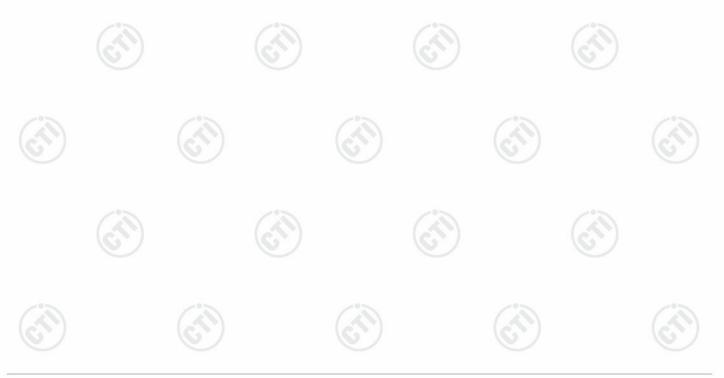
	Suspe									
~~~	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\mathcal{A})	1	2390.0000	5.77	39.60	45.37	74.00	28.63	PASS	Horizontal	AV
6	2	2390.0000	5.77	27.98	33.75	54.00	20.25	PASS	Horizontal	PK



Page 32 of 57



	Susp									
~~~	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
$(\mathcal{A})$	1	2390.0000	5.77	39.98	45.75	74.00	28.25	PASS	Vertical	PK
C	2	2390.0000	5.77	28.74	34.51	54.00	19.49	PASS	Vertical	AV






Page 33 of 57



	Suspe	ected List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(A)	1	2483.5000	6.57	40.61	47.18	74.00	26.82	PASS	Horizontal	PK
6	2	2483.5000	6.57	28.79	35.36	54.00	18.64	PASS	Horizontal	AV





Page 34 of 57




~ ~ ~	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
$(\mathcal{A})$	1	2483.5000	6.57	39.90	46.47	74.00	27.53	PASS	Vertical	PK
C	2	2483.5000	6.57	28.63	35.20	54.00	18.80	PASS	Vertical	AV

#### Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor





Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com