

TEST REPORT

Product : Accent® 1000

Trade mark : Accent

Model/Type reference : ACN1000-40

Serial Number : N/A

Report Number : EED32O81494004

FCC ID : 2AD9PA-A100040PRC

Date of Issue : Nov. 17, 2022

Aaron Ma

Report Seal

Test Standards : 47 CFR Part 15 Subpart E

Test result : PASS

Prepared for:

Prentke Romich Company
1022 Heyl Rd. Wooster, Ohio 44691, United States of America

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Frazer Li

Approved by:

Date:

Reviewed by:

Tom Chen

Nov. 17, 2022

Check No.:9424220922

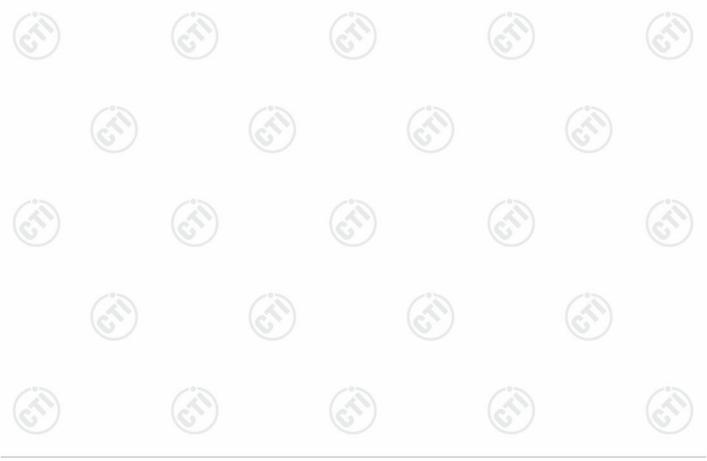
Page 2 of 57

2 Content

2 CONTENT	
3 VERSION	
4 TEST SUMMARY	
5 GENERAL INFORMATION	
5.1 CLIENT INFORMATION 5.2 GENERAL DESCRIPTION OF EUT 5.3 TEST CONFIGURATION 5.4 TEST ENVIRONMENT 5.5 DESCRIPTION OF SUPPORT UNITS 5.6 TEST LOCATION 5.7 DEVIATION FROM STANDARDS 5.8 ABNORMALITIES FROM STANDARD CONDITIONS 5.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 5.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
6 EQUIPMENT LIST	
7 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	1
7.1 ANTENNA REQUIREMENT	
8 APPENDIX A	5
PHOTOGRAPHS OF TEST SETUP	5
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	5

3 Version

Version No.	o. Date Description		Date Description		
00	Nov. 17, 2022	Original	-05		
	(4)				


Report No. : EED32O81494004 Page 4 of 57

4 Test Summary


Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	PASS
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
99% Occupied bandwidth	(6,)	PASS
6dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
7 233		/ /3/

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

General Information

5.1 Client Information

Applicant:	Prentke Romich Company	15.
Address of Applicant:	1022 Heyl Rd. Wooster, Ohio 44691, United States of America	11
Manufacturer:	Prentke Romich Company	
Address of Manufacturer:	1022 Heyl Rd. Wooster, Ohio 44691, United States of America	
Factory :	Estone Technology LTD	
Address of Factory :	2F,Building No.1, Jia'an Industrial Park,No.2 Long Chang Road, Bao's Shenzhen 518101, China.	an,

5.2 General Description of EUT

Product Name:	Accent® 1000			
Model No.:	ACN1000-40			
Trade mark:	Accent			
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location			
Type of Modulation:	IEEE 802.11a: OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11n(HT20/HT40): OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11ac(HT20/HT40/HT80): OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM) IEEE 802.11ax(HE20/HE40/HE80): OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)			
Operating Frequency	U-NII-1:5150-5250MHz U-NII-3:5745-5825MHz			
Antenna Type:	internal antenna			
Antenna Gain:	5G WiFi BAND1:			
	ANT1: -5.81dBi; ANT2: 1.96dBi 5G WiFi BAND4: ANT1: -1.08dBi; ANT2: 2.17dBi			
Power Supply:	Model: MANGO60S-18BB-PRC Adapter: Input: 100-240V~,50/60Hz,1.5A MAX Output: 18V,3.33A,60W MAX			
	Battery: Model: 3393A0 DC 7.6V,10600mAh,80.56Wh			
Test voltage:	DC 7.6V			
Sample Received Date:	Sep. 23, 2022			
Sample tested Date:	Sep. 23, 2022 to Nov. 08, 2022			

Page 6 of 57

Operation Frequency each of channel

802.11a/802.11n/802.11ac/802.11ax (20MHz) Frequency/Channel Operations:

	U-NII-1	U-NII-3		
Channel Frequency(MHz)		Channel	Frequency(MHz)	
36	36 5180		5745	
40	40 5200		5765	
44 5220		157	5785	
48 5240		161	5805	
		165	5825	

802.11n/802.11ac/802.11ax (40MHz) Frequency/Channel Operations:

U-NII-1		U-NII-3		
Channel Frequency(MHz)		Channel	hannel Frequency(MHz	
38 5190		151	5755	
46	5230	159	5795	

802.11ac/802.11ax (80MHz) Frequency/Channel Operations:

	U-NII-1 U-NI		
Channel Frequency(MHz)		Channel Frequency(MHz	
42	5210	155	5775

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No. : EED32O81494004 Page 7 of 57

5.3 Test Configuration

EUT Test Software Settings:					
Software:	DRTU_install.exe	DRTU_install.exe			
EUT Power Grade:	Default	(25)			
Use test software to set the low transmitting of the EUT.	est frequency, the middle f	requency and the highest frequency keep			
Test Mode:					
		peration. All the test modes were carried out with stest report and defined as follows:			
Per-scan all kind of data rate	in lowest channel, and fo	ound the follow list which it			
was worst case.					
Mode		Data rate			
802.11a		6 Mbps			
802.11n(HT)	20)	MCS0			
802.11n(HT	40)	MCS0			
802.11ac(VH	Γ20)	MCS0			
802.11ac(VH	Γ40)	MCS0			
802.11ac(VHT80) MCS0					
802.11ax(HE20) MCS0					
802.11ax(HE40) MCS0					
802.11ax(HE80) MCS0					

5.4 Test Environment

70	70	
s:		
22~25.0 °C		
50~55 % RH		
1010mbar		30
22~25.0 °C		
50~55 % RH		
1010mbar		
50~55 % RH		
1010mbar		
NT (Normal Temperature)	22~25.0 °C	
LT (Low Temperature)	0 °C	.41)
HT (High Temperature)	40 °C	
NV (Normal Voltage)	DC 7.60	
LV (Low Voltage)	DC 6.84	120
HV (High Voltage)	DC 8.36	
	50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH 1010mbar 50~55 % RH 1010mbar NT (Normal Temperature) LT (Low Temperature) HT (High Temperature) NV (Normal Voltage) LV (Low Voltage)	22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH 1010mbar NT (Normal Temperature) 22~25.0 °C LT (Low Temperature) 0 °C HT (High Temperature) 40 °C NV (Normal Voltage) DC 7.60 LV (Low Voltage) DC 6.84

Report No.: EED32O81494004 Page 8 of 57

5.5 Description of Support Units

The EUT has been tested independently

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

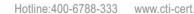
Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions


None.

5.9 Other Information Requested by the Customer

None.

Measurement Uncertainty (95% confidence levels, k=2) 5.10

No.	Item Measurement Uncert	
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
	RF power, conducted	0.55dB (1GHz-18GHz)
		3.3dB (9kHz-30MHz)
3	Radiated Spurious emission test	4.5dB (30MHz-1GHz)
3		4.8dB (1GHz-18GHz)
(6)	$(C_{\mathcal{L}_{\mathcal{L}}})$	3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32O81494004 Page 9 of 57

6 Equipment List

	RF test system					
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Communication test set	R&S	CMW500	107929	07-06-2022	07-05-2023	
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-09-2022	09-08-2023	
Spectrum Analyzer	R&S	FSV40	101200	07-29-2022	07-28-2023	
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI- 42	07-06-2022	07-05-2023	
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023	
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	2.0.0.0	- (6	<u> </u>	

Conducted disturbance Test									
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Receiver	R&S	ESCI	100435	05-04-2022	05-05-2023				
Temperature/ Humidity Indicator	Defu	TH128	/						
LISN R&S		ENV216	100098	03-01-2022	02-28-2023				
Barometer	changchun	DYM3	1188						

	3M Semi-anechoic Chamber (2)- Radiated disturbance Test										
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date						
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025						
Receiver	R&S	ESCI7	100938-003	10/14/2021 09/28/2022	10/13/2022 09/27/2023						
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2023						
Multi device Controller	maturo	NCD/070/10711112									
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024						
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/17/2021	04/16/2024						

Page	11	J ~	f 57	7
raue	- 1 (JU	1 07	

Microwave Preamplifier Agil	ent 8449	9B 3008A02425	06/20/2022	06/19/2023
--------------------------------	----------	---------------	------------	------------

Page 11 of 57

[43]		(1)	(40)	1.6	71	
		3M full-anechoi	c Chamber			
Equipment Manufacturer		Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166			
Receiver Keysight		N9038A	MY57290136	03-01-2022	02-28-2023	
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023	
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023	
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023	
Preamplifier JS Tonscend		980380	EMC051845SE	12-24-2021	12-23-2022	
Communication test set R&S		CMW500	102898	12-24-2021	12-23-2022	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001			
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		-(1)	
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	<u> </u>		
Cable line	Times	SFT205-NMSM-2.50M	393495-0001			
Cable line	Times	EMC104-NMNM-1000	SN160710	- (3	·	
Cable line	Times	SFT205-NMSM-3.00M	394813-0001			
Cable line	Times	SFT205-NMNM-1.50M	381964-0001			
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	(A)	-(6)	
Cable line	Times	HF160-KMKM-3.00M	393493-0001			

Report No. : EED32O81494004 Page 12 of 57

7 Radio Technical Requirements Specification

7.1 Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna: Please see Internal photos

The antenna is internal antenna. The best case gain of the antenna is 5G WiFi BAND1:

ANT1: -5.81dBi; ANT2: 1.96dBi , 5G WiFi BAND4: ANT1: -1.08dBi; ANT2: 2.17dBi

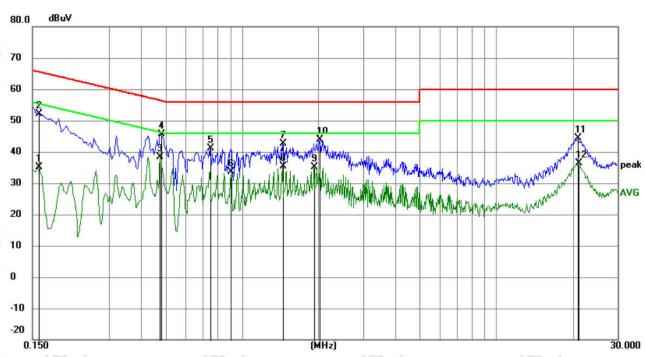
Report No. : EED32O81494004 Page 13 of 57

7.2 AC Power Line Conducted Emissions

	Test Requirement:	47 CFR Part 15C Section 15.207							
	Test Method:	ANSI C63.10: 2013							
e) R	Test Frequency Range:	150kHz to 30MHz							
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	Sweep time=auto	(0,0)					
	Limit:	Eroguanay rango (MHz)							
		Frequency range (MHz)	Quasi-peak	Average					
		0.15-0.5	66 to 56*	56 to 46*					
		0.5-5	56	46					
		5-30	60	50					
		* Decreases with the logarith	m of the frequency.						
01	Test Setup:								
4		Shielding Room							
2		Johnson groom							
				Test Receiver					
		EUT	AE						
			T T	The state of the s					
) e						
		AC Mains	80cm						
		LISN1	LISN2 - AC M	nins					
0:			Ground Reference Plane						
	Test Procedure:	The mains terminal distur room.	bance voltage test was	s conducted in a shielded					
		2) The EUT was connected	- A 60 Year	,					
				s a $50\Omega/50\mu\text{H} + 5\Omega$ linear units of the EUT were					
				ed to the ground reference					
				unit being measured. A					
		single LISN provided the		multiple power cables to a not exceeded.					
Ä		3) The tabletop EUT was pl							
2		-	_	rrangement, the EUT was					
		placed on the horizontal g 4) The test was performed w	•						
		•	_	and reference plane. The					
		vertical ground reference	e plane was bonded	to the horizontal ground					
		VICAC A	URCACO B	from the boundary of the ference plane for LISNs					
			•	his distance was between					
		the closest points of the	LISN 1 and the EUT.	All other units of the EUT					
		and associated equipmen							
		In order to find the maximand all of the interface ca							

Page 14 of 57	
---------------	--

	ANSI C63.10: 2013 on conducted measurement.
Test Mode:	All modes were tested, only the worst case was recorded in the report.
Test Results:	Pass



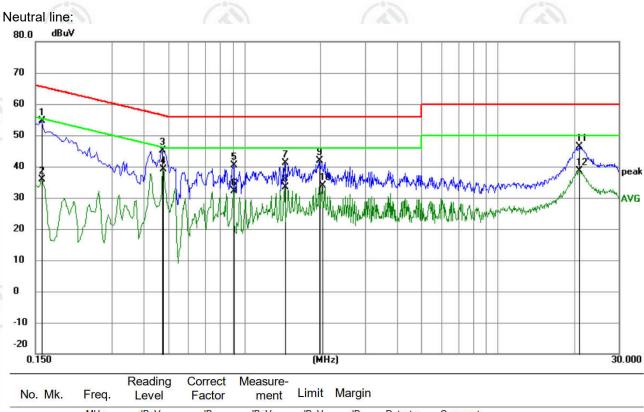
Measurement Data

Live line:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1582	25.15	9.87	35.02	55.56	-20.54	AVG	
2	0.1590	42.16	9.87	52.03	65.52	-13.49	QP	
3 *	0.4761	28.42	9.95	38.37	46.41	-8.04	AVG	
4	0.4812	35.74	9.95	45.69	56.32	-10.63	QP	
5	0.7470	31.27	9.87	41.14	56.00	-14.86	QP	
6	0.9039	23.85	9.85	33.70	46.00	-12.30	AVG	
7	1.4409	32.87	9.81	42.68	56.00	-13.32	QP	
8	1.4409	25.48	9.81	35.29	46.00	-10.71	AVG	
9	1.9182	25.32	9.79	35.11	46.00	-10.89	AVG	
10	2.0225	34.20	9.79	43.99	56.00	-12.01	QP	
11	20.9243	34.36	9.98	44.34	60.00	-15.66	QP	
12	21.0355	26.48	9.98	36.46	50.00	-13.54	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1590	44.64	9.87	54.51	65.52	-11.01	QP	
2		0.1590	25.96	9.87	35.83	55.52	-19.69	AVG	
3		0.4740	35.27	9.96	45.23	56.44	-11.21	QP	
4	*	0.4785	29.08	9.95	39.03	46.37	-7.34	AVG	
5		0.9060	30.63	9.85	40.48	56.00	-15.52	QP	_
6		0.9060	22.28	9.85	32.13	46.00	-13.87	AVG	
7		1.4415	31.36	9.81	41.17	56.00	-14.83	QP	
8		1.4415	23.66	9.81	33.47	46.00	-12.53	AVG	
9		1.9770	32.13	9.79	41.92	56.00	-14.08	QP	
10		2.0310	23.98	9.79	33.77	46.00	-12.23	AVG	
11		21.0300	36.35	9.98	46.33	60.00	-13.67	QP	
12		21.0300	28.70	9.98	38.68	50.00	-11.32	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

7.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C S	Section 15.407 (a))				
Test Method:	KDB789033 D02 G	General UNII Tes	t Procedures New Rules	v02r01 Section			
Test Setup:	6						
	Control Computer Computer Power Supply TEMPERATURE CAB	Attenuator	RF test - System Instrument				
Test Procedure:	General UNII Test 2. The RF output or attenuator. The parmeasurement. 3. Set to the maxin continuously.	Procedures New f EUT was conne th loss was comp num power setting	nent Procedure of KDB78 Rules v02r01 Section E, cted to the power meter ensated to the results for g and enable the EUT tra	3, a by RF cable and r each ansmit			
	report.	uddied odipai po	wer and record the resul	is in the test			
Limit:							
	Frequency band (MHz)	Limit					
	5150-5250	≤1W(30dBm) for master device					
		≤250mW(24dBm) for client device					
	5250-5350	≤250mW(24dBm) for client device or 11dBm+10logB*					
	5470-5725	≤250mW(24dBi	m) for client device or 11	dBm+10logB*			
	5725-5850	≤1W(30dBm)	-0.5	400			
	Remark:	* Where B is the 26dB emission bandwidth in MHz The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms- equivalent voltage.					
Test Mode:	Transmitting mode	with modulation					
Test Results:	Refer to Appendix	5G WIFI					

7.4 6dB Emisson Bandwidth

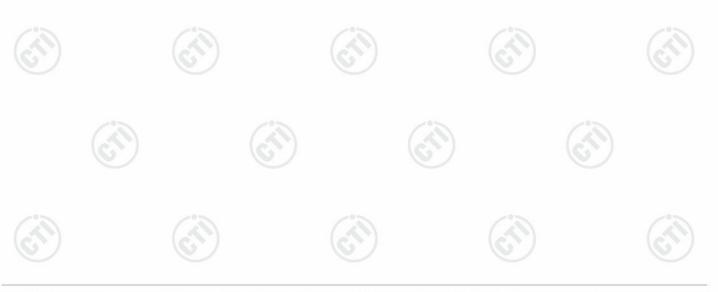
Test Requirement:	47 CFR Part 15C Section 15.407 (e)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Test Setup:	Control Congular Power port(s) Actenna port(s)
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Limit:	≥ 500 kHz
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix 5G WIFI

7.5 26dB Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (a)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
Test Setup:	
	RF test System Power pod Power Table RF test System Instrument Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. 4. Measure and record the results in the test report.
Limit:	No restriction limits
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix 5G WIFI

7.6 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C S	Section 15.407 (a))					
Test Method:	KDB789033 D02 G	eneral UNII Test	Procedures New Rules v	02r01 Section F				
Test Setup:	(6	(2)	(55)					
	Control Computer Power Supply TEMPERATURE CAB	Attenuator	RF test - System Instrument					
	1		10.0					
	Remark: Offset=Cable loss+ attenuation factor. 1. Set the spectrum analyzer or EMI receiver span to view the entire emission							
Test Procedure: Limit:	bandwidth. 1. Set F Auto, Detector = RI 2. Allow the sweeps	RBW = 510 kHz/1 MS. s to continue unti	MHz, VBW ≥ 3*RBW, Solution of the trace stabilizes. If the trace stabilizes is the trace stabilizes is the trace of the	weep time =				
	Frequency band (MHz)	Limit						
	5150-5250	≤17dBm in 1Mh	Hz for master device					
	(6)	≤11dBm in 1Mh	Hz for client device	(6)				
	5250-5350	≤11dBm in 1Ml	Hz for client device					
	5470-5725	≤11dBm in 1Ml	Hz for client device					
	5725-5850	≤30dBm in 500	kHz					
	Remark: The maximum power spectral density is measu a conducted emission by direct connection of a calibrated test instrument to the equipment und							
Test Mode:	Transmitting mode	Transmitting mode with modulation						



7.7 Frequency Stability

Test Requirement:	47 CFR Part 15C Section 15.407 (g)						
Test Method:	ANSI C63.10: 2013	(3)	(3)					
Test Setup:	(52)	(5.50)	(87)					
	Control Composer Power Supply Power Supply TEMPERATURE CABRIET Table	RF test System Instrument						
	Remark: Offset=Cable loss+ atten	uation factor.						
Test Procedure:	1.The EUT was placed inside the elegent problem. 2. Turn the EUT on and couple its 3. Turn the EUT off and set the chapecified. d. Allow sufficient time (sof the chamber to stabilize. 4. Repeat step 2 and 3 with the tentemperature. 5. The test chamber was allowed tof 30 minutes. The supply voltage 115% and the frequency record.	output to a spectrum amber to the highest tapproximately 30 min mperature chamber so stabilize at +20 degwas then adjusted on	analyzer. temperature) for the temperature et to the lowest ree C for a minimum the EUT from 85% to					
Limit:	frequency over a temperature vanious normal supply voltage, and for a v	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.						
Test Mode:	Transmitting mode with modulation	1						
Test Results:	Refer to Appendix 5G WIFI		(6,)					
. cot i tocano.		/						

Report No. : EED32O81494004 Page 22 of 57

7.8 Radiated Emission

Test Requirement:	47 CFR Part 15C Secti	ion 1	5.209 and 1	5.407 (b)			
Test Method:	ANSI C63.10 2013			-01			-57
Test Site:	Measurement Distance	e: 3m	n (Semi-Anec	choic Chai	nbe	r)	(41)
Receiver Setup:	Frequency	7	Detector	RBV	٧	VBW	Remark
	0.009MHz-0.090MH	Peak	10kH	Ηz	30kHz	Peak	
	0.009MHz-0.090MHz		Average	10kH	Ηz	30kHz	Average
	0.090MHz-0.110MH	lz	Quasi-pea	k 10kH	Ηz	30kHz	Quasi-peak
	0.110MHz-0.490MH	lz	Peak	10kH	Ηz	30kHz	Peak
	0.110MHz-0.490MH	łz	Average	10kH	Ηz	30kHz	Average
	0.490MHz -30MHz	<u>-</u>	Quasi-pea	k 10kH	Ηz	30kHz	Quasi-peak
	30MHz-1GHz		Quasi-pea	k 100 k	Hz	300kHz	Quasi-peak
	Above 1GHz		Peak	1MH	łz	3MHz	Peak
	Above 1G112		Peak	1MF	lz	10kHz	Average
Limit:	Frequency		ld strength	Limit (dBuV/m)	F	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	24	.00/F(kHz)	-		- (0)	300
	0.490MHz-1.705MHz	240	000/F(kHz)	-		-	30
	1.705MHz-30MHz		30	-		-	30
	30MHz-88MHz	10	100	40.0	Qu	asi-peak	3
	88MHz-216MHz	7	150	43.5	Qu	asi-peak	3
	216MHz-960MHz		200	46.0	Qu	asi-peak	3
	960MHz-1GHz		500	54.0	Qu	asi-peak	3
	Above 1GHz		500	54.0	Α	verage	3
	*(1) For transmitters outside of the 5.15-5 dBm/MHz. (2) For transmitters ope of the 5.15-5.35 GHz b (3) For transmitters of outside of the 5.47-5 dBm/MHz. (4) For transmitters ope (i) All emissions shall be above or below the base of the band edge, and from the band edge edge edge.	5.35 eratii eand ppera 7.725 eratii pe lin nd e and y to rom dBn li yying 0kHz	GHz band ng in the 5.25 shall not excepting in the 5.72 nited to a level of 15 5 MHz above n/MHz at the companies of the shown a CISPR z, 110-490kl	shall not 5-5.35 GH seed an e. 5.47-5.72 shall no 25-5.85 G rel of -27 sing linearlom 25 Ml se or belo band edg in the quasi-peadz and a	z bair.p. z bair	and: All em of -27 dE GHz band: aceed an oand: n/MHz at 7 10 dBm/M above or bat 5 MHz and band e ve table detector ender	e.i.r.p. of -27 hissions outside Bm/MHz. All emissions e.i.r.p. of -27 5 MHz or more MHz at 25 MHz below the band above or below dge increasing are based on except for the MHz. Radiated

an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Note:

(i) EIRP = ((E*d)^2) / 30

where:

• E is the field strength in V/m;

• d is the measurement distance in meters;

• EIRP is the equivalent isotropically radiated power in watts.

(ii) Working in dB units, the above equation is equivalent to: $EIRP[dBm] = E[dB\mu V/m] + 20 \log(d[meters]) - 104.77$

(iii) Or, if d is 3 meters:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

Test Setup:

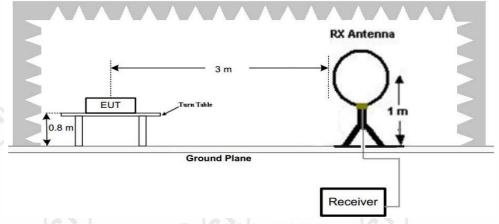
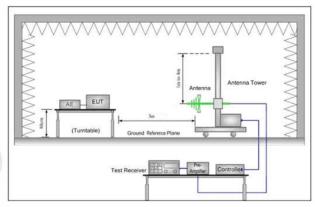



Figure 1. Below 30MHz

AE EUT

AE ATENNA TOWER

Ground Reference Plane

Test Receiver

Test Receiver

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

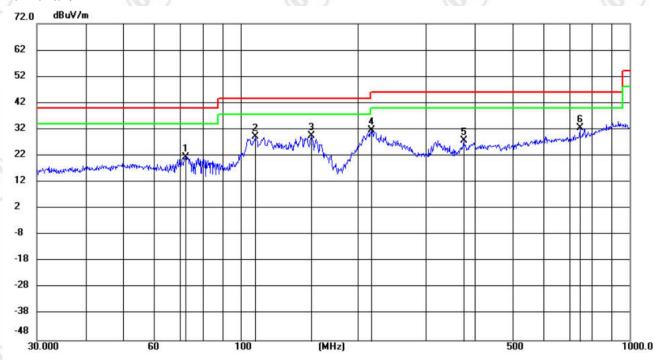
Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Report No. : EED32O81494004 Page 24 of 57

the emission and staying aimed at the emission source for receivir maximum signal. The final measurement antenna elevation shall be which maximizes the emissions. The measurement antenna eler for maximum emissions shall be restricted to a range of heights on 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-rece antenna, which was mounted on the top of a variable-height and tower. c. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. horizontal and vertical polarizations of the antenna are set to make measurement. d. For each suspected emission, the EUT was arranged to its worst and then the antenna was tuned to heights from 1 meter to 4 meters the test frequency of below 30MHz, the antenna was tuned to heighted meter) and the rotatable table was turned from 0 degrees to degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Speandwidth with Maximum Hold Mode.
the emission and staying aimed at the emission source for receivir maximum signal. The final measurement antenna elevation shall be which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights on 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-recantenna, which was mounted on the top of a variable-height and tower. c. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. horizontal and vertical polarizations of the antenna are set to make measurement. d. For each suspected emission, the EUT was arranged to its worst and then the antenna was tuned to heights from 1 meter to 4 meters.
the emission and staying aimed at the emission source for receivir maximum signal. The final measurement antenna elevation shall be which maximizes the emissions. The measurement antenna eler for maximum emissions shall be restricted to a range of heights of 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-rece antenna, which was mounted on the top of a variable-height and tower. c. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength, horizontal and vertical polarizations of the antenna are set to make
the emission and staying aimed at the emission source for receivir maximum signal. The final measurement antenna elevation shall be which maximizes the emissions. The measurement antenna eler for maximum emissions shall be restricted to a range of heights of 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-recantenna, which was mounted on the top of a variable-height and
the emission and staying aimed at the emission source for receivir maximum signal. The final measurement antenna elevation shall be which maximizes the emissions. The measurement antenna elefor maximum emissions shall be restricted to a range of heights of
of emissions at each frequency of significant emissions, with polaric oriented for maximum response. The measurement antenna may to be higher or lower than the EUT, depending on the radiation patt

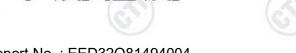


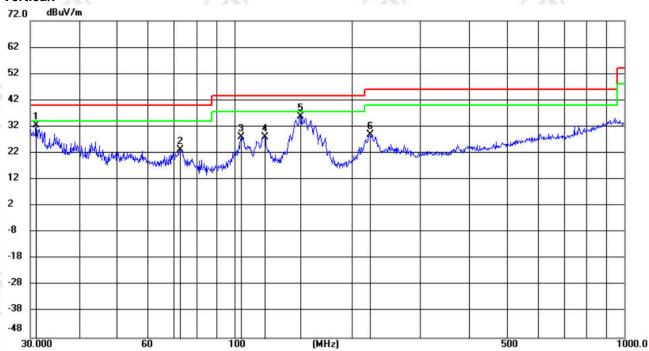
Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 6Mbps for 802.11 a was recorded in the report.

Horizontal:

		Level	Factor	ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	72.3375	9.82	11.74	21.56	40.00	-18.44	QP	200	350	
2	109.0286	15.60	13.53	29.13	43.50	-14.37	QP	200	356	
3	152.1297	18.19	11.36	29.55	43.50	-13.95	QP	200	331	
4	216.7828	17.98	13.54	31.52	46.00	-14.48	QP	200	321	
5	374.6225	9.94	17.92	27.86	46.00	-18.14	QP	100	159	
6 *	744.8660	8.51	24.10	32.61	46.00	-13.39	QP	100	89	





Page 26 of 57 Report No.: EED32O81494004

Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	1	Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	31.0706	19.92	12.72	32.64	40.00	-7.36	QP	100	356	
2		72.5916	11.55	11.71	23.26	40.00	-16.74	QP	100	356	
3		104.1701	14.60	13.60	28.20	43.50	-15.30	QP	100	261	
4		119.8556	15.45	12.67	28.12	43.50	-15.38	QP	100	291	
5		147.9214	24.39	11.38	35.77	43.50	-7.73	QP	100	10	
6		222.1698	15.07	13.76	28.83	46.00	-17.17	QP	100	281	

Report No.: EED32O81494004 Page 27 of 57

Transmitter Emission above 1GHz

Remark: During the test, the Radiates Emission above 1G was performed in all modes, only the worst case ant1 and ant2 transmit simultaneously was recorded in the report.

MIMO

2,2011111				/		/			
Mode	:	8	02.11 n(HT20)) Transmitting	Channe	el:	5180MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1405.9406	1.45	40.00	41.45	68.20	26.75	PASS	Horizontal	PK
2	2187.5688	4.07	39.03	43.10	68.20	25.10	PASS	Horizontal	PK
3	3768.9769	8.16	37.12	45.28	68.20	22.92	PASS	Horizontal	PK
4	7808.7654	-11.33	53.27	41.94	68.20	26.26	PASS	Horizontal	PK
5	10260.1130	-6.56	52.19	45.63	68.20	22.57	PASS	Horizontal	PK
6	13657.9579	-1.69	51.33	49.64	68.20	18.56	PASS	Horizontal	PK
7	1316.2816	1.20	40.19	41.39	68.20	26.81	PASS	Vertical	PK
8	1998.3498	4.61	38.03	42.64	68.20	25.56	PASS	Vertical	PK
9	3289.8790	7.35	37.99	45.34	68.20	22.86	PASS	Vertical	PK
10	8367.1184	-10.78	52.49	41.71	68.20	26.49	PASS	Vertical	PK
11	11778.7639	-6.11	53.71	47.60	68.20	20.60	PASS	Vertical	PK
12	13697.0599	-1.74	50.61	48.87	68.20	19.33	PASS	Vertical	PK

ſ	Mode:			02.11 n(HT20)) Transmitting		Channe	el:	5200MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1243.6744	0.96	39.70	40.66	68.20	27.54	PASS	Horizontal	PK
	2	2045.1045	4.81	38.96	43.77	68.20	24.43	PASS	Horizontal	PK
	3	3055.0055	6.69	39.24	45.93	68.20	22.27	PASS	Horizontal	PK
	4	8503.4002	-10.59	52.56	41.97	68.20	26.23	PASS	Horizontal	PK
	5	11278.4889	-6.39	53.22	46.83	68.20	21.37	PASS	Horizontal	PK
	6	14349.7175	0.10	50.25	50.35	68.20	17.85	PASS	Horizontal	PK
	7	1548.4048	2.00	39.56	41.56	68.20	26.64	PASS	Vertical	PK
0	8	2689.7690	5.51	39.20	44.71	68.20	23.49	PASS	Vertical	PK
6	9	3945.5446	9.15	37.50	46.65	68.20	21.55	PASS	Vertical	PK
9	10	9746.0373	-7.39	54.22	46.83	68.20	21.37	PASS	Vertical	PK
	11	11292.2896	-6.50	53.47	46.97	68.20	21.23	PASS	Vertical	PK
	12	13714.3107	-1.84	51.54	49.70	68.20	18.50	PASS	Vertical	PK

Page	20	Λf	57
raue	70	()I	.)/

/lode	:	8	302.11 n(HT20)	2.11 n(HT20) Transmitting			el:	5240MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1404.2904	1.45	39.57	41.02	68.20	27.18	PASS	Horizontal	PK
2	2535.2035	5.17	38.78	43.95	68.20	24.25	PASS	Horizontal	PK
3	3417.4917	7.58	37.56	45.14	68.20	23.06	PASS	Horizontal	PK
4	8969.7485	-8.67	52.01	43.34	68.20	24.86	PASS	Horizontal	PK
5	11800.6150	-6.20	53.42	47.22	68.20	20.98	PASS	Horizontal	PK
6	13724.0862	-1.91	51.14	49.23	68.20	18.97	PASS	Horizontal	PK
7	1423.5424	1.47	39.64	41.11	68.20	27.09	PASS	Vertical	PK
8	2378.4378	4.30	38.88	43.18	68.20	25.02	PASS	Vertical	PK
9	3348.1848	7.48	37.53	45.01	68.20	23.19	PASS	Vertical	PK
10	8464.2982	-10.61	53.39	42.78	68.20	25.42	PASS	Vertical	PK
11	9974.8987	-6.97	53.32	46.35	68.20	21.85	PASS	Vertical	PK
12	13126.6313	-3.07	51.31	48.24	68.20	19.96	PASS	Vertical	PK
	1 2 3 4 5 6 7 8 9	[MHz] 1 1404.2904 2 2535.2035 3 3417.4917 4 8969.7485 5 11800.6150 6 13724.0862 7 1423.5424 8 2378.4378 9 3348.1848 10 8464.2982 11 9974.8987	Freq. [MHz] 1 1404.2904 1.45 2 2535.2035 5.17 3 3417.4917 7.58 4 8969.7485 -8.67 5 11800.6150 -6.20 6 13724.0862 -1.91 7 1423.5424 1.47 8 2378.4378 4.30 9 3348.1848 7.48 10 8464.2982 -10.61 11 9974.8987 -6.97	Freq. [dB] Reading [dBμV] 1 1404.2904 1.45 39.57 2 2535.2035 5.17 38.78 3 3417.4917 7.58 37.56 4 8969.7485 -8.67 52.01 5 11800.6150 -6.20 53.42 6 13724.0862 -1.91 51.14 7 1423.5424 1.47 39.64 8 2378.4378 4.30 38.88 9 3348.1848 7.48 37.53 10 8464.2982 -10.61 53.39 11 9974.8987 -6.97 53.32	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] 1 1404.2904 1.45 39.57 41.02 2 2535.2035 5.17 38.78 43.95 3 3417.4917 7.58 37.56 45.14 4 8969.7485 -8.67 52.01 43.34 5 11800.6150 -6.20 53.42 47.22 6 13724.0862 -1.91 51.14 49.23 7 1423.5424 1.47 39.64 41.11 8 2378.4378 4.30 38.88 43.18 9 3348.1848 7.48 37.53 45.01 10 8464.2982 -10.61 53.39 42.78 11 9974.8987 -6.97 53.32 46.35	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] 1 1404.2904 1.45 39.57 41.02 68.20 2 2535.2035 5.17 38.78 43.95 68.20 3 3417.4917 7.58 37.56 45.14 68.20 4 8969.7485 -8.67 52.01 43.34 68.20 5 11800.6150 -6.20 53.42 47.22 68.20 6 13724.0862 -1.91 51.14 49.23 68.20 7 1423.5424 1.47 39.64 41.11 68.20 8 2378.4378 4.30 38.88 43.18 68.20 9 3348.1848 7.48 37.53 45.01 68.20 10 8464.2982 -10.61 53.39 42.78 68.20 11 9974.8987 -6.97 53.32 46.35 68.20	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] 1 1404.2904 1.45 39.57 41.02 68.20 27.18 2 2535.2035 5.17 38.78 43.95 68.20 24.25 3 3417.4917 7.58 37.56 45.14 68.20 23.06 4 8969.7485 -8.67 52.01 43.34 68.20 24.86 5 11800.6150 -6.20 53.42 47.22 68.20 20.98 6 13724.0862 -1.91 51.14 49.23 68.20 18.97 7 1423.5424 1.47 39.64 41.11 68.20 27.09 8 2378.4378 4.30 38.88 43.18 68.20 25.02 9 3348.1848 7.48 37.53 45.01 68.20 23.19 10 8464.2982 -10.61 53.39 42.78 68.20 25.42 11	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] Result 1 1404.2904 1.45 39.57 41.02 68.20 27.18 PASS 2 2535.2035 5.17 38.78 43.95 68.20 24.25 PASS 3 3417.4917 7.58 37.56 45.14 68.20 23.06 PASS 4 8969.7485 -8.67 52.01 43.34 68.20 24.86 PASS 5 11800.6150 -6.20 53.42 47.22 68.20 20.98 PASS 6 13724.0862 -1.91 51.14 49.23 68.20 18.97 PASS 7 1423.5424 1.47 39.64 41.11 68.20 27.09 PASS 8 2378.4378 4.30 38.88 43.18 68.20 25.02 PASS 9 3348.1848 7.48 37.53 45.01 68.20 25.42 PAS	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] Result Polarity 1 1404.2904 1.45 39.57 41.02 68.20 27.18 PASS Horizontal 2 2535.2035 5.17 38.78 43.95 68.20 24.25 PASS Horizontal 3 3417.4917 7.58 37.56 45.14 68.20 23.06 PASS Horizontal 4 8969.7485 -8.67 52.01 43.34 68.20 24.86 PASS Horizontal 5 11800.6150 -6.20 53.42 47.22 68.20 20.98 PASS Horizontal 6 13724.0862 -1.91 51.14 49.23 68.20 18.97 PASS Horizontal 7 1423.5424 1.47 39.64 41.11 68.20 27.09 PASS Vertical 8 2378.4378 4.30 38.88 43.18 68.20 25.02 </td

Mode	:	80)2.11 n(HT20)) Transmitting		Channe	el:	5745MHz	
NO	Freq. [MHz]	Factor [dB]	[dB] Reading Level Limit [dBμV/m] [dBμV/m]			Margin [dB]	Result	Polarity	Remark
1	1281.0781	1.53	41.07	42.60	68.20	25.60	PASS	Horizontal	PK
2	2165.5666	4.80	38.63	43.43	68.20	24.77	PASS	Horizontal	PK
3	3281.6282	8.23	37.97	46.20	68.20	22.00	PASS	Horizontal	PK
4	8445.1630	-10.63	52.85	42.22	68.20	25.98	PASS	Horizontal	PK
5	10265.3510	-6.52	52.70	46.18	68.20	22.02	PASS	Horizontal	PK
6	13901.1267	-0.84	49.84	49.00	68.20	19.20	PASS	Horizontal	PK
7	1305.2805	1.65	39.84	41.49	68.20	26.71	PASS	Vertical	PK
8	2810.7811	6.53	39.18	45.71	68.20	22.49	PASS	Vertical	PK
9	4110.5611	10.50	36.02	46.52	68.20	21.68	PASS	Vertical	PK
10	8396.8598	-10.67	53.56	42.89	68.20	25.31	PASS	Vertical	PK
11	9695.6797	-7.56	54.23	46.67	68.20	21.53	PASS	Vertical	PK
12	13710.9807	-1.82	51.54	49.72	68.20	18.48	PASS	Vertical	PK

D	\sim		r
Pane	29	ΟŤ	5/

п		/ .0.7							-01	
	Mode	:	8	302.11 n(HT20)) Transmitting		Channe	el:	5785MHz	
	NO	Freq. [dB]				Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
e	1	1562.1562	2.40	39.26	41.66	68.20	26.54	PASS	Horizontal	PK
9	2	2557.7558	5.59	39.50	45.09	68.20	23.11	PASS	Horizontal	PK
	3	3816.8317	9.43	37.55	46.98	68.20	21.22	PASS	Horizontal	PK
	4	7585.6724	-10.64	53.56	42.92	68.20	25.28	PASS	Horizontal	PK
	5	11255.1837	-6.19	52.43	46.24	68.20	21.96	PASS	Horizontal	PK
	6	14368.0579	0.30	50.10	50.40	68.20	17.80	PASS	Horizontal	PK
	7	1424.0924	1.84	40.70	42.54	68.20	25.66	PASS	Vertical	PK
	8	1995.0495	5.06	39.59	44.65	68.20	23.55	PASS	Vertical	PK
	9	4150.1650	10.69	36.41	47.10	68.20	21.10	PASS	Vertical	PK
	10	9219.5480 -7.69 53.57 45.88		45.88	68.20	22.32	PASS	Vertical	PK	
4	11	12405.2604	-4.02	52.36	48.34	68.20	19.86	PASS	Vertical	PK
9	12	14293.6862	-0.47	50.43	49.96	68.20	18.24	PASS	Vertical	PK

Mode	:	80)2.11 n(HT20)) Transmitting		Channe	el:	5825MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1420.7921	1.84	40.04	41.88	68.20	26.32	PASS	Horizontal	PK
2	2680.4180	6.04	38.93	44.97	68.20	23.23	PASS	Horizontal	PK
3	3903.7404	9.73	36.47	46.20	68.20	22.00	PASS	Horizontal	PK
4	7725.9817	-11.23	53.74	42.51	68.20	25.69	PASS	Horizontal	PK
5	11182.3455	-5.84	53.52	47.68	68.20	20.52	PASS	Horizontal	PK
6	15495.8997	0.42	49.89	50.31	68.20	17.89	PASS	Horizontal	PK
7	1629.2629	2.96	38.60	41.56	68.20	26.64	PASS	Vertical	PK
8	2420.7921	4.98	40.02	45.00	68.20	23.20	PASS	Vertical	PK
9	3805.2805	9.39	37.14	46.53	68.20	21.67	PASS	Vertical	PK
10	8382.2922	-10.72	53.87	43.15	68.20	25.05	PASS	Vertical	PK
11	11766.5844	-6.06	53.25	47.19	68.20	21.01	PASS	Vertical	PK
12	12 14415.5944 0.41 49.92 50.33 68.2		68.20	17.87	PASS	Vertical	PK		

Page	30	Ωf	57
Faue	. 7()	OI	:)/

	12201					1 2000					
Mode	e :	80	02.11 n(HT40)) Transmitting		Channe	el:	5190MHz			
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level Limit [dBµV/m] [dBµV/		Margin [dB]	Result	Polarity	Remark		
1	1430.6931	1.48	40.03	41.51	68.20	26.69	PASS	Horizontal	PK		
2	2130.9131	4.70	39.08	43.78	68.20	24.42	PASS	Horizontal	PK		
3	3085.8086	6.78	39.01	45.79	68.20	22.41	PASS	Horizontal	PK		
4	8780.5640	-9.29	52.52	43.23	68.20	24.97	PASS	Horizontal	PK		
5	10457.3479	-6.40	52.77	46.37	68.20	21.83	PASS	Horizontal	PK		
6	13691.3096	-1.73	51.55	49.82	68.20	18.38	PASS	Horizontal	PK		
7	1403.7404	1.45	40.50	41.95	68.20	26.25	PASS	Vertical	PK		
8	2179.8680	4.16	40.43	44.59	68.20	23.61	PASS	Vertical	PK		
9	4187.0187	10.05	36.25	46.30	68.20	21.90	PASS	Vertical	PK		
10	6938.1719	-11.87	54.76	42.89	68.20	25.31	PASS	Vertical	PK		
11	9967.4234	-6.97	55.11	48.14	68.20	20.06	PASS	Vertical	PK		
12	14365.8183	0.27	50.19	50.46	68.20	17.74	PASS	Vertical	PK		

D	~ 4		r
Page	≺ 1	α	5 /
I auc	\mathbf{v}	O.	J.

Mode	:	80	02.11 n(HT40)) Transmitting		Channe	el:	5230MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1402.0902	1.44	39.99	41.43	68.20	26.77	PASS	Horizontal	PK
2	2534.6535	5.17	38.91	44.08	68.20	24.12	PASS	Horizontal	PK
3	3433.9934	7.59	38.31	45.90	68.20	22.30	PASS	Horizontal	PK
4	8845.5423	-9.18	52.46	43.28	68.20	24.92	PASS	Horizontal	PK
5	10919.0960	-6.31	52.18	45.87	68.20	22.33	PASS	Horizontal	PK
6	14360.6430	0.21	49.89	50.10	68.20	18.10	PASS	Horizontal	PK
7	1368.5369	1.35	40.52	41.87	68.20	26.33	PASS	Vertical	PK
8	2711.7712	5.59	39.06	44.65	68.20	23.55	PASS	Vertical	PK
9	3949.9450	9.17	37.70	46.87	68.20	21.33	PASS	Vertical	PK
10	9187.1094	-7.84	52.72	44.88	68.20	23.32	PASS	Vertical	PK
11	11203.7352	-5.75	52.88	47.13	68.20	21.07	PASS	Vertical	PK
12	12 14351.4426 0.12 49.66 49.78 68.20		68.20	18.42	PASS	Vertical	PK		

Mode	:		802.11 n(HT40)) Transmitting		Channe	el:	5755MHz	
NO	[MHZ]		ı Reading Level Limit		Margin [dB]	Result	Polarity	Remark	
1	1370.7371	1.77	39.88	41.65	68.20	26.55	PASS	Horizontal	PK
2	2073.1573	5.48	38.99	44.47	68.20	23.73	PASS	Horizontal	PK
3	3807.4807	9.39	37.18	46.57	68.20	21.63	PASS	Horizontal	PK
4	9160.5107	-8.09	52.84	44.75	68.20	23.45	PASS	Horizontal	PK
5	11170.8447	-5.92	51.76	45.84	68.20	22.36	PASS	Horizontal	PK
6	14332.7889	-0.09	50.08	49.99	68.20	18.21	PASS	Horizontal	PK
7	1546.2046	2.28	39.55	41.83	68.20	26.37	PASS	Vertical	PK
8	2332.2332	4.69	39.39	44.08	68.20	24.12	PASS	Vertical	PK
9	3342.6843	8.25	37.87	46.12	68.20	22.08	PASS	Vertical	PK
10	8418.3279	-10.65	53.77	43.12	68.20	25.08	PASS	Vertical	PK
11	11183.8789	-5.83	52.79	46.96	68.20	21.24	PASS	Vertical	PK
12	13729.3820	-1.94	51.09	49.15	68.20	19.05	PASS	Vertical	PK

Report No.: EED32O81494004 Page 32 of 57

Мо	de:		802.11 n(HT40)) Transmitting		Channe	el:	5795MHz	
NC	Freq. [MHz]	Factor [dB] Reading Level Limit [dBµV] [dBµV/m] [dBµV/m]		Margin [dB]	Result	Polarity	Remark		
1	1 1469.1969 1.89 39.87 41.76		68.20	26.44	PASS	Horizontal	PK		
2	2124.3124	5.32	38.65	43.97	68.20	24.23	PASS	Horizontal	PK
3	3227.7228	7.96	38.37	46.33	68.20	21.87	PASS	Horizontal	PK
4	9201.1467	-7.72	52.39	44.67	68.20	23.53	PASS	Horizontal	PK
5	11937.5625	-5.21	53.69	48.48	68.20	19.72	PASS	Horizontal	PK
6	14317.4545	-0.25	50.84	50.59	68.20	17.61	PASS	Horizontal	PK
7	1929.0429	4.82	37.50	42.32	68.20	25.88	PASS	Vertical	PK
8	2707.9208	6.15	39.92	46.07	68.20	22.13	PASS	Vertical	PK
9	3806.9307	9.39	37.47	46.86	68.20	21.34	PASS	Vertical	PK
10	9219.5480	-7.69	53.37	45.68	68.20	22.52	PASS	Vertical	PK
11	12447.4298	-4.13	53.03	48.90	68.20	19.30	PASS	Vertical	PK
12	16543.2362	0.81	52.33	53.14	68.20	15.06	PASS	Vertical	PK

Mode	::	80)2.11 ac(VHT	80) Transmitti	ng	Channe	el:	5210MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Margin [dB] Result		Remark
1	1281.6282	1.09	40.59	41.68	68.20	26.52	PASS	Horizontal	PK
2	2215.6216	3.95	39.92	43.87	68.20	24.33	PASS	Horizontal	PK
3	3056.6557	6.70	39.21	45.91	68.20	22.29	PASS	Horizontal	PK
4	8985.2743	-8.53	52.36	43.83	68.20	24.37	PASS	Horizontal	PK
5	12456.7228	-4.16	52.62	48.46	68.20	19.74	PASS	Horizontal	PK
6	16282.9641	0.91	51.05	51.96	68.20	16.24	PASS	Horizontal	PK
7	1374.5875	1.37	39.86	41.23	68.20	26.97	PASS	Vertical	PK
8	2099.5600	5.05	38.91	43.96	68.20	24.24	PASS	Vertical	PK
9	3162.2662	6.91	38.69	45.60	68.20	22.60	PASS	Vertical	PK
10	9200.9100	-7.72	52.90	45.18	68.20	23.02	PASS	Vertical	PK
11	9987.5494	-6.96	54.66	47.70	68.20	20.50	PASS	Vertical	PK
12	14388.8194	0.52	50.44	50.96	68.20	17.24	PASS	Vertical	PK

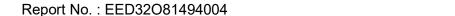
Note

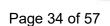
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.




Report No. : EED32O81494004 Page 33 of 57

7.9 Radiated Emission which fall in the restricted bands

Test Requirement:	47 CFR Part 15C Sect	ion 1	5.209 and 1	5.407 (b)							
Test Method:	ANSI C63.10 2013	ANSI C63.10 2013 Measurement Distance: 3m (Semi-Anechoic Chamber)									
Test Site:	Measurement Distance	e: 3m	n (Semi-Aned	choic Char	nbe	r)	(G)				
Receiver Setup:	Frequency		Detector	RBV	٧	VBW	Remark				
	0.009MHz-0.090MH	lz	Peak	10kH	Ιz	30kHz	Peak				
	0.009MHz-0.090MH	lz	Average	10kH	Ιz	30kHz	Average				
	0.090MHz-0.110MH	łz	Quasi-pea	k 10kH	Ιz	30kHz	Quasi-peak				
	0.110MHz-0.490MH	łz	Peak	10kH	Ηz	30kHz	Peak				
	0.110MHz-0.490MH	łz	Average	10kH	Ηz	30kHz	Average				
	0.490MHz -30MHz	<u>-</u>	Quasi-pea	k 10kH	Ιz	30kHz	Quasi-peak				
	30MHz-1GHz		Quasi-pea	k 100 k	Hz	300kHz	Quasi-peak				
	Above 1GHz		Peak	1MF	lz	3MHz	Peak				
	Above IGHZ		Peak	1MF	lz	10kHz	Average				
Limit:	Frequency		ld strength rovolt/meter)	Limit (dBuV/m)	H		Measurement distance (m)				
	0.009MHz-0.490MHz	24	00/F(kHz)	-		-	300				
			000/F(kHz)	-		-	30				
	1.705MHz-30MHz		30	- /0		-	30				
	30MHz-88MHz		100	40.0	Qu	asi-peak	3				
	88MHz-216MHz		150	43.5	Qu	asi-peak	3				
	216MHz-960MHz		200	46.0	Quasi-peak		3				
	960MHz-1GHz		500	54.0	Quasi-peak		3				
	Above 1GHz		500	54.0	Α	verage	3				
	*(1) For transmitters operating in the 5.15-5.25 GHz band: All outside of the 5.15-5.35 GHz band shall not exceed an e.i.r dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissi of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/M (3) For transmitters operating in the 5.47-5.725 GHz band: All outside of the 5.47-5.725 GHz band shall not exceed an e.i. dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 M above or below the band edge increasing linearly to 10 dBm/MHz above or below the band edge, and from 25 MHz above or below edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above the band edge, and from 5 MHz above or below the band edge linearly to a level of 27 dBm/MHz at the band edge. Remark: The emission limits shown in the above table are										
	measurements emplo frequency bands 9-9										

emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Note:

(i) EIRP = ((E*d)^2) / 30 where:

• E is the field strength in V/m;

· d is the measurement distance in meters;

• EIRP is the equivalent isotropically radiated power in watts.

(ii) Working in dB units, the above equation is equivalent to: EIRP[dBm] = $E[dB\mu V/m] + 20 \log(d[meters]) - 104.77$

(iii) Or, if d is 3 meters:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

Test Setup:

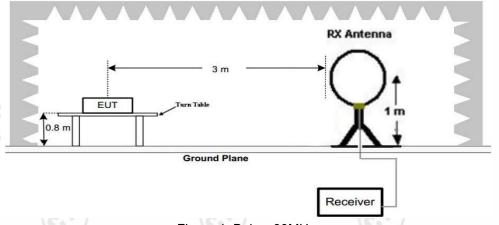
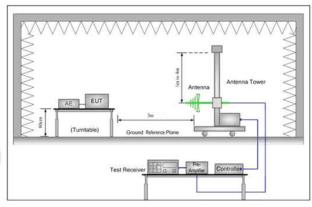



Figure 1. Below 30MHz

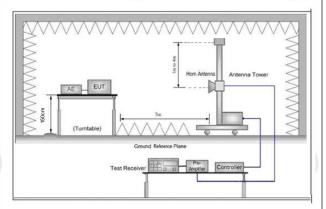


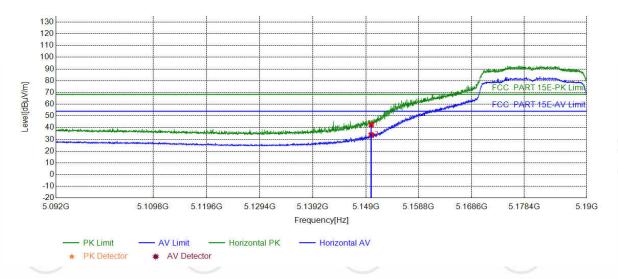
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- j. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Report No.: EED32O81494004 Page 35 of 57



Test Data:

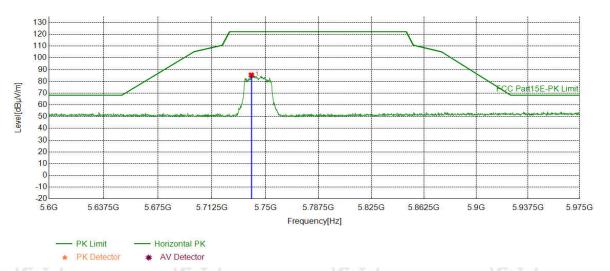
Mode:	802.11 n(HT20) Transmitting	Channel:	5180
Remark:	MIMO		

Test Graph

	Suspe	ected List								
1000	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5150.0000	-15.08	57.49	42.41	68.44	26.03	PASS	Horizontal	PK
	2	5150.0000	-15.08	48.94	33.86	54.00	20.14	PASS	Horizontal	AV

Daga	27	~f	E7
Page	IJΙ	OI	\mathbf{o}_{I}

Mode:	802.11 n(HT20) Transmitting	Channel:	5180
Remark:	MIMO	-0-	


	Susp	ected List								
7.0	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Š	1	5150.0000	-15.08	69.52	54.44	68.44	14.00	PASS	Vertical	PK
	2	5150.0000	-15.08	57.02	41.94	54.00	12.06	PASS	Vertical	AV

		_	
Page	20	∩f	57
rauc	JU	UΙ	υı

Mode:	802.11 n(HT20) Transmitting	Channel:	5745
Remark:	MIMO		

Suspe	ected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5740.1326	13.84	71.56	85.40	122.20	36.80	PASS	Horizontal	PK



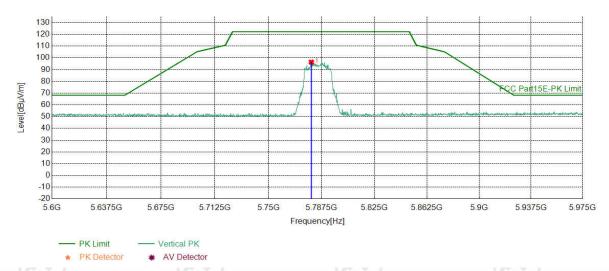
_		_	
Page	วด	∩f	57
1 auc	-	OI.	U I

Mode:	802.11 n(HT20) Transmitting	Channel:	5745
Remark:	MIMO	-0-	

	Suspe	ected List								
0.7	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	5745.7604	13.85	81.19	95.04	122.20	27.16	PASS	Vertical	PK

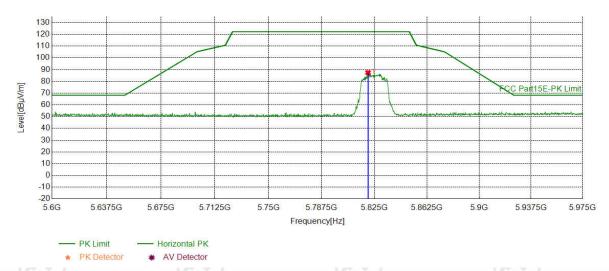
Dog	- 10	۰ŧ	5 7
Page	2 40	OI	ગ /

Mode:	802.11 n(HT20) Transmitting	Channel:	5785
Remark:	MIMO	-0-	


	Suspe	ected List								
10	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	5782.9040	13.91	72.24	86.15	122.20	36.05	PASS	Horizontal	PK

Page	11	of 57	
Page	41	0157	

Mode:	802.11 n(HT20) Transmitting	Channel:	5785
Remark:	MIMO	-0-	


	Suspected List									
0.1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
V	1	5780.2776	13.91	82.44	96.35	122.20	25.85	PASS	Vertical	PK

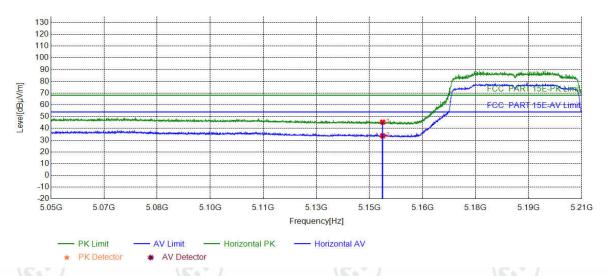
		_	
Page	42	∩f	57
ı auc	74	\mathbf{v}	U I

Mode:	802.11 n(HT20) Transmitting	Channel:	5825
Remark:	MIMO	-0-	

Sus	pected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5820.4227	14.02	73.42	87.44	122.20	34.76	PASS	Horizontal	PK

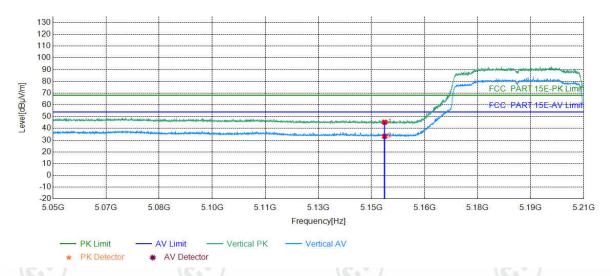
Page 43 of 57

Mode:	802.11 n(HT20) Transmitting	Channel:	5825
Remark:	MIMO	-0-	


3	Susp	ected List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5826.2381	14.04	81.47	95.51	122.20	26.69	PASS	Vertical	PK

Page	11	٥f	57
Pade	44	OI	٦ <i>١</i>

Mode:	802.11 n(HT40) Transmitting	Channel:	5190
Remark:	MIMO	-0-	


	Suspected List										
0.7	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
6	1	5150.0000	12.36	32.96	45.32	68.20	22.88	PASS	Horizontal	PK	
	2	5150.0000	12.36	21.37	33.73	54.00	20.27	PASS	Horizontal	AV	

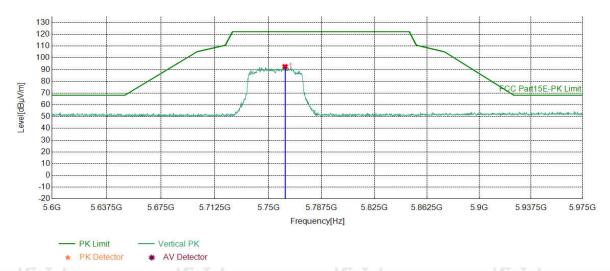
_			
Pag	e 4	5 o	57

Mode:	802.11 n(HT40) Transmitting	Channel:	5190
Remark:	МІМО	-0-	

	Susp	ected List								
0.1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	5150.0000	12.36	32.89	45.25	68.20	22.95	PASS	Vertical	PK
	2	5150.0000	12.36	20.89	33.25	54.00	20.75	PASS	Vertical	AV

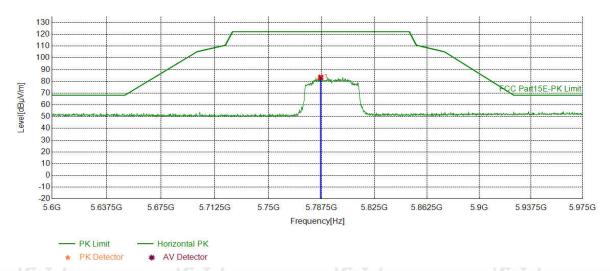
_	40	-	
Page	46	ΟŤ	5/

Mode:	802.11 n(HT40) Transmitting	Channel:	5755
Remark:	MIMO	-0-	


Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5752.7014	13.86	68.63	82.49	122.20	39.71	PASS	Horizontal	PK

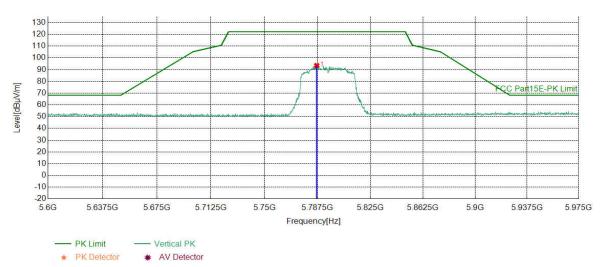
D	47	- c	
Page	47	OT	5/

Mode:	802.11 n(HT40) Transmitting	Channel:	5755
Remark:	MIMO	-0-	


Suspe	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5761.7059	13.87	78.67	92.54	122.20	29.66	PASS	Vertical	PK	

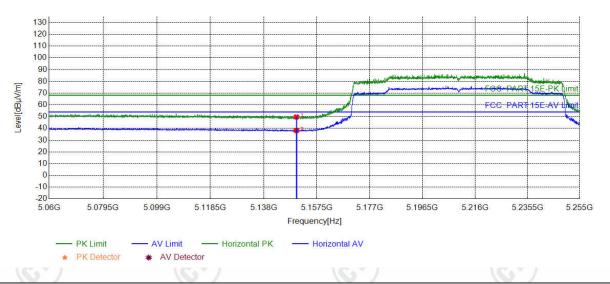
D	40		r
Page	$\Delta \mathbf{z}$	α	n /
I auc	TU	OI.	J.

Mode:	802.11 n(HT40) Transmitting	Channel:	5795
Remark:	MIMO		


	Suspected List										
0.1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
V	1	5786.8434	13.92	69.55	83.47	122.20	38.73	PASS	Horizontal	PK	

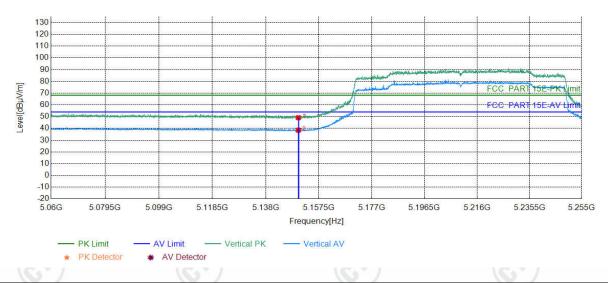
_		_	
Pag	e 4	9 o	15/

Mode:	802.11 n(HT40) Transmitting	Channel:	5795
Remark:	MIMO	-0-	


Susp	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5786.8434	13.92	79.55	93.47	122.20	28.73	PASS	Vertical	PK	

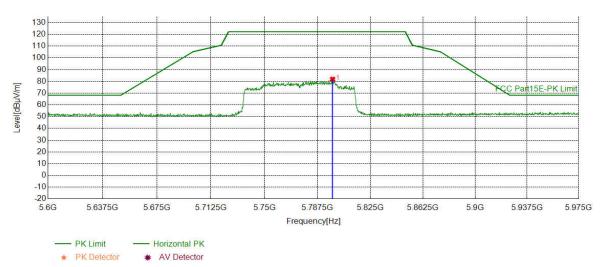
D		- c	
Page	9 50	OT	5/

Mode:	802.11 ac(VHT80) Transmitting	Channel:	5210
Remark:	МІМО	-0-	


	Suspe	cted List								
0.7	ОО	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Š	1	5150.0000	12.36	37.36	49.72	68.20	18.48	PASS	Horizontal	PK
	2	5150.0000	12.36	25.83	38.19	54.00	15.81	PASS	Horizontal	AV

D	- 4	ء ۔	
Page	51	ΟĪ	5/

Mode:	802.11 ac(VHT80) Transmitting	Channel:	5210
Remark:	МІМО	-0-	


	Suspe	cted List								
0.7	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	5150.0000	12.36	36.77	49.13	68.20	19.07	PASS	Vertical	PK
	2	5150.0000	12.36	26.14	38.50	54.00	15.50	PASS	Vertical	AV

_		_	
Page	52	∩f	57
1 auc	-	\mathbf{v}	U I

Mode:	802.11 ac(VHT80) Transmitting	Channel:	5775
Remark:	МІМО	-0-	

Suspe	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5798.0991	13.94	67.90	81.84	122.20	40.36	PASS	Horizontal	PK	

Page 53 of 57

Mode:	802.11 ac(VHT80) Transmitting	Channel:	5775
Remark:	МІМО	-0-	

Test Graph

Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5798.8494	13.94	76.36	90.30	122.20	31.90	PASS	Vertical	PK

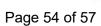
Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

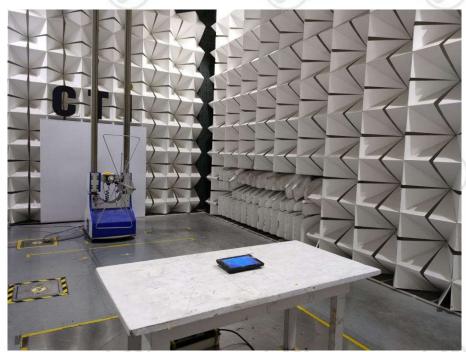
Final Test Level =Receiver Reading - Correct Factor

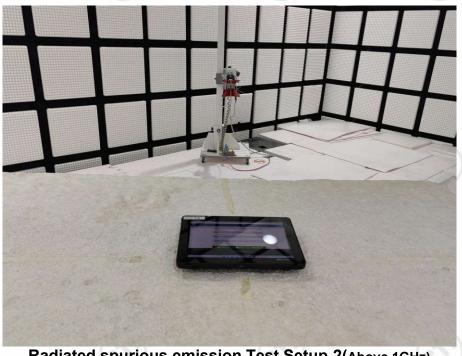
Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 1GHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



Refer to Appendix: 5G WIFI of EED32O81494004

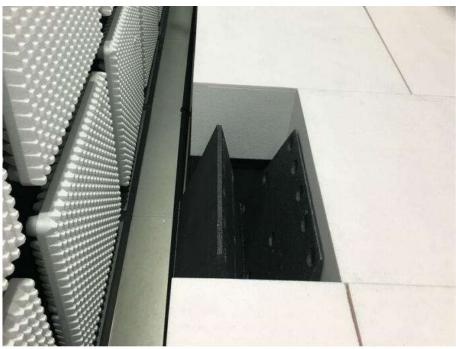




PHOTOGRAPHS OF TEST SETUP

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

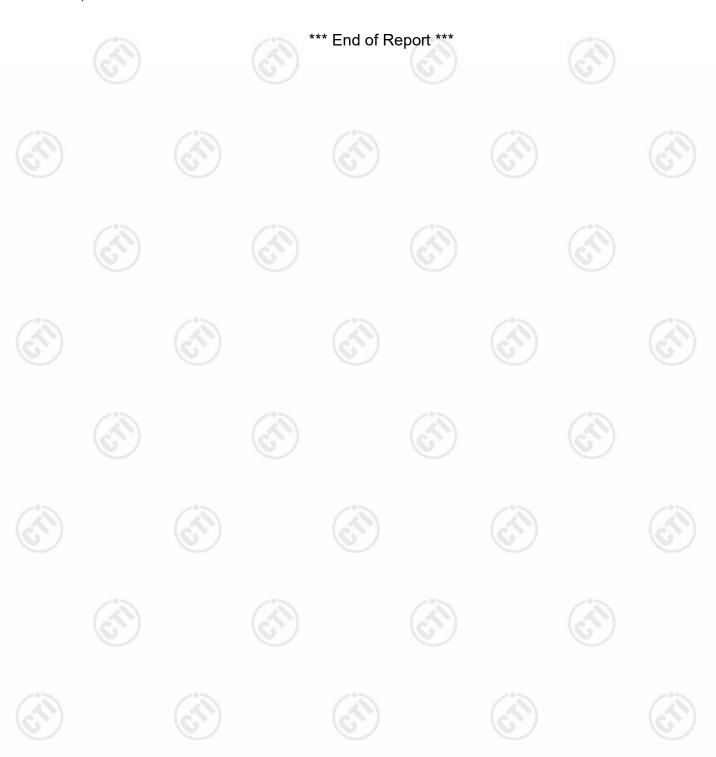




Report No.: EED32O81494004 Page 56 of 57

Radiated spurious emission Test Setup-3(Above 1GHz) There are absorbing materials under the ground.

Conducted Emissions Test Setup



Page 57 of 57

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32O81494001 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

