Amber Helm Development L.C.

92723 Michigan Hwy-152 Sister Lakes, Michigan 49047 USA Tel: 888-847-8027

DLOBU-WR2328TX Issued: November 12, 2023

EMC Test Report

regarding

USA: Part 95L + Waivers DA 23-343, 23-586 (Emissions)

for

Autolink OBU

Category: C-V2X Transceiver

Judgments: Aligns with Part 95L + DA 23-343, 23-586Testing Completed: October 30, 2023

Prepared for:

Danlaw Inc.

41131 Vincenti Court, Novi Michigan 48375 USA Phone: (248) 987-7384, Fax: (248) 471-4485 Contact: Scott Morell, scottm@danlawinc.com

ohn N Data Rec./Rev. by: Jo Rpt. Prep./Rev. by:

Rpt. Auth. by: Dı

oseph Brunett, EMC-002790-NE

Dı oseph Brunett, EMC-002790-NE

Date of Issue:

November 12, 2023

Revision History

Rev. No.	Date	Details	Revised By	
r0	November 12, 2023	Initial Release.	J. Nantz	
r1	December 15, 2023	Clarify modes.	J. Brunett	
r2	January 5, 2024	Minor corrections, added Freq. Stab.	J. Brunett	

Contents

R	evision History	2
Ta	ble of Contents	2
1	Test Report Scope and Limitations1.1Laboratory Authorization1.2Report Retention1.3Subcontracted Testing1.4Test Data1.5Limitation of Results1.6Copyright1.7Endorsements1.8Test Location1.9Traceability and Equipment Used	$ \begin{array}{c} 4 \\ 4 \\ $
2	Test Specifications and Procedures 2.1 Test Specification and General Procedures	6 6
3	Configuration and Identification of the Equipment Under Test 3.1 Description and Declarations	7 8 8 8 8 8 8 8 8 8 8 8
4	4.2.1 Fundamental Emission Pulsed Operation 4.2.2 Fundamental Emission Bandwidth 4.2.3 Effective Isotropic Radiated Power 4.3 Unintentional Emissions	9 9 9 11 12 12 13 15 16 16 16 17
5	Measurement Uncertainty and Accreditation Documents	20

List of Tables

1.8.0 Test Site List
1.9.0 Equipment List
3.1.0 EUT Declarations
4.2.1 Pulsed Emission Characteristics (Duty Cycle)
4.2.2 (i) Intentional Emission Bandwidth
4.2.2 (ii) Intentional Emission Bandwidth
4.2.3 Radiated Power Results
4.3.1 Transmit Chain Spurious Emissions
5.0.0 Measurement Uncertainty

List of Figures

3.1.0 Photos of EUT
3.1.1 EUT Test Configuration Diagram
4.1.1 Radiated Emissions Diagram of the EUT
4.1.1 Radiated Emissions Test Setup Photograph(s)
4.1.2 Conducted RF Test Setup Photograph(s)
4.2.1 Example Pulsed Emission Characteristics (Duty Cycle)
4.2.2 Example Intentional Emission Bandwidth
4.2.3 Power Measurement Plots
4.3.2 (i) Worst Case Transmitter OOBE Emissions Measured
4.3.2 (ii) Worst Case Transmitter OOBE Emissions Measured
4.3.2 (iii) Worst Case Transmitter OOBE Emissions Measured
5.0.0 Accreditation Documents

1 Test Report Scope and Limitations

1.1 Laboratory Authorization

Test Facility description and attenuation characteristics are on file with the FCC Laboratory, Columbia, Maryland (FCC Reg. No: US5348 and US5356) and with ISED Canada, Ottawa, ON (File Ref. No: 3161A and 24249). Amber Helm Development L.C. holds accreditation under NVLAP Lab Code 200129-0.

1.2 Report Retention

For equipment verified to comply with the regulations herein, the manufacturer is obliged to retain this report with the product records for the life of the product, and no less than ten years. A copy of this Report will remain on file with this laboratory until December 2033.

1.3 Subcontracted Testing

This report does not contain data produced under subcontract.

1.4 Test Data

This test report contains data included within the laboratory's scope of accreditation. Any data in this report that is not covered under the laboratory's scope is clearly identified.

1.5 Limitation of Results

The test results contained in this report relate only to the item(s) tested. Any electrical or mechanical modification made to the test item subsequent to the test date shall invalidate the data presented in this report. Any electrical or mechanical modification made to the test item subsequent to this test date shall require reevaluation.

1.6 Copyright

This report shall not be reproduced, except in full, without the written approval of Amber Helm Development L.C.

1.7 Endorsements

This report shall not be used to claim product endorsement by any accrediting, regulatory, or governmental agency.

Prepared For: Danlaw Inc.

1.8 Test Location

The EUT was fully tested by **Amber Helm Development L.C.**, headquartered at 92723 Michigan Hwy-152, Sister Lakes, Michigan 49047 USA. Table 1.8.0 lists all sites employed herein. Specific test sites utilized are also listed in the test results sections of this report where needed.

Table 1.8.0 Test Site List.

Description	Location	Quality Num.	
OATS (3 meter)	3615 E Grand River Rd., Williamston, Michigan 48895	OATSC	

1.9 Traceability and Equipment Used

Pertinent test equipment used for measurements at this facility is listed in Table 1.9.0. The quality system employed at Amber Helm Development L.C. has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to the SI through NIST, other recognized national laboratories, accepted fundamental or natural physical constants, ratio type of calibration, or by comparison to consensus standards. All equipment is evaluated on a cycle no greater than 12 months following laboratory validation procedures and is calibrated following manufacturer recommended intervals.

Description	Manufacturer/Model	SN	Quality Num.	Cal/Ver By / Date Due	
Spectrum Analyzer	R & S / FSW67	103233	RSFSV67	RS / Aug-2024	
Quad Ridge Horn	Singer / A6100	C35200	HQR1TO18S01	Keysight / Aug-2024	
Biconical	EMCO / 93110B	9802-3039	BICEMCO01	Keysight / Aug-2025	
Log Periodic Antenna	EMCO / 3146	9305 - 3614	LOGEMCO01	Keysight / Aug-2025	
K-Band Horn	JEF / NRL Std.	001	HRNK01	AHD / Jul-2024	
BNC-BNC Coax	WRTL / RG58/U	001	CAB001-BLACK	AHD / Dec-2023	
3.5-3.5MM Coax	PhaseFlex / PhaseFlex	001	CAB015-PURP	AHD / Dec-2023	
BNC-BNC Coax	WRTL / RG58/U	001	CAB001-BLACK	AHD / Dec-2023	

Table 1.9.0 Equipment List.

2 Test Specifications and Procedures

2.1 Test Specification and General Procedures

The goal of Danlaw Inc. is to demonstrate that the Equipment Under Test (EUT) complies with the Rules and/or Directives below. Detailed in this report are the results of testing the Danlaw Inc. Autolink OBU for compliance to:

Country/Region/Manu.	Rules or Directive	Referenced Section(s)
United States	Code of Federal Regulations	Part 95L + Waivers DA 23-343, 23-586

It has been determined that the equipment under test is subject to the rules and directives above at the date of this testing. In conjunction with these rules and directives, the following specifications and procedures are followed herein to demonstrate compliance (in whole or in part) with these regulations.

ANSI C63.4:2014	"Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"
ANSI C63.10:2013	"American National Standard of Procedures for Compliance Testing of Unli- censed Wireless Devices"
ANSI C63.26:2015	"American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services"
KDB 511808 D01 v01	"Equipment Authorization for Cellular Vehicle-to-Everything Devices for Operation Pursuant to Waiver of Certain Part 90 and Part 95 Rules"
Waiver: DA-23-343	"Request for Waiver of 5.9 GHz Band Rules to Permit Initial Deployment of Cellular Vehicle-to-Everything Technology"
Waiver: DA-23-586	"Request to Modify April 24, 2023 Waiver Order of the 5.9 GHz Band Rules to Permit Initial Deployment of Cellular Vehicle-to-Everything Technology"
TP0102RA	"AHD Internal Document TP0102 - Radiated Emissions Test Procedure"

3 Configuration and Identification of the Equipment Under Test

3.1 Description and Declarations

The EUT is an C-V2X OBU (On Board Unit) transceiver which operates within an Intelligent Transportation System (ITS) as defined in 47 CFR 90.3103. The EUT is approximately 15 x 8.5 x 3 cm in dimension, and is depicted in Figure 3.1.0. It is powered by 13.5 VDC Vehicle power source. This product is used as a vehicular mounted OBU for Intelligent Transportation Systems. Table 3.1.0 outlines provider declared EUT specifications.

Figure 3.1.0 Photos of EUT.

Table	3.1.0	EUT	Declarations.
-------	-------	-----	---------------

General Declarations	
Equipment Type:	C-V2X Transceiver
Country of Origin:	USA
Nominal Supply:	13.5 VDC
Oper. Temp Range:	-34C to $74C$
Frequency Range:	5905 - 5925 MHz
Antenna Dimension:	$10.7 \ge 9.4 \text{ cm}$
Antenna Type:	Mobile Mark Multi-band (See datasheet.)
Antenna Gain:	5 dBi max.
Number of Channels:	1
Channel Spacing:	Not applicable
Alignment Range:	Not Declared
Type of Modulation:	GFSK
United States	
FCC ID Number:	2AD9I9310039CV2XOBU
Classification:	ITO

3.1.1 EUT Configuration

The EUT is configured for testing as depicted in Figure 3.1.1.

Figure 3.1.1 EUT Test Configuration Diagram.

3.1.2 Modes of Operation

The EUT employs 26 Mbps data rate on a single channel centered at 5915 MHz. The product operates only in spatially differentiated SISO mode, alternating transmissions between two antenna ports. The manufacturer has provided commands to configure forced transmissions during testing.

3.1.3 Variants

There is only a single variant of the EUT.

3.1.4 Test Samples

One normal operating sample (SN: 23160158) of the EUT was provided for testing.

3.1.5 Functional Exerciser

Normal operating EUT functionality was verified by observation of the transmitted signal.

3.1.6 Modifications Made

There were no modifications made by this lab.

3.1.7 Production Intent

The EUT appears to be a production ready sample.

3.1.8 Declared Exemptions and Additional Product Notes

The EUT is an FCC Part 95, Subpart L device operating under FCC Order Waiver's according to FCC Docket N0. 19-138: DA 23-343 and DA 23-586. The EUT is permanently installed in a transportation vehicle. As such, digital emissions are exempt from US regulations per FCC 15.103(a). The manufacturer declares that they will comply with all the provisions as stated within the C-V2X waivers listed herein.

4 Emissions

4.1 General Test Procedures

4.1.1 Radiated Test Setup and Procedures

Radiated electromagnetic emissions from the EUT are first pre-scanned in our screen room. Spectrum and modulation characteristics of all emissions are recorded. Instrumentation, including spectrum analyzers and other test equipment as detailed in Section 1.8 are employed. After pre-scan, emission measurements are made on the test site of record. If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in relevant test standards are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed if the resulting emissions appear to be worst-case in such a configuration. See Figure 4.1.1 . All intentionally radiating elements that are not fixed-mounted in use are placed on the test table lying flat, on their side, and on their end (3-axes) and the resulting worst case emissions are recorded. If the EUT is fixed-mounted in use, measurements are made with the device oriented in the manner consistent with installation and then emissions are recorded. If the EUT exhibits spurious emissions due to internal receiver circuitry, such emissions are measured with an appropriate carrier signal applied.

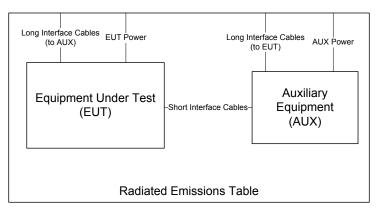


Figure 4.1.1 Radiated Emissions Diagram of the EUT.

For devices with intentional emissions below 30 MHz, a shielded loop antenna and/or E-field and H-Field broadband probes are used depending on the regulation. Shielded loops are placed at a 1 meter receive height at the desired measurement distance. For exposure in this band, 10cm diameter single-axis broadband probes meeting the requirements of ISED SPR-002 section 5.2 are employed. Measurements are repeated and summed over three axes, and the entire frequency range is measured with and without the EUT transmitting.

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. For both horizontal and vertical polarizations, the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected. The EUT is then rotated through 360° in azimuth until the highest emission is detected. The test antenna is then raised and lowered one last time from 1 to 4 m and the worst case value is recorded. Emissions above 1 GHz are characterized using standard gain or broadband ridge-horn antennas on our OATS with a 4×5 m rectangle of ECCOSORB absorber covering the OATS ground screen and a 1.5m table height. Care is taken to ensure that test receiver resolution and video bandwidths meet the regulatory requirements, and that the emission bandwidth of the EUT is not reduced. Photographs of the test setup employed are depicted in Figure 4.1.1.

Where regulations allow for direct measurement of field strength, power values (dBm) measured on the test receiver / analyzer are converted to $dB\mu V/m$ at the regulatory distance, using

$$E_{dist} = 107 + P_R + K_A - K_G + K_E - C_F$$

where P_R is the power recorded on spectrum analyzer, in dBm, K_A is the test antenna factor in dB/m, K_G is the combined pre-amplifier gain and cable loss in dB, K_E is duty correction factor (when applicable) in dB, and C_F is a distance conversion (employed only if limits are specified at alternate distance) in dB. This field strength value is then compared with the regulatory limit. If effective isotropic radiated power (EIRP) is computed, it is computed as

$$EIRP(dBm) = E_{3m}(dB\mu V/m) - 95.2.$$

When presenting data at each frequency, the highest measured emission under all possible EUT orientations (3-axes) is reported.

Figure 4.1.1 Radiated Emissions Test Setup Photograph(s).

Date	November	12	2023
Date.	rovember	14,	2020

4.1.2 Conducted Emissions Test Setup and Procedures

Transmit Antenna Port Conducted Emissions At least one sample EUT supplied for testing was provided with a 50Ω antenna port. Conducted transmit chain emissions measurements (where applicable) are made by connecting the EUT antenna port directly to the test receiver port. Photographs of the test setup employed are depicted in Figure 4.1.2.

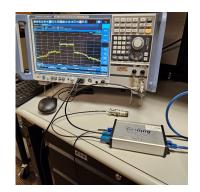


Figure 4.1.2 Conducted RF Test Setup Photograph(s).

4.1.3 Power Supply Variation

Tests at extreme supply voltages are made if required by the procedures specified in the test standard, and results of this testing are detailed in this report.

C9

4.2**Intentional Emissions**

4.2.1**Fundamental Emission Pulsed Operation**

The details and results of testing the EUT for pulsed operation are summarized in Table 4.2.1. Plots showing the measurements made to obtain these values are provided in Figure 4.2.1 .

Table 4.2.1 Pulsed Emission	Characteristics	(Duty	Cycle).
-----------------------------	-----------------	-------	---------

	requency Range f > 1 000 MHz		Det IFBW Pk 10 MHz				Test Date: st Engineer: EUT as. Distance:	1-Nov-23 Joseph Brunett Danlaw RSU Conducted
			Pulsed O	peration / Du	ıty Cycle			
Transmit Mode	Symbol Rate	Data Rate	Voltage	Oper. Freq	Tx Cycle Time	On-Time	Duty Cycle	Power Duty Correction
Transmit Wode	(Msym/s)	(Mbps)	(V)	(MHz)	(ms)	(ms)	(%)	(dB)
C-V2X (Cont Madulated)	-	26.0	55.0	5915.0	100.100	0.931	0.9	-20.0

C5

C4

(ROW)	(COLUMN)

 C^2

C9

C3

NOTE

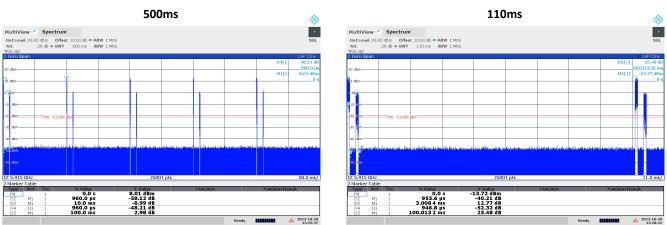
R0

Modulated)

C1

R0

R1


#

Duty factor is shown as a data point only and is not considered in the calculation of fundamental power.

C6

C7

C8

01:25:37 PM 10/20/2023

01:28:43 PM 10/20/2023

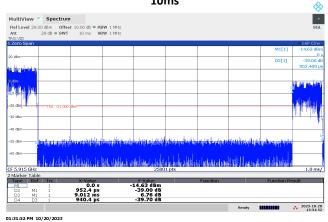


Figure 4.2.1 Example Pulsed Emission Characteristics (Duty Cycle).

4.2.2 Fundamental Emission Bandwidth

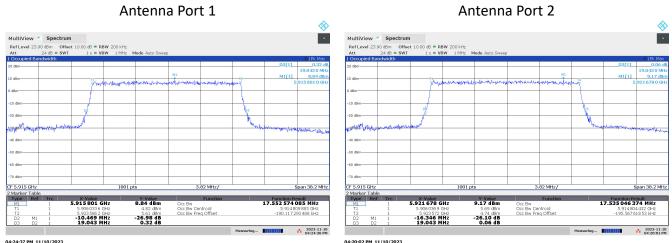
Emission bandwidth (EBW) of the EUT is measured with the device placed in the worst case test mode. Radiated emissions are recorded following the test procedures listed in Section 2.1. The 26 dBc and 99% EBW is measured as the max-held peak-detected signal when the IF bandwidth is greater than or equal to 1% of the receiver span. The results of EBW testing are summarized in Table **??**. Plots showing measurements employed to obtain the emission bandwidth reported are provided in Figure 4.2.2.

	Table 4.2.	2 (i) Int	tentiona	l Emission Bandwidth.	
Frequency Range	Det	IFBW	VBW	Test Date:	10/20/23
f > 1 000 MHz	Pk	200 kHz	1 MHz	Test Engineer:	John Nantz
f > 1 000 MHz	Pk	200 kHz	1 MHz	EUT	Danlaw OBU
				Meas. Distance:	Conducted

	Occupied Bandwidth											
R0	EUT Port	Transmit Mode	Data Rate	Voltage	Oper. Freq	26 dB BW	fL Measured	fL Limit	fH Measured	fH Limit	99% OBW	Pass/Fail
KU	LOTFOIL	Transmit Wode	(Mbps)	(V)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	
R1	ANT 1	C-V2X (Cont Modulated)	26.0	13.5	5915.0	19.043	5.90533	5905.000	5.92438	5925.000	17.553	Pass
R2	ANT 2	C-V2X (Cont Modulated)	26.0	13.5	5915.0	19.043	5.90533	5905.000	5.92438	5925.000	17.535	Pass
#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12

⁽COLUMN) C5/C11

C8/C10


NOTE

(ROW)

R0

R0

ref. KDB Guidance 511808 D01 C-V2X Waiver v01, section 3.1 Both 26dB and 99% OBW is to be measured. ref. FCC DA-23-343, section III(B)(19) C-V2X Joint Waiver, OBW must stay within the channel.

37 FM 11/10/2023

Figure 4.2.2 Example Intentional Emission Bandwidth.

Table 4.2.2 (ii) Intentional Emission Bandwidth.

Det Pk		ndwidth) kHz	Video Bandwidth 1 MHz	EUT: Test Date(s): Test Engineer:	Danlaw OBU 1/10/2024 J. Nantz
EUT Modes:	a1 a2 a3 a4	ANT 1 ANT 2		rest Englicer.	J. INGILZ

				Oc	cupied Band	width - Freq	uency Stabilit	ty		
	Transmit	Temperature	Voltage	fL	fL Limit	fH	fH Limit	-26 dBc OBW	Stability	Notes/Pass/Fail
R0	Mode	(C)	(V)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(ppm)	
R1		74.0	16.0	5905.325	5905	5924.403	5925	19.1	8.3	Pass
R2		74.0	13.5	5905.276	5905	5924.230	5925	19.0	0.0	Pass
R3		74.0	9.0	5905.253	5905	5924.399	5925	19.1	-3.9	Pass
R4		65.0	13.5	5905.301	5905	5924.355	5925	19.1	4.2	Pass
R5		55.0	13.5	5905.287	5905	5924.419	5925	19.1	1.9	Pass
R6		45.0	13.5	5905.298	5905	5924.387	5925	19.1	3.7	Pass
R7		35.0	13.5	5905.316	5905	5924.413	5925	19.1	6.8	Pass
R8	-1	25.0	13.5	5905.276	5905	5924.229	5925	19.0	0.0	Pass
R9	a1	15.0	13.5	5905.269	5905	5924.407	5925	19.1	-1.2	Pass
R10		5.0	13.5	5905.283	5905	5924.328	5925	19.0	1.2	Pass
R11		-5.0	13.5	5905.307	5905	5924.430	5925	19.1	5.2	Pass
R12		-15.0	13.5	5905.312	5905	5924.344	5925	19.0	6.1	Pass
R13		-25.0	13.5	5905.229	5905	5924.331	5925	19.1	-8.0	Pass
R14		-35.0	16.0	5905.301	5905	5924.355	5925	19.1	4.2	Pass
R15		-35.0	13.5	5905.373	5905	5924.331	5925	19.0	16.4	Pass
R16		-35.0	9.0	5905.299	5905	5924.427	5925	19.1	3.9	Pass
R17		74.0	16.0	5905.301	5905	5924.255	5925	19.0	-4.2	Pass
R18		74.0	13.5	5905.349	5905	5924.302	5925	19.0	3.9	Pass
R19		74.0	9.0	5905.324	5905	5924.398	5925	19.1	-0.3	Pass
R20		65.0	13.5	5905.311	5905	5924.414	5925	19.1	-2.5	Pass
R21		55.0	13.5	5905.302	5905	5924.400	5925	19.1	-4.1	Pass
R22		45.0	13.5	5905.289	5905	5924.410	5925	19.1	-6.3	Pass
R23		35.0	13.5	5905.308	5905	5924.411	5925	19.1	-3.0	Pass
R24	-1	25.0	13.5	5905.326	5905	5924.312	5925	19.0	0.0	Pass
R25	a2	15.0	13.5	5905.279	5905	5924.358	5925	19.1	-8.0	Pass
R26		5.0	13.5	5905.328	5905	5924.371	5925	19.0	0.3	Pass
R27		-5.0	13.5	5905.284	5905	5924.429	5925	19.1	-7.1	Pass
R28		-15.0	13.5	5905.272	5905	5924.409	5925	19.1	-9.1	Pass
R29		-25.0	13.5	5905.229	5905	5924.355	5925	19.1	-16.4	Pass
R30		-35.0	16.0	5905.301	5905	5924.212	5925	18.9	-4.2	Pass
R31		-35.0	13.5	5905.253	5905	5924.211	5925	19.0	-12.4	Pass
R32		-35.0	9.0	5905.301	5905	5924.427	5925	19.1	-4.2	Pass
R33			fL _{MIN}	5905.229	fH _{MAX}	5924.430	OBW _{MAX}	19.1		Pass
#	C1	C2	C3	C4	C5	C6	C7	C8	С9	C10
	(ROW)	(COLUN	MN)	NOTES						

R0 R0

R0

ref. KDB Guidance 511808 D01 C-V2x Waiver v01, section 3.1 the 26 dB OBW is measured.

C4, C6

C5, C7

C9

ref. ref. FCC DA-23-586, section III(9) C-V2X Joint Waiver for channel edges.

Frequency stability in reference to normal operating temp frequency is computed in ppm as: (Fc(temp)MHz - Fc (nom) MHz)/Fc(nom)MHz where Fc = FL+(FH-FL)/2

4.2.3Effective Isotropic Radiated Power

EUT transmit power is measured via antenna port conducted power measurements and added to antenna gain to compute EIRP. Where the EUT is not sold with an antenna connector, a modified product may be provided for conducted measurements. The results of this testing are summarized in Table 4.2.3. Example plots showing the measurements made to obtain these values are provided in Figure 4.2.3 .

Table 4.2.3 Radiated Power Results.

Test Date:	20-Oct-23
Test Engineer:	John Nantz
EUT:	Danlaw OBU
Meas. Distance:	Conducted

20-Oct-23	
John Nantz	
Danlaw OBU	

											FCC/IC
R0		Ant Elevation	Freq.	EUT Height	Ant. Height	Pout (Pk)	Pout (RMS)	Ant Gain	EIRP (RMS)	EIRP Limit	Pass
KU	Mode	(deg.)	(MHz)	(m)	(m)	(dBm)	(dBm)	(dBi)	(dBm)	(dBm)	(dB)
R1	TX - ANT1	0	5915.0				17.2	5.0	22.2	27.0	4.8
R2	TX - ANT2	0	5915.0				17.2	5.0	22.2	27.0	4.8
#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C11	C12
	(ROW)	(COLUMN)	NOTE								

R0

R0

R0

C7 EIRP is calculated using conducted measurements and antenna data sheet per KDB Guidance 511808 D01 C-V2X Waiver v01, section 3.2.1 (a).

C8 Maximum antenna gain in all orientations and elevations as specified in the antenna datasheet (See antenna datasheet for mnore details).

C11 ref. FCC DA-23-586, section III(9) and (10) C-V2X Joint Waiver. 27dBm EIRP is chosen as the limit to show compliance without requiring additional elevation test data.

Antenna Port 2

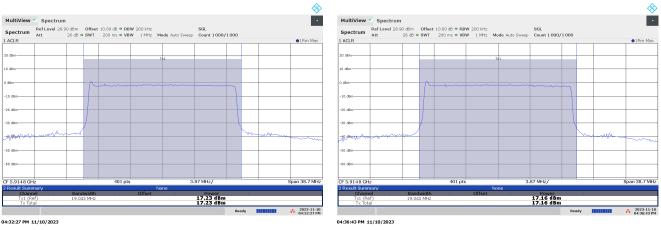


Figure 4.2.3 Power Measurement Plots.

4.3**Unintentional Emissions**

4.3.1**Transmit Chain Spurious Emissions**

The results for the measurement of transmit chain spurious emissions at the nominal voltage and temperature are provided in Table 4.3.1 .

Table 4.3.1 Transmit Chain Spurious Emissions.

E	UT Modes: a1	Continuous Modulated	a5
EUT: Danlaw OBU	a2		a6
Test Date(s): 12/12/23	a3		a7
Test Engineer: J. Nantz	a4		a8

	Freq	uency			Site				EUT			Test A	ntenna	L	Cable	Rec	eiver	Field	d Stren	gth @ l	DR		EII	RP			Comments
20	Start	Stop	Temp.	Table	MR DI	R N/F	CF			1	Pol.	Ant.	Dim.	Ka	Mixer		lwidth		k	QPk/	Avg	Р	k	Qpk/	/Avg		
			Hum	Angle				Mode	Volt.	Dim		Height			CL/Kg	RBW	VBW	Meas.	Lim.	Meas.	Lim.	Calc.	Lim.	Calc.	Lim.	Pass/Fail	
	MHz	MHz	С, %	deg	m	i.	dB		(V)	cm	H/V	m	cm	dB/m	dB	Μ	Hz		dBu	V/m			dB	m	-	dB	
R1	SE	ГUР		0	ATSC				OBU			BICEM	CO01		CBL01	FS	W67										
32	30.0		2 64		3.0 3.0													31.2					-40.0			24.0	
33	88.0		2 64		3.0 3.0	0.0	0.0			5.0								24.2				-71.0	-40.0			31.0	
R4		ГUР			ATSC				OBU			LOGEN	ICO01	1	CBL01		W67		-								
35	216.0		2 64		3.0 3.0	0.0	0.0										0.03	37.4				-57.8	-40.0			17.8	
88		ГUР			ATSC				OBU			HQR1T0			CBL018WHT		W67										
89	1000.0		2 64		3.0 3.0	_			_	5.0			15.0				0.03	43.8					-40.0			11.4	
.10		18000.0		0.0	3.0 3.0	2.7	0.0	a1	13.5	5.0	H/V		15.0			0.10	0.03	51.1					-40.0			4.1	
_		11830.0			3.0 3.0					5.0			15.0				0.03	45.2					-40.0			10.0	
		17745.0	2 64		3.0 3.0	2.7	0.0			5.0	H/V		15.0				0.03	47.8				-47.4	-40.0			7.4	
.13		ГUР			ATSC				OBU			HRN	K01		CBL04	FS	W67										
		26500.0											10.2				0.03						-40.0			9.8	
.15		23660.0	2 64			0 1.6	0.0			5.0	H/V		10.2				0.03	40.3				-54.9	-40.0			14.9	
16	SE	ГUР		0	ATSC				OBU			HRNK	CA01		CBL05/LNA01		W67										
		40000.0			3.0 3.0			a1		5.0		1.5	9.2				0.03	27.5					-40.0			27.7	
.18	29575.0	29575.0	2 64	0.0	3.0 3.0	0 1.7	0.0	a1	13.5	5.0	H/V	1.5	9.2				0.03	16.4					-40.0			38.8	
.19	35490.0	35490.0			3.0 3.0	_		a1	13.5	5.0	H/V	1.5	9.2			0.10	0.03	19.1				_	-40.0			36.1	
#	C1	C2	C3	C4	C5 C6	5 C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28

(ROW) (COLUMN) NOTE: R0

R0

R0

C5 MR is Measurement Range, which may be reduced from DR to achieve necessary SNR.

R0 C6 DR is the regulatory Desired Range measurement distance. R0

C7 C8 N/F is Near-Field / Far-Field distance computed for max of Antenna Dimension (C11 or C14) computed above 1 GHz. CF is computed using a 20 dB/decade Decay Rate.

R0 R0

When E-field is reported directly from Spectrum Analyzer, Antenna Factors and Cable losses are included directly in SA settings. Max of background noise or EUT emissions recorded. EIRP is computed from Field strength as follows: EIRP = Efield(3m) - 95.2 C19

C23

Limit according to ref. KDB Guidance 511808 D01 C-V2X Waiver v01, figure 2. C24

4.3.2 Transmit Emissions Mask (OOBE)

The results for the measurement of transmit chain Out-of-Band-Emissions (OOBE) spurious emissions in a 100 kHz receiver bandwidth (at the nominal voltage and temperature) in the worst cases are provided in Figure ?? below.

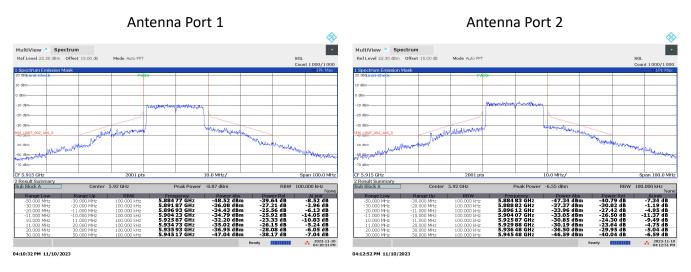
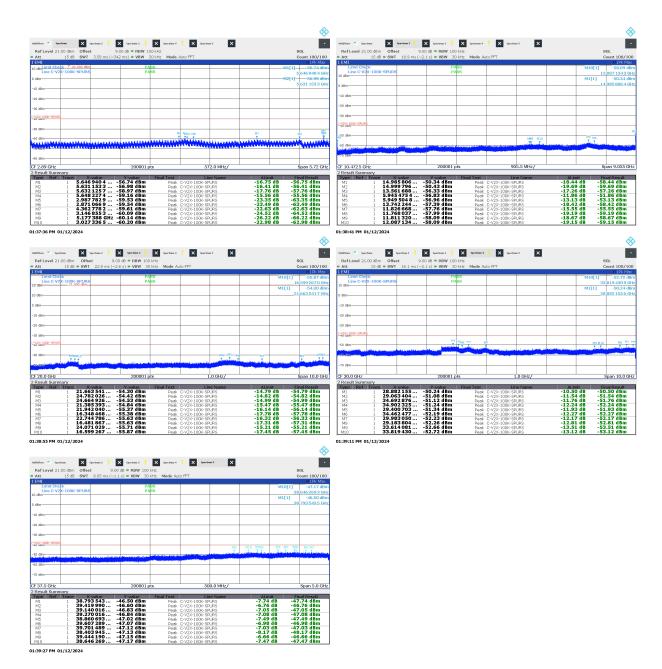
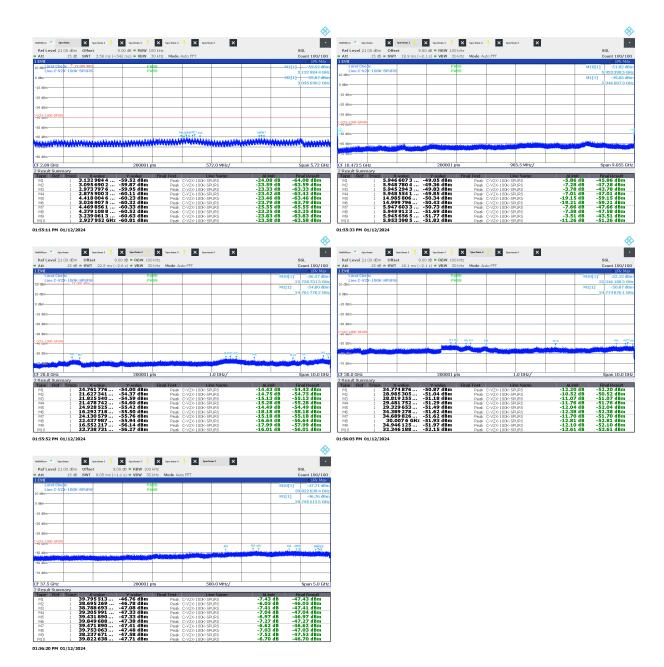




Figure 4.3.2 (i) Worst Case Transmitter OOBE Emissions Measured.

Antenna Port 1

Figure 4.3.2 (ii) Worst Case Transmitter OOBE Emissions Measured.

Antenna Port 2

Figure 4.3.2 (iii) Worst Case Transmitter OOBE Emissions Measured.

5 Measurement Uncertainty and Accreditation Documents

The maximum values of measurement uncertainty for the laboratory test equipment and facilities associated with each test are given in the table below. This uncertainty is computed for a 95.45% confidence level based on a coverage factor of k = 2.

Table 5.0.0 Measurement Uncertainty.

Measured Parameter	${\bf Measurement} ~ {\bf Uncertainty}^{\dagger}$
Radio Frequency	$\pm (f_{Mkr}/10^7 + RBW/10 + (SPN/(PTS - 1))/2 + 1 \text{ Hz})$
Conducted Emm. Amplitude	$\pm 1.9\mathrm{dB}$
Radiated Emm. Amplitude $(f < 30 \text{ MHz})$	$\pm 3.1\mathrm{dB}$
Radiated Emm. Amplitude $(30 - 200 \text{ MHz})$	$\pm 4.0\mathrm{dB}$
Radiated Emm. Amplitude $(200 - 1000 \text{ MHz})$	$\pm 5.2\mathrm{dB}$
Radiated Emm. Amplitude $(f > 1000 \text{ MHz})$	$\pm 3.7\mathrm{dB}$

[†]Ref: CISPR 16-4-2:2011+A1:2014

		es Department te of Standards	of Commerce and Technology
Certifica	ate of Accre	ں ditation to	ISO/IEC 17025:2017
	NVL	AP LAB CODE: 2	00129-0
	AHD (Amb	er Helm Develo Sister Lakes, MI	ppment, L.C.)
is acci		tary Laboratory Accredi n the Scope of Accrediti	tation Program for specific services, tion, for:
Е	lectromagnetic Co	ompatibility &	Telecommunications
	itation demonstrates technic	al competence for a def	ed International Standard ISO/IEC 17025:2017. ned scope and the operation of a laboratory quality Communique dated January 2009).
	hrough 2024-06-30 fective Dates	South of County of the state	For the National Voluntary Libboratory Accreditation Program

Gordon Heim EMC-002401-NE Partice ENGINERA

Figure 5.0.0 Accreditation Documents