

www.lsr.com

TEST REPORT # 315001 LSR Job #: C-2140

<u>Compliance Testing of</u>: BLE-Beacon

<u>Test Date(s)</u>: February 6-18, 2015

Prepared For: Danlaw Attn: George Gablen 41131 Vicenti Court Novi, MI 48375

> In accordance with: Federal Communications Commission (FCC) Part 15, Subpart C, Section 15.247 Industry Canada (IC) RSS 247 Digital Modulation Transmitters (DTS) Operating in the Frequency Band 2400 MHz – 2483.5 MHz

This Test Report is issued under the Authority	/ of:
Signature: Thomas T.Smith Date	e: 7/30/2015
Test Report Reviewed by:	Tested by: Peter Feilen, EMC Engineer
Signature: Date:7/30/2015	Signature: Date: 7/28/15 Peter Film

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

TABLE OF CONTENTS (page 1 of 2)

Contents

EXHIBIT	1. INTRODUCTIO	N	
1.1	SCOPE		
1.2	NORMATIVE REF	FERENCES	
1.3	LS Research, LLC	FEST FACILITY	
1.4	LOCATION OF TH	ESTING	5
1.5	TEST EQUIPMEN	T UTILIZED	
EXHIBIT	2. PERFORMANC	E ASSESSMENT	
2.1	CLIENT INFORMA	ATION	6
2.2	EQUIPMENT UND	DER TEST (EUT) INFORMATIO	ON6
2.3	ASSOCIATED AN	TENNA DESCRIPTION	
2.4	EUT'S TECHNICA	L SPECIFICATIONS	7
2.5	PRODUCT DESCR	RIPTION	
EXHIBIT	3. EUT OPERAT	TING CONDITIONS & CONFIG	GURATIONS DURING TESTS 8
3.1	CLIMATE TEST C	ONDITIONS	
3.2	APPLICABILITY of	& SUMMARY OF EMC EMISS	SION TEST RESULTS
3.3	MODIFICATIONS	INCORPORATED IN THE EU	T FOR COMPLIANCE PURPOSES
	8		
3.4	DEVIATIONS & E	XCLUSIONS FROM TEST SPI	ECIFICATIONS 8
EXHIBIT	4. DECLARATIO	ON OF CONFORMITY	9
EXHIBIT	5. RADIATED E	MISSIONS TEST	
5.1	Test Setup		
5.2	Test Procedure		
5.3	Test Equipment Uti	lized	
5.4	Test Results		
5.5	CALCULATION C	F RADIATED EMISSIONS LI	MITS 12
5.6	RADIATED EMISS	SIONS TEST DATA CHART	
5.7	Screen Captures - R	adiated Emissions Test	
5.9	Receive Mode Test	ing	
EXHIBIT	6. CONDUCTED	EMISSIONS TEST, AC POWE	ER LINE:
EXHIBIT	7. OCCUPIED BA	ANDWIDTH:	
7.1	Limits		
7.2	Method of Measure	ments	
Prepared	For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
LSR Job #	к 315001 t: C-2140	Serial #: DL-BLE-10	Page 2 of 37

7.3 Test Equipment List
7.4 Test Data
EXHIBIT 8. Band-Edge Measurements
EXHIBIT 9. POWER OUTPUT (CONDUCTED): 15.247(b)
9.1 Method of Measurements
9.2 Test Equipment List
9.3 Test Data
9.4 Screen Captures – Power Output (Conducted)
EXHIBIT 10 POWER SPECTRAL DENSITY: 15.247(e)
10.1 Limits
10.2 Test Equipment List
10.3 Test Data
10.4 Screen Captures – Power Spectral Density
EXHIBIT 11. SPURIOUS CONDUCTED EMISSIONS: 15.247(d)
11.1 Limits
11.2 Test Equipment List
11.3 Screen Captures – Spurious Radiated Emissions
EXHIBIT 12. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS
APPENDIX A
APPENDIX B – TEST STANDARDS: CURRENT PUBLICATION DATES
APPENDIX C

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 3 of 37

EXHIBIT 1. INTRODUCTION

<u>1.1 SCOPE</u>

References:	FCC Part 15, Subpart C, Section 15.247 and 15.209	
	FCC Part 2, Section 2.1043 paragraph (b)1.	
	RSS GEN and RSS 210 Annex 8	
Title:	FCC : Telecommunication – Code of Federal Regulations,	
	CFR 47, Part 15.	
	IC : Low-power License-exempt Radio-communication	
	Devices (All Frequency Bands): Category I Equipment	
Purpose of Test:	To gain FCC and IC Certification Authorization for Low-	
	Power License-Exempt Transmitters.	
Test Procedures:	Both conducted and radiated emissions measurements	
	were conducted in accordance with American National	
	Standards Institute ANSI C63.4 – American National	
	Standard for Methods of Measurement of Radio-Noise	
	Emissions from Low-Voltage Electrical and Electronic	
	Equipment in the Range of 9 kHz to 40 GHz.	
Environmental Classification:	Commercial, Industrial or Business	
	Residential	

<u>1.2</u> NORMATIVE REFERENCES

Publication	Title
47 CER Ports 0 15 (ECC)	Code of Federal Regulations -
47 CFR, Faits 0-15 (FCC)	Telecommunications
	Low-power License-exempt Radio-communication
RSS 210 Annex 8	Devices (All Frequency Bands): Category I
	Equipment
	American National Standard for Methods of
	Measurement of Radio-Noise Emissions from
ANSI 003.4	Low-Voltage Electrical and Electronic Equipment
	in the Range of 9 kHz to 40 GHz.
	Specification for radio disturbance and immunity
CISPR 16-1-1	measuring apparatus and methods.
	Part 1-1: Measuring Apparatus.
	Specification for radio disturbance and immunity
CISPR 16-2-1	measuring apparatus and methods.
	Part 201: Conducted disturbance measurement.
FCC Public Notice	Part 15 Unlicensed Modular Transmitter Approval
DA 00-1407	
FCC ET Docket No.	Amendment to FCC Part 15 of the Commission's
99-231	Rules Regarding Spread Spectrum Devices.
	Guidance for Performing Compliance
Meas Guidance v02	Measurements on Digital Transmission Systems
	(DTS) Operating Under 15.247

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 4 of 37

1.3 LS Research, LLC TEST FACILITY

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

LS Research, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted. Accreditation status can be verified at A2LA's web site: <u>www.a2la.org</u>.

1.4 LOCATION OF TESTING

All testing was performed at LS Research, LLC, W66 N220 Commerce Court, Cedarburg, Wisconsin, 53012 USA, utilizing the facilities listed below, unless otherwise noted.

List of Facilities Located at LS Research, LLC:

- Compact Chamber
- Semi-Anechoic Chamber
- Open Area Test Site (OATS)

<u>1.5 TEST EQUIPMENT UTILIZED</u>

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated in accordance with A2LA standards.

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 5 of 37

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 CLIENT INFORMATION

Manufacturer Name:	Danlaw Inc.
Address:	41131 Vicenti Court, Novi, MI 48375
Contact Name:	Gheorghe Galben

2.2 EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information has been supplied by the applicant.

Product Name:	BLE-Beacon ID Card
Model Number:	DL-BLE-10
Serial Number:	Engineering Sample

2.3 ASSOCIATED ANTENNA DESCRIPTION

Integral PCB antenna.

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 6 of 37

2.4 EUT'S TECHNICAL SPECIFICATIONS

EUT Frequency Range (in MHz)	2402-2480 MHz
EIRP in Watts	0.00037 W
Conducted Output Power (in dBm)	-4.3 dBm
Occupied Bandwidth (99% BW)	1.01 MHz
Type of Modulation	GFSK
Emission Designator	1M01D1X
Transmitter Spurious (worst case) at 3 meters	40.8 dBuV/m @ 3m
Receiver Spurious (worst case) at 3 meters	32.6 dBuV/m @ 3m
Frequency Tolerance %, Hz, ppm	Better than 100 ppm
Transceiver Model #	Nordic nRF51822-QFAA
Transceiver Model # Antenna Information	Nordic nRF51822-QFAA
Transceiver Model # Antenna Information Detachable/non-detachable	Nordic nRF51822-QFAA Non-detachable
Transceiver Model # Antenna Information Detachable/non-detachable Type	Nordic nRF51822-QFAA Non-detachable Trace
Transceiver Model # Antenna Information Detachable/non-detachable Type Gain (in dBi)	Nordic nRF51822-QFAA Non-detachable Trace 0 dBi
Transceiver Model # Antenna Information Detachable/non-detachable Type Gain (in dBi) EUT will be operated under FCC Rule Part(s)	Nordic nRF51822-QFAA Non-detachable Trace 0 dBi 15.247
Transceiver Model # Antenna Information Detachable/non-detachable Type Gain (in dBi) EUT will be operated under FCC Rule Part(s) EUT will be operated under RSS Rule Part(s)	Nordic nRF51822-QFAA Non-detachable Trace 0 dBi 15.247 RSS-247
Transceiver Model # Antenna Information Detachable/non-detachable Type Gain (in dBi) EUT will be operated under FCC Rule Part(s) EUT will be operated under RSS Rule Part(s) Modular Filing	Nordic nRF51822-QFAA Non-detachable Trace 0 dBi 15.247 RSS-247 ☐ Yes ⊠ No

2.5 PRODUCT DESCRIPTION

The Danlaw Low-profile BLE Beacon is a small credit card sized device that is meant to be carried by a user in a wallet, in a purse or on a keychain. The Danlaw Low-profile BLE Beacon communicates with Danlaw OBDII Wireless Datalogger products via Bluetooth Low Energy (Bluetooth Smart) to pass the vehicle driver or occupant information.

The Danlaw Low-profile BLE Beacon consists of a plastic enclosure, battery holder for 3 CR2412 batteries and a wireless flexible printed circuit assembly.

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 7 of 37

EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS

3.1 CLIMATE TEST CONDITIONS

Temperature:	65-70 F
Humidity:	30-60% R.H.

3.2 APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC and IC Paragraph	Test Requirements	Compliance (yes/no)			
FCC : 15.207 IC : RSS GEN sect. 7.2.2	Power Line Conducted Emissions Measurements	N/A			
FCC : 15.247(a)(2) IC : RSS 210 A8.2(a)	6 dB Bandwidth of a Digital Modulation System	Yes			
IC : RSS GEN section 4.6.1	99% Bandwidth	Yes			
FCC : 15.247(b) & 1.1310 IC : RSS 210 A8.4	Maximum Output Power	Yes			
FCC : 15.247(i), 1.1307, 1.1310, 2.1091 & 2.1093 IC : RSS 102	RF Exposure Limit	Yes			
FCC :15.247(c) IC : RSS 210 A8.5	RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	Yes			
FCC : 15.247(d) IC : RSS 210 A8.2(b)	Transmitted Power Spectral Density of a Digital Modulation System	Yes			
FCC : 15.247(c), 15.209 & 15.205 IC : RSS 210 A8.2(b), section 2.2, 2.6 and 2.7	Transmitter Radiated Emissions	Yes			
The digital circuit portion of the EUT has been tested and verified to comply with FCC Part 15, Subpart B, Class B Digital Devices (RSS GEN and RSS 210 of IC) and the associated Radio Receiver has also been tested and found to comply with Part 15, Subpart B – Radio Receivers (RSS GEN and RSS 210 of IC).					

3.3 MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

3.4DEVIATIONS & EXCLUSIONS FROM TEST SPECIFICATIONSImage: NoneImage: Yes (explain below)

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 8 of 37

EXHIBIT 4. DECLARATION OF CONFORMITY

The EUT was found to MEET the requirements as described within the specification of FCC Title 47, CFR Part 15.247, and Industry Canada RSS-247, Issue 8 (2010) for a Digital Spread Spectrum (DTS) Transmitter.

If some emissions are seen to be within 3 dB of their respective limits:

As these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 9 of 37

EXHIBIT 5. RADIATED EMISSIONS TEST

5.1 Test Setup

The test setup was assembled in accordance with Title 47, CFR FCC Part 15, RSS GEN and ANSI C63.4. The EUT was placed on an 80cm high non-conductive pedestal, centered on a flush mounted 3-meter diameter turntable inside a 3-meter, FCC listed, semi-anechoic chamber. The EUT was operated in and final testing was performed using constant modulated transmit mode. The unit has the capability to operate on 3 channels, controllable via a cellular phone application for test purposes.

The applicable limits apply at a 3-meter distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a complete list of test equipment. The test sample was operated on one of three (3) standard channels: low (2402 MHz), middle (2440 MHz) and high (2480 MHz) to comply with FCC Part 15.31(m). The channels and operating modes were changed using a cellular phone application for test purposes.

5.2 Test Procedure

Radiated RF measurements were performed on the EUT in a 3 meter Semi-Anechoic, FCC listed Chamber. The frequency range from 30 MHz to 25000 MHz was scanned and investigated. The radiated RF emission levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive pedestal in the 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the EUT. A Biconical Antenna was used to measure emissions from 30 MHz to 300 MHz, and a Log Periodic Antenna was used to measure emissions from 300 MHz to 1000 MHz. A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 18 GHz. The maximum radiated RF emissions were found by raising and lowering the antenna between 1 and 4 meters in height, using both horizontal and vertical antenna polarities. From 18 GHz to 25 GHz, the EUT was measured using a standard gain Horn Antenna and pre-amplifier.

The battery voltage was checked frequently, and the batteries were replaced as necessary.

The EUT was rotated along three orthogonal axis during the investigations to find the highest emission levels.

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 10 of 37

5.3 Test Equipment Utilized

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All calibrations of the antennas used were performed at an N.I.S.T. traceable site. In addition, the Connecting Cables were measured for losses using a calibrated Signal Generator and an Agilent E4445A/N9039A EMI System. The resulting correction factors and the cable loss factors from these calibrations were entered into the EMI Receiver database. As a result, the data taken from the EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. The EMI Receiver was operated with a resolution bandwidth of 120 kHz for measurements below 1 GHz (video bandwidth of 1 MHz for measurements above 1 GHz (video bandwidth of 3 MHz for peak measurements, 10Hz for average measurements). From 4 GHz to 18 GHz, a spectrum analyzer and EMCO horn antenna with low noise amplifier were used.

Test Equipment List

Please see Appendix A

5.4 Test Results

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.247 and Canada RSS-247 for a DTS transmitter. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 11 of 37

5.5 CALCULATION OF RADIATED EMISSIONS LIMITS

The maximum peak output power of an intentional radiator in the 2400-2483.5 MHz band, as specified in Title 47 CFR 15.247 (b)(3) and RSS 210 A8.4 is 1 Watt. The harmonic and spurious RF emissions, as measured in any 100 kHz bandwidth, as specified in 15.247 (d) and RSS 210 A8.2(b), shall be at least 20 dB below the measured power of the desired signal, and must also meet the requirements described in 15.205(c) for FCC and section 2.2,2.6 and 2.7 of RSS 210 for IC.

The following table depicts the general radiated emission limits above 30 MHz. These limits are obtained from Title 47 CFR, Part 15.209, for radiated emissions measurements. These limits were applied to any signals found in the 15.205 restricted bands. The mentioned limits correspond to those limits listed in RSS 210 section 2.7.

Frequency (MHz)	3 m Limit μV/m	3 m Limit (dBµV/m)	1 m Limit (dBµV/m)
30-88	100	40.0	-
88-216	150	43.5	-
216-960	200	46.0	-
> 960	500	54.0	63.5

Sample conversion from field strength μ V/m to dB μ V/m: dB μ V/m = 20 log 10 (100) = 40 dB μ V/m (from 30-88 MHz)

For measurements made at 1.0 meter, a 9.5 dB correction has been invoked.

> 960 MHz 500 μ V/m or 54.0 dB/ μ V/m at 3 meters 54.0 + 9.5 = 63.5 dB/ μ V/m at 1 meter

Sample Calculation using correction factors from the device

Raw Receiver Data + Antenna Factor + Cable Factor + = Reported Value

Generic example of reported data at 200 MHz:

Reported Measurement data = 18.2 (raw receiver measurement) + 15.8 (antenna factor) + 1.45 (cable factor) = $35.45 \text{ dB}\mu\text{V}$

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 12 of 37

5.6 RADIATED EMISSIONS TEST DATA CHART

3 Meter Measurements of Electromagnetic Radiated Emissions Frequency Range Inspected: 30 MHz to 25000 MHz

Manufacturer:	Danlaw								
Date(s) of Test:	2/13/	2/13/15							
Test Engineer:	Peter	Feilen							
Voltage:	3 VD	C							
Operation Mode:	Conti	nuous modulated trar	ismit						
Environmental	Temp	Temperature: 20 – 25° C							
Conditions in the Lab:	Relat	ive Humidity: 30 – 60	%						
		Single PhaseVA	νC		3 Phase	V	AC		
EUT FOWEI.	Х	Battery			Other:				
EUT Placement:	Х	80cm non-conductiv	e tabl	e	10cm Sp	acers			
ELIT Test Location:	Y	3 Meter Semi-Anech	oic		2/10m OATS				
	FCC Listed Chamber					10			
Measurements:		Pre-Compliance		Prelim	inary	Х	Final		
Detectors Used:	X	Peak	Х	Quasi-	Peak	Х	Average		

The following table depicts the level of significant spurious radiated RF emissions found:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Quasi Peak Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation	Notes
183.8	1.00	0	24.6	43.5	18.9	V	V	2
299.0	1.00	0	31.4	46.0	14.6	V	V	2
297.5	1.00	0	31.4	46.0	14.6	Н	V	2
999.5	1.00	0	37.9	54.0	16.1	Н	V	2
999.1	1.00	0	36.5	54.0	17.5	Н	V	2
998.9	1.00	0	36.3	54.0	17.7	V	V	2

30-1000 MHz:

>1GHz:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBμV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
4880	1.64	311	49.3	40.8	54	13.2	Horizontal	Side
4804	1.37	81	49.2	39.9	54	14.1	Vertical	Side
4960	1.52	41	48.0	39.3	54	14.7	Horizontal	Side

Notes:

1) A Quasi-Peak Detector was used in measurements below 1 GHz, and a Peak as well as an Average Detector was used in measurements above 1 GHz. The peak detector was used to ensure the peak emissions did not exceed 20 dB above the limits.

2) Measurement at receiver system noise floor.

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 13 of 37

5.7 Screen Captures - Radiated Emissions Test

These screen captures represent Peak Emissions. A Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz; an Average detector function is utilized when measuring frequencies above 1 GHz.

Channel 19, Antenna Vertically Polarized, 30-300 MHz, at 3m

Channel 19, Antenna Vertically Polarized, 300-1000 MHz, at 3m

Agilent EMI Receiver - Frequency S	can				
Marker 1 999.64 MHz	AC CORREC SENSE:INT FREQUENCY SCA	N Scan	01:39:29 PMFeb 13, 2015 TRACE 1 2 3	Peak Search	
PASS CISPR PREAMP 5 dB/div Ref 61.00 d	Scan Atten: 0 dB	>1/1 Free Run Mkr1 93	99.63998 MHz 6.563 dBµV/m	NextPeak	
56.0				Next Pk Right	
51.0 46.0				Next Pk Left	
41.0			1. A state of the law defined	Min Search	
31.0				Peak Criteria►	
21.0					
#Start 300 MHz Res BW 120 kHz	VBW 1.2 MHz	Dwell Time	#Stop 1 GHz 8.572 us (60 kHz)		
MSG		STATUS			
For: Danlaw	EUT: BLE-Beacon ID	Card			LS
TR 315001	Model #: DL-BLE-10				
#: C-2140	Serial #: Engineering	Sample			

Screen Captures - Radiated Emissions Testing (continued)

Channel 19, Antenna Vertically Polarized, 1000-2310 MHz, at 3m

2390-2400 MHz is represented in Section 8, Bandedge Measurements 2483.5-2500 MHz is represented in Section 8, Bandedge Measurements

Channel 19, Antenna	Vertically Polarized	, 2500-4000 MHz, at 3m

Applient Spectrum Analyzer - Swept SA			Agilent Spectrum Analyzer - Swept SA			
Marker 1 3.458500000000 GHz PRO Fast PRO Fast PRO Fast F	Aug/Auto 01:58:45 PM/eb 17, 2015 Avg Type: Voltage PRACE Avg/Hold>100/100 Type Certification Certification	Peak Search	Marker 1 3.191500000000	GHZ PRO: Fast Trig: Free Run #Atten: 6 dB	Avg Type: Voltage BACE D THE Avg Hold: 46/100 THE CONTRACT D THE C	Peak Search
10 dB/div Ref 75.00 dBµV/m	Mkr1 3.458 5 GHz 52.114 dBµV/m	Next Peak	10 dBidiv Ref 65.00 dBµV/m		Mkr1 3.191 5 GHz 39.401 dBµV/m	NextPeak
65.0	54 00 URL/15	Next Pk Right	55.0		Sk DD dbyADH	Next Pk Right
550 	1 and have not a discover	Next Pk Left	45 0 25 0	¹		Next Pk Left
20		Marker Delta	15.0			Marker Delta
150 5 co		Mkr→CF	5.00			Mkr→CF
600		Mkr→RefLvl	150			Mkr→RefLvi
	Star 1 0000 Olt	More 1 of 2				More 1 of 2
Res BW (CISPR) 1 MHz #VBW 3.0 MHz	Sweep 3.067 ms (1001 pts)		Res BW (CISPR) 1 MHz	#VBW 1.0 kHz	Sweep 1.720 s (1001 pts)	
eso	STATUS		utso.		STATUS	1
Peal	K			Avera	age	

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 15 of 37

Screen Captures - Radiated Emissions Testing (continued)

Channel 19, Antenna Horizontally Polarized, 4000-18000 MHz, at 1m

Reduced video bandwidth shown demonstrating spurious emissions are not buried in the system noise floor

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 16 of 37

Screen Captures - Radiated Emissions Testing (continued)

Channel 19, Antenna Vertically Polarized, 18000-25000 MHz, at 3m

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 17 of 37

5.9 Receive Mode Testing

The EUT was placed in continuous receive mode and the radiated spurious emissions were measured and compared to the respective limits.

The test setup, procedure, and equipment utilized were identical to that described in sections 5.1, 5.2, and 5.3 of this document.

Measurement data and screen captures from the receive tests are presented below:

Frequency (MHz)	Antenna	EUT	Height (m)	Azimuth (°)	Реаk (dBµV/m)	Peak limit (dBµV/m)	Average (dBμV/m)	Average limit (dBμV/m)	Peak margin (dB)	Average margin (dB)	Notes
4800.0	н	V	1.00	0	39.8	74.0	29.3	54.0	34.2	24.7	1.0
7206.0	V	V	1.00	0	40.7	74.0	31.9	54.0	33.3	22.1	1.0
9608.0	н	V	1.00	0	42.1	74.0	32.6	54.0	31.9	21.5	1.0
2402.0	н	V	1.00	0	38.6	74.0	28.7	54.0	35.4	25.3	1.0

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 18 of 37

Screen Captures - Radiated Emissions Testing – Receive Mode

These screen captures represent Peak Emissions. A Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz; an Average detector function is utilized when measuring frequencies above 1 GHz.

Channel 19, Antenna Horizontally Polarized

Channel 19, Antenna Vertically Polarized

Marker	1 319.50 MHz	C CORREC	FREQUENCY SCAN	Scan	ALIGNAUTO	01:44:48 PMFeb 13, 2015 TRACE 1 2 3	Marker
PASS	CISPR PREAMP	Smooth 🖵 Scan	Atten: 0 dB	>1/1 Free Run			Select Marker
5 dB/div	Ref 61.00 c	IBµV/m			Mkr1 3 2	19.50111 MHz 4.698 dBµV/m	Marker 1
Log Tra	ace 1 Pass						Norma
51.0							
46.0							Delta
41.0							
36.0							Of
31.0							
26.0	♦ ¹	والمارية والمراجع والمرور والم		1994 B			
21.0		and a state to be to be					Properties
16.0							
							More
#Start 3 Res BW	00 MHz 120 kHz	VBW 1	2 MHz	D	well Time	#Stop 1 GHz 8.572 µs(60 kHz)	1012
	onment Completed				STATUS		

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 19 of 37

Screen Captures - Radiated Emissions Testing - Receive Mode (continued)

Channel 19, Antenna Horizontally Polarized

Channel 19, Antenna Vertically Polarized

Screen Captures - Radiated Emissions Testing - Receive Mode (continued)

Channel 19, Antenna Horizontally Polarized

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 21 of 37

EXHIBIT 6.CONDUCTED EMISSIONS TEST, AC POWER LINE:

Not applicable. Battery operated

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 22 of 37

EXHIBIT 7. OCCUPIED BANDWIDTH:

7.1 Limits

For a Digital Modulation System, the 6 dB bandwidth shall be at least 500 kHz.

7.2 Method of Measurements

KDB 558074 D01 DTS Meas Guidance v03r02 section 8.1 option 2 for Digital Transmission Systems operating under 15.247 and ANSI C63.10.

The transmitter output was connected to the Spectrum Analyzer. The bandwidth of the fundamental frequency was measured with the Spectrum Analyzer using 100 kHz RBW and VBW=300 kHz.

The bandwidth requirement found in FCC Part 15.247(a)(2) and RSS 247 requires a minimum 6 dBc occupied bandwidth of 500 kHz. For this portion of the tests, a direct measurement of the transmitted signal was performed at the antenna port of the EUT, via a cable connection to a spectrum analyzer. An attenuator was placed in series with the cable to protect the spectrum analyzer. The attenuator were added on the analyzer as gain offset settings, thereby allowing direct measurements, without the need for any further corrections. Cable corrections were made through the correction factor loaded on the spectrum analyzer hard drive, there by allowing no need for further correction. Data is presented in the chart below.

From this data, the closest measurement (6 dB bandwidth) when compared to the specified limit, is 632 kHz, which is above the minimum of 500 kHz.

7.3 Test Equipment List

Please see Appendix A

7.4 Test Data

Modulation	Channel	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	6dB Bandwidth minimum limit (MHz)
	2402	0.6453	1.004	0.5
GFSK	2440	0.6315	1.005	0.5
	2480	0.6495	1.004	0.5

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 23 of 37

7.5 Screen Captures - OCCUPIED BANDWIDTH

lighter i de disserve de la construction de la construcción de la cons

Low Channel, -6 dBc Occupied Bandwidth

Middle Channel, -6 dBc Occupied Bandwidth

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 24 of 37

Low Channel, 99% Occupied Bandwidth

Middle Channel, 99% Occupied Bandwidth

High Channel, 99% Occupied Bandwidth

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 25 of 37

EXHIBIT 8. Band-Edge Measurements

8.1 Test Description

FCC 15.209(b) and 15.247(d) require a measurement of spurious emission levels to be at least 20 dB lower than the fundamental emission level, in particular at the Band-Edges where the intentional radiator operates. Also, RSS 210 Section 2.2 requires that unwanted emissions meet limits listed in tables 2 and 3 of the same standard and also to the limits in the applicable annex.

8.2 Method of Measurements

The following screen captures demonstrate compliance of the intentional radiator at the 2400-2483.5 MHz Band-Edges. The EUT was operated in continuous transmit mode with continuous modulation, with internally generated data as the modulating source. The EUT was operated at the lowest channel for the investigation of the lower Band-Edge, and at the highest channel for the investigation of the lower Band-Edge.

For a 2.4 GHz Transmitter:

The Lower Band-Edge limit, in this case, would be -20 dBc with respect to the fundamental level. The Upper Band-Edge limit, in this case, would be +54 dBuV/m at 3m

Screen Capture Demonstrating Compliance at the Lower Band-Edge

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 26 of 37

Screen Capture Demonstrating Compliance at the Higher Band-Edge

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 27 of 37

EXHIBIT 9. POWER OUTPUT (CONDUCTED): 15.247(b)

9.1 Method of Measurements

The conducted RF output power of the EUT was measured at the antenna port using a short RF cable along with an attenuator as protection, for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, thereby allowing direct measurements without the need for any further corrections. The unit was configured to run in a continuous transmit mode, while being supplied with modulated data. The spectrum analyzer was used with resolution and video bandwidths set to 1 MHz, and a span of 3 MHz, with measurements from a peak detector presented in the chart below.

9.2 Test Equipment List

Please see Appendix A

9.3 Test Data

Modulation	Channel	Maximum Peak Conducted Power (dBm)	Power Limit (dBm)	Power margin (dB)
	2402	-4.8	30.0	34.8
GFSK	2440	-4.3	30.0	34.3
	2480	-4.4	30.0	34.4

9.4 Screen Captures – Power Output (Conducted)

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 28 of 37

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 29 of 37

EXHIBIT 10 POWER SPECTRAL DENSITY: 15.247(e)

<u>10.1 Limits</u>

For digitally modulate systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

In accordance with FCC Part 15.247(e) and RSS 210 A8.2(b), the peak power spectral density should not exceed +8 dBm in any 3 kHz band. This measurement was performed along with the conducted power output readings performed as described in previous sections. The peak output frequency for each representative frequency was scanned, with a narrow bandwidth, and reduced sweep, and a power density measurement was performed using the utility built into the analyzer. The resultant density was then corrected to a 3 kHz bandwidth. The highest density was found to be no greater than -11.2 dBm, which is under the allowable limit by 19.2 dB.

10.2 Test Equipment List

Please see Appendix A

10.3 Test Data

Modulation	Channel	PSD (dBm)	PSD in 3kHz limit(dBm)	PSD margin (dBm)
	2402	-11.7	8.0	19.7
GFSK	2440	-11.2	8.0	19.2
	2480	-11.2	8.0	19.2

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 30 of 37

<u>10.4</u> Screen Captures – Power Spectral Density

Low Channel

High Channel

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 31 of 37

EXHIBIT 11. SPURIOUS CONDUCTED EMISSIONS: 15.247(d)

<u>11.1 Limits</u>

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

In addition, radiated emissions, which fall in the restricted band, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(e)

A measurement of conducted harmonic and spurious RF emission levels, as reference to the carrier level when measured in a 100 kHz bandwidth. For this test, the spurious and harmonic RF emissions from the EUT were measured at the EUT antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, thereby allowing direct readings of the measurements made without the need for any further corrections. A spectrum analyzer was used with the resolution bandwidth set to 100 kHz for this portion of the tests. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used with measurements from a peak detector presented in the chart below. Screen captures were acquired and any noticeable spurious and harmonic signals were identified and measured.

11.2 Test Equipment List

Please see Appendix A

<u>11.3</u> Screen Captures – Spurious Radiated Emissions

tart 30.0 MHz Res BW 100 kHz		VBW 3	300 kHz			Sweep 9	Stop 1.0 2.75 ms (000 GHz 2000 pts)	
									Mo 1 el
************ ******	interregian	la di sinakan sina	the second	روبية الجرامي	مناريميون	والمناسريوسان	م میں میں ایک اس رو	ديرماقد بيذابة	
70.0					• ¹				Mkr→RefL
0.0									MKr→C
50.0									
0.0									Marker Del
0.0								21.02.004	
0.0									Next Pk Le
0.0									_
0.00									Next Pk Rig
0 dB/div Ref 10	.00 dBm					N	4kr1 675 -67.6	5.4 MHz 60 dBm	NextPea
larker 1 675.37	2686343	PNO: Fast C	Trig: Fre #Atten: 1	e Run 0 dB	Avg[Hold Ext Gain:	76/100 -10.00 dB	TIP	PNNNN	NextBer
N	50 0 DC		50	NSE:DNT]	Aug Turn	ALISN AUTO	04:07:39 P	M.Feb 16, 2015	Peak Search

Low Channel shown from 30 MHz up to 1000 MHz

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 32 of 37

Screen Captures – Spurious Radiated Emissions (cont.)

Low Channel shown from 1000 MHz up to 10000 MHz

Low Channel shown from 10000 MHz up to 25000 MHz

Agilent Spe	ctrum Analyzer - Swept SA		L concernal			00
larker 1	24.582229111	PNO: Fast	Trig: Free Run #Atten: 10 dB	Avg Type: Log-Pwr Avg[Hold: 11/100 Ext Gain: -10.00 dB	DET DET PHONE 16, 2015	Peak Search
dB/div	Ref 10.00 dBm			Mkr	1 24.582 2 GHz -63.844 dBm	NextPea
						Next Pk Rig
1.0					-34 83 eBr	Next Pk Le
.0						Marker De
0						
	Munol and all a	i an a tha tha strain tha		a definition of the second second second		Mkr4
.0						Mkr→RefL
art 10.0 Res BW	000 GHz 100 kHz	VBW 3	00 kHz	Sweep 1	Stop 25.000 GHz .435 s (20000 pts)	
R MODE T	RC SCL 2	4.582 2 GHz	Y FU 63.844 dBm	NCTION FUNCTION HIDTH	FUNCTION VALUE	Mo 1 o
Alion	ment Completed			STATUS	•	

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 33 of 37

EXHIBIT 12. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS

The stability of the device was examined as a function of the input voltage available to the EUT. A Spectrum Analyzer was used to measure the frequency at the appropriate frequency markers. Power was supplied by an external bench-type variable power supply, and the frequency of operation was monitored using the spectrum analyzer.

A spectrum analyzer was used to measure the frequency at the appropriate frequency markers. For this test, the EUT was placed in continuous transmit CW mode. Power to the EUT was supplied by an external bench-type variable power supply. The frequency of operation was monitored using the spectrum analyzer with RBW=VBW=1 kHz settings while the voltage was varied.

Frequency Stability Over Voltage

2.55 VDC	3.0 VDC	3.45 VDC	
Frequency	Frequency	Frequency	Channel
2402000625	2402000975	2402001300	Low
2440000686	2440001065	2440001425	Middle
2480000735	2480000936	2480001569	High

Channel	max	min	freq drift (Hz)
Low	2402001300	2402000625	675
Middle	2440001425	2440000686	739
High	2480001569	2480000735	834

Limits							
	Low Mid High						
	240200000 244000000 248000000						
100 PPM (Hz) =	240200 244000 2480						

The power was then cycled On/Off to observe system response. No unusual response was observed, the emission characterizes were well behaved, and the system returned to the same state of operation as before the power cycle.

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 34 of 37

APPENDIX A

TEST EQUIPMENT

	Date : 5-Feb-2015		Type Tes	t : Rad Spurs Emiss	sions		Job #	<u>C-2140</u>
Prepar	red By: Peter	~	Customer :	Danlaw			Quote	± 315001
Asset #	Description		Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
AA 960158	Double Ridge Horn Antenna		ETS Lindgren	3117	109300	6/20/2014	6/20/2015	Active Calibration
EE 960159	0.8 - 21GHz LNA		Mini-Circuits	ZVA-213X-S+	740411007	6/20/2014	6/20/2015	Active Calibration
AA 960154	2.4GHz High Pass Filter		KWM	HPF-L-14186	7272-02	8/1/2014	8/1/2015	Active Calibration
AA 960144	Phaseflex		Gore	EKD01D010720	5800373	Verification	Verification	System
AA 960143	Phaseflex		Gore	EKD01D01048.0	5546519	6/14/2013	6/14/2015	Active Calibration
EE 960085	N9038A MXE 26.5GHz Receiver		Agilent	N9038A	MY51210148	8/9/2014	8/9/2015	Active Calibration
EE 960146	Std. Gain Horn Ant. w/preamp		Adv. Micro / EMO	CO WLA622-4 / 3160-09	123001	8/20/2014	8/20/2015	Active Calibration
EE 960073	Spectrum Analyzer		Agilent	E4446A	US45300564	10/19/2014	10/19/2015	Active Calibration
LS	RESEARCH LLC	Project Engineer:	leter Fiiken			Quality Assuran	e And	Ray
LS	RESEARCH LLC ireless Product Development Equipment Calibration Date : 6-Jan-2015	Project Engineer:	leter Feiken Type Tes	t : Conducted meas	urement	Quality Assurand	Job #	C-2140
LS Wi	RESEARCH LLC ircless Product Development Equipment Calibration Date : 6-Jan-2015	Project Engineer:	leter Feilen Type Tes	t : Conducted meas	urement	Quality Assurance	Job #	. <u>C-2140</u>
Prepa	RESEARCH LLC ireless Product Development Equipment Calibration Date : 6-Jan-2015 red By: Aidi	Project Engineer:	leter Feiken Type Tes Customer :	t : <u>Conducted meas</u> Danlaw	urement	Quality Assuran	ce: Job # Quote	: <u>C-2140</u> * <u>315001</u>
Prepar	RESEARCH LLC ireless Product Development Equipment Calibration Date : 6-Jan-2015 red By: Aidi Description	Project Engineer.	leter Feilen Type Tes Customer : Manufacturer	t : Conducted meas Danlaw Model #	urement	Quality Assuran	Job # Quote Cal Due Date	: <u>C-2140</u> <u>+ 315001</u> Equipment Status
Prepar Asset # EE 960087	RESEARCH LLC ireless Product Development Equipment Calibration Date : 6-Jan-2015 red By: Aidi Description 44GHz EXA Spectrum Analyzer	Project Engineer.	Ista Fuilan Type Tes Customer : Manufacturer Agilent	t : Conducted meas Danlaw Model # N9010A		Quality Assuran	Job # Quote : Cal Due Date 12/11/2015	
Prepai Asset # EE 960087 EE 960082	RESEARCH LLC ireless Product Development Equipment Calibration Date : 6-Jan-2015 red By: Aidi Description 44GHz EXA Spectrum Analyzer 20V/SA DC Power Supply	Project Engineer:	Peter Fuilen Type Tes Customer : Manufacturer Agilent Tenma	t : Conducted meas Danlaw Model # N9010A 72-8350		Quality Assuran Cal Date 12/11/2014 Verification	Job # Quote = Quote = 12/11/2015 Verification	: C-2140 : 315001 Equipment Status Active Calibration System
Prepai Asset # EE 960087 EE 960082 EE 960082 EE 960081	RESEARCH LLC ireless Product Development Equipment Calibration Date : 6-Jan-2015 red By: Aidi Description 44GHz EXA Spectrum Analyzer 20V/5A DC Power Supply Multimeter	Project Engineer.	Ista Fuilan Type Tes Customer : Manufacturer Agilent Tenma HP	t : Conducted meas Danlaw Model # N9010A 72-8350 971A		Quality Assuran Cal Date 12/11/2014 Verification 3/26/2014	Job # Quote = Cal Due Date 12/11/2015 Verification 3/26/2015	E C-2140 4: 315001 Equipment Status Active Calibration System Active Calibration

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 35 of 37

<u>APPENDIX B – TEST STANDARDS: CURRENT PUBLICATION DATES</u>

STANDARD #	DATE	Am. 1	Am. 2
ANSI C63.4	2014		
ANSI C63.10	2013		
CISPR 16-1-1 Note 1	2010		
CISPR 16-1-2 Note 1	2003	2004-04	2006-07
CISPR 22	2008		
FCC 47 CFR, Parts 0-15, 18, 90, 95	2009		
KDB 558074 D01 Meas. Guidance	2000		
RSS GEN	2010		
RSS 102	2015		
RSS 247	2015		

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 36 of 37

<u>APPENDIX C</u> <u>Uncertainty Statement</u>

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k=2.

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.24 dB
Radiated Emissions	3-Meter Chamber, Log Periodic Antenna	4.8 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.18 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.92 dB
Conducted Emissions	Shielded Room/EMCO LISN	1.60 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	1.128 Volts/Meter
Conducted Immunity	3 Volts level	1.0 V

Prepared For: Danlaw	EUT: BLE-Beacon ID Card	LS Research, LLC
Report # TR 315001	Model #: DL-BLE-10	
LSR Job #: C-2140	Serial #: Engineering Sample	Page 37 of 37