

RF Exposure Report

Report No.: SA150326E02

FCC ID: 2AD8UFZPFWIC01

Test Model: FWIC

Received Date: Mar. 26, 2015

Test Date: Apr. 01 to 17, 2015

Issued Date: June 02, 2015

Applicant: Nokia Solutions and Networks

Address: 1455 West Shure Drive, Arlington Heights, IL 60004, USA

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen, Chiung Lin Hsiang, Hsin

Chu Hsien 307, Taiwan R.O.C.

Test Location (1): No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen, Chiung Lin Hsiang, Hsin

Chu Hsien 307, Taiwan R.O.C.

Test Location (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin

Chu Hsien 307, Taiwan R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by any government agencies

Report No.: SA150326E02 Page No. 1 / 10 Report Format Version: 6.1.1

Table of Contents

Relea	elease Control Record			
1 Certificate of Conformity				
2	RF Exposure	. 5		
2.1 2.2	, ,	. 5 . 5		
2.3 3	Classification			
4	Calculation Result (For FCC)	. 7		
5	Calculation Result (For Canada)	. 8		
6	Calculation Result (For Europe)	. 9		
7	Brief Summary of results	10		

Release Control Record

Issue No.	Description	Date Issued
SA150326E02	Original release.	June 02, 2015

1 Certificate of Conformity

Product: Flexi Zone Indoor Pico BTS

Brand: Nokia

Test Model: FWIC

Test Sample S/N: EA150710164

Hardware Version: 472942A

Operating SW: FB_FZM_PS_LFS_OS_2014_05_59-0-g927a301

Software Version: WiFi module SW: 9.8.1.0.14302702

Sample Status: ENGINEERING SAMPLE

Applicant: Nokia Solutions and Networks

Test Date: Apr. 01 to 17, 2015

Standards: FCC Part 2 (Section 2.1091)

KDB 447498 D03 IEEE C95.1

ICNIRP 1998 FCC 47 CFR § 1.13.10 Canada's RF safety code 6

Australian Radiation Protection Series Publication No. 3

EN 50385:2002

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by:

Midoli Peng / Specialist

June 02, 2015

Approved by : _______,

Date: June 02, 2015

May Chen / Manager

2 RF Exposure

2.1 Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)					Power Density (mW/cm ²)	Average Time (minutes)
Limits For General Population / Uncontrolled Exposure						
300-1500 F/1500						
1500-100,000			1.0	30		

F = Frequency in MHz

2.2 MPE Calculation Formula

 $Pd = (Pout*G) / (4*pi*r^2)$

where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 20cm away from the body of the user. So, this device is classified as fixed station and installations by professional service persionnel device.

3 Antenna Gain

The antenna provided to the EUT, please refer to the following table:

LTE Antenna Spec.							
Antenna No	Brand	Model	Antenna Type	Antenna Connector	Gain(dBi) <including cable="" loss=""></including>	Cable Length (mm)	Frequency (MHz)
Internal LTE (Main)	TorreDo	T-543-8141050-6	DIEA	: (A411F)	4.9	50	1710~2390 (Band 4)
Internal LTE (Aux)	TongDa	T-543-8141050-7	PIFA	i-pex(MHF)	4.6	190	1710~2390 (Band 4)
WLAN Antenna	Spec.						
Antenna No	Brand	Model	Antenna Type	Antenna Connector	Gain(dBi) <including cable="" loss=""></including>	Cable Length (mm)	Frequency (MHz)
Internal WIFI	H D .	T 540 0444007 0	DIEA	i-pex(MHF)	3.3	90	2412~2472
(Main)	TongDa	T-543-8141037-3	PIFA	i-pex(ivinr)	2.4	30	5150~5825
Internal WIFI	1	T 5 40 04 44007 4	1037-4 PIFA i-pex(MHF) 3 2.9	3	70	2412~2472	
(Aux)	TongDa	T-543-8141037-4		i-pex(ivii ii-)	2.9	70	5150~5825
GPS Antenna Sp	oec.						
Antenna No	Brand	Model	Antenna Type	Antenna Connector	Gain(dBi) <including cable="" loss=""></including>	Cable Length (mm)	Frequency (MHz)
External GPS Ant	TongDa	T-543-8141037-9	ElecPatch	SMA Male	4.0	9140 ± 100	GPS: 1575.42 ± 3 MHz Glonass: 1602 ± 8 MHz
BT Antenna Spec.							
Antenna No	Brand	Model	Antenna Type	Antenna Connector	Gain(dBi) <including cable="" loss=""></including>	Cable Length (mm)	Frequency (MHz)
Internal BT Ant	INPAQ	Fz PICO	Chip	NA	-1.22	NA	2400~2500

4 Calculation Result (For FCC)

Calculation for Maximum Conducted Power

For WLAN

Frequency Band (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm²)
2412-2462	213.108	6.16	20	0.17512	1
5180-5240	94.858	5.66	20	0.06947	1
5745-5825	297.873	5.66	20	0.21815	1

NOTE:

2.4GHz : Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 6.16dBi$ 5GHz : Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 5.66dBi$

For BT

Frequency Band (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm ²)
2402-2480	8.974	-1.22	20	0.00135	1

For LTE

Frequency Band (MHz)	EIRP Power (mW)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm ²)
2112.5-2152.5	1242.6	20	0.247	1

Conclusion:

The formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

WLAN 2.4GHz + WLAN 5GHz + BT + LTE = 0.17512 + 0.21815 + 0.00135 + 0.247 = 0.642Therefore the maximum calculations of above situations are less than the "1" limit.

5 Calculation Result (For Canada)

Calculation for Maximum Conducted Power

For WLAN

Frequency Band (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (m)	Power Density (W/m²)	Limit (W/m²)
2412-2462	213.108	6.16	0.2	1.7512	5.4039
5180-5240	94.858	5.66	0.2	0.6947	9.059
5745-5825	297.873	5.66	0.2	2.1815	9.7103

NOTE:

2.4GHz : Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 6.16dBi$ 5GHz : Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 5.66dBi$

For BT

Frequency Band (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (W/m²)	Limit (W/m²)
2402-2480	8.974	-1.22	0.2	0.0135	5.4100

For LTE

Frequency Band (MHz)	EIRP Power (mW)	Distance (cm)	Power Density (W/m²)	Limit (W/m²)
2112.5-2152.5	1107.4	0.2	2.20	4.9565

Conclusion:

The formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

WLAN 2.4GHz + WLAN 5GHz + BT + LTE = 1.7512/5.4039 + 2.1815/9.7103 + 0.0135/5.4100 + 2.20/4.9565 = <math>0.995

Therefore the maximum calculations of above situations are less than the "1" limit.

6 Calculation Result (For Europe)

Calculation for maximum EIRP

2.4GHz

Output Power EIRP (dBm)	Output Power EIRP (mW)	E-Field Strength (V/m)	E-Field Strength Limit (V/m)	Pass / Fail
19.58	90.782	8.251	61	Pass

5GHz

Output Power EIRP (dBm)	Output Power EIRP (mW)	E-Field Strength (V/m)	E-Field Strength Limit (V/m)	Pass / Fail
29.87	970.510	26.979	61	Pass

BT

Output Power EIRP (dBm)	Output Power EIRP (mW)	E-Field Strength (V/m)	E-Field Strength Limit (V/m)	Pass / Fail
8.82	7.621	2.391	61	Pass

LTE

Output Power EIRP (dBm)	Output Power EIRP (mW)	E-Field Strength (V/m)	E-Field Strength Limit (V/m)	Pass / Fail
32.94	1967.886	38.418	61	Pass

Conclusion:

Both of the WLAN(2.4GHz, 5GHz), BT and LTE can transmit simultaneously, the formula of calculated the exposure is:

(CEF1 / LEF1)² + (CEF2 / LEF2)² +etc. <1

CEF = Calculation E-Field Strength

LEF = Limit of E-Field Strength

Therefore, the calculation of this situation is $(8.251 / 61)^2 + (26.979 / 61)^2 + (2.391 / 61)^2 + (38.418 / 61)^2 = 0.611$, which is less than the "1" limit.

7 Brief Summary of results

The wireless device described within this report has been shown to be capable of compliance with the basic restrictions related to human exposure to electromagnetic fields for both General public and Occupational. The calculations shown in this report were made in accordance the procedures specified in the applied test specification(s)

Our fire section	Required Compliance Boundary(m)	
Configuration	Occupational	General Population
LTE FDD Band 4+ Bluetooth + 2.4GHz WiFi + 5GHz WiFi	0.2	0.2

	Ε	N	D	
--	---	---	---	--