

41039 Boyce Road Fremont, CA. 94538

Radio Test Report

FCC Part 90 758 to 768 MHz

Flexi Zone Micro BTS (Base Transceiver Station) model FWPF

FCC ID:	2AD8UFZMFWPF01
COMPANY:	Nokia Solutions and Networks 2000 W Lucent Ln Naperville, IL 60563
TEST SITE(S):	National Technical Systems 41039 Boyce Road. Fremont, CA. 94538-2435
PROJECT NUMBER:	PR069704-00
REPORT DATE:	April 5, 2018
FINAL TEST DATES:	February 21 and 22 and March 9 and 26, 2018
TOTAL NUMBER OF PAGES:	92

ACCREDITED Testing Cert #0214.26

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

VALIDATING SIGNATORIES

PROGRAM MGR

Alvin Ilarina Manager, EMC and Wireless

TECHNICAL REVIEWER:

limx

Alvin Ilarina Manager, EMC and Wireless

FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

QUALITY ASSURANCE DELEGATE

Mill

Gary Izard Technical Writer

REVISION HISTORY

Rev#	Date	Comments	Modified By
1	April 5, 2018	First release	

TABLE OF CONTENTS

VALIDATING SIGNATORIES	2
REVISION HISTORY	3
TABLE OF CONTENTS	4
SCOPE	5
OBJECTIVE	6
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS	
FCC PART 90 AND RSS-119	
EXTREME CONDITIONS	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	9
GENERAL	
OTHER EUT DETAILS	
DETAILED EUT PHOTOGRAPHS	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	11
EUT INTERFACE PORTS	11 11
TESTING	12
RF PORT MEASUREMENT PROCEDURES	
BANDWIDTH MEASUREMENTS	
CONDUCTED SPURIOUS EMISSIONS.	
TRANSMITTER MASK MEASUREMENTS	15
FREQUENCY STABILITY	
TRANSIENT FREQUENCY BEHAVIOR:	
RADIATED EMISSIONS MEASUREMENTS	16
INSTRUMENTATION	
FILTERS/ATTENUATORS	
ANTENNAS	17
ANTENNA MAST AND EQUIPMENT TURNTABLE	
SAMPLE CALCULATIONS	
SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS	
SAMPLE CALCULATIONS –RADIATED FIELD STRENGTH SAMPLE CALCULATIONS –RADIATED POWER	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	23
END OF REPORT	92

SCOPE

Tests have been performed on the Nokia Solutions and Networks Flexi Zone Micro BTS (Base Transceiver Station) model FWPF, pursuant to the relevant requirements of the following standard(s) in order to obtain device certification against the regulatory requirements of the Federal Communications Commission and Innovation Science and Economic Development Canada.

- Code of Federal Regulations (CFR) Title 47 Part 2
- CFR 47 Part 90 (Private Land Mobile Radio Service) Subpart R

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems test procedures:

ANSI C63.4:2014 ANSI TIA-603-D June 2010 FCC KDB 971168 Licensed Digital Transmitters

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

National Technical Systems is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise.

The test results recorded herein are based on a single type test of the Nokia Solutions and Networks Flexi Zone Micro BTS (Base Transceiver Station) model FWPF and therefore apply only to the tested sample. The sample was selected and prepared by Francisco Avalos of Nokia Solutions and Networks.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, the device requires certification. Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Nokia Solutions and Networks Flexi Zone Micro BTS (Base Transceiver Station) model FWPF complied with the requirements of the standards and frequency bands declared in the scope of this test report.

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS

FCC Part 90

FCC	Description	Measured	Limit	Result
Transmitter Modu	lation, output power and	other characteristics		
§2.1033 (c) (5) § 90.532	Frequency range(s)	760.50MHz – 765.50MHz (5M LTE) 763.00 (10MHz LTE)	758 to 769 MHz	Pass
\$2.1033 (c) (4)	Modulation Type	QPSK, 16QAM, 64QAM, 256QAM (5MHz and 10MHz LTE)	Digital	Pass
\$2.1033 (c) (6) \$2.1033 (c) (7) \$ 2.1046 \$ 90.542	RF power output at the antenna terminals	5.7 W	1000W ERP	Pass
§ 2.1049 § 90.543(d)	Occupied Bandwidth	4.91 MHz (5MHz LTE) 8.940 MHz (10MHz LTE)	< Channel size	Pass
Transmitter spurio	ous emissions			
§ 2.1051 § 2.1057 § 90.543(e)	At the antenna terminals	-37 dBm	-16 dBm	Pass
§ 2.1053 § 2.1057 § 90.543(e)	Field strength	39.2 dBµV/m @ 105.73 MHz (-45.2 dB) 52.9 dBµV/m @ 3802.9 MHz (-31.5 dB)	84.4 dBµV/m	Pass
§ 90.543(e)(1)	Maximum emissions in 769-775 MHz and 799-805MHz bands	-20.7 dBm	-16 dBm	Pass
§ 90.543(f)	Emissions in band 1559-1610 MHz	-96 dBW	-70dBW/MHz EIRP	Pass
Other details	1		1	
§ 2.1055 § 90.539	Frequency stability	100 ppb	22 ppb	Pass
Notes:				

EXTREME CONDITIONS

Frequency stability is determined over extremes of temperature and voltage. The extremes of voltage were 85 to 115 percent of the nominal value.

The extremes of temperature were -30° C to $+50^{\circ}$ C as specified in FCC §2.1055(a)(1).

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) and were calculated in accordance with NAMAS document NIS 81 and M3003.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF frequency	Hz	25 to 7,000 MHz	1.7 x 10 ⁻⁷
RF power, conducted	dBm	25 to 7,000 MHz	$\pm 0.52 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 40,000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 40,000 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 40,000 MHz	± 2.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1,000 MHz 1 to 40 GHz	$\begin{array}{c} \pm 3.6 \text{ dB} \\ \pm 6.0 \text{ dB} \end{array}$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Nokia Solutions and Networks Flexi Zone Micro BTS is a Micro Base Transceiver Station, model FWPF which operates over 3GPP frequency band 14 (BTS Tx/Rx: 758 to 768 MHz/ 788 to 798MHz). The FWPF has two co-located transmitters with each transmit port supporting 5 watts maximum rated RF output power. The FWPF can be operated as MIMO. Multi-carrier operation is not supported. The electrical rating of the EUT is 90 - 265 Volts, 50-60 Hz, 1.7-2.0 Amps.

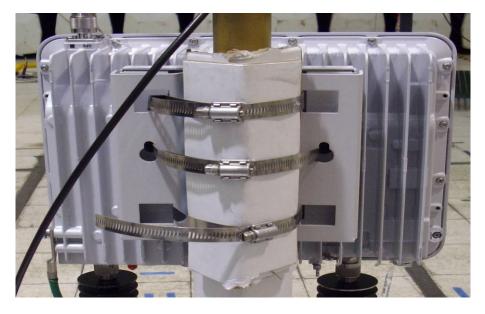
The sample was received on February 21, 2018 and tested on February 21 and 22 and March 9 and 26, 2018. The EUT consisted of the following component(s):

Corr	ipany	Model	Description	Serial Number	IC UPN/FCC ID
Nokia Solu Netw		FWPF	Base Transceiver Station	Prototype	2AD8UFZMFWPF01

OTHER EUT DETAILS

The highest internal source of an EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes. In some cases, the highest internal source determines the frequency range of test for radiated emissions. The highest internal source of the EUT was declared as: 1800 MHz.

The FWPF supports four downlink modulation types for LTE (QPSK, 16QAM, 64QAM and 256QAM). The FWPF supports three LTE channel bandwidths (5 MHz, and 10 MHz).


The FWPF has external interfaces including AC power, ground, TX/RX (Ant), Ethernet "B", Ethernet "C", USB port, GPS and Bluetooth. The FWPF with applicable installation kit may be pole or wall mounted. Bluetooth interface has modular FCC and IC approval.

DETAILED EUT PHOTOGRAPHS

Front View

Rear View

ENCLOSURE

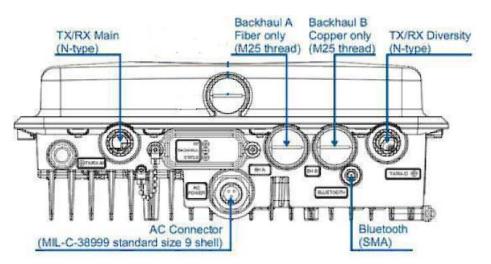
The EUT enclosure is primarily constructed of heavy duty aluminum. It measures approximately $12.0 \times 4.0 \times 12.0$ cm.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at National Technical Systems.

SUPPORT EQUIPMENT

A laptop was used to control and configure the EUT during testing.


EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To	Cable(s)			
TOIL		Description	Shielded or Unshielded	Length(m)	
Tx/ Rx Main	GPS	Coax	Shielded	30	
AC Connector	Main Power	3 Wire	Unshielded	0.8	

EUT OPERATION

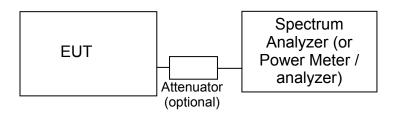
During testing, the EUT was configured to continuously transmit at maximum power on the channel noted.

TESTING

GENERAL INFORMATION

Antenna port measurements were taken at the National Technical Systems test site located at 41039 Boyce Road, Fremont, CA 94538-2435.

Radiated spurious emissions measurements were taken at the National Technical Systems Anechoic Chambers and/or Open Area Test Site(s) listed below. The sites conform to the requirements of ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz and CISPR 16-1-4:2007 - Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances. They are on file with the FCC and Innovation Science and Economic Development Canada.


Site	Designation / Registration Numbers FCC Canada		Location	
Chamber 4	US0027	IC 2845B-4	41039 Boyce Road Fremont, CA 94538-2435	

Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements.

RF PORT MEASUREMENT PROCEDURES

Conducted measurements are performed with the EUT's rf input/output connected to the input of a spectrum analyzer, power meter or modulation analyzer. When required an attenuator, filter and/or dc block is placed between the EUT and the spectrum analyzer to avoid overloading the front end of the measurement device. Measurements are corrected for the insertion loss of the attenuators and cables inserted between the rf port of the EUT and the measurement equipment.

Test Configuration for Antenna Port Measurements

For devices with an integral antenna the output power and spurious emissions are measured as a field strength at a test distance of (typically) 3m and then converted to an eirp using a substitution measurement (refer to RADIATED EMISSIONS MEASUREMENTS). All other measurements are made as detailed below but with the test equipment connected to a measurement antenna directed at the EUT.

OUTPUT POWER

Output power is measured using a power meter and an average sensor head, a spectrum analyzer or a power meter and peak power sensor head as required by the relevant rule part(s). Where necessary measurements are gated to ensure power is only measured over periods that the device is transmitting.

Power measurements made directly on the rf power port are, when appropriate, converted to an EIRP by adding the gain of the highest gain antenna that can be used with the device under test, as specified by the manufacturer.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS-GEN. The measurement bandwidth is set to be at least 1% of the instrument's frequency span.

CONDUCTED SPURIOUS EMISSIONS

Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode measurements). Where the limits are expressed as an average power the spectrum analyzer is tunes to that frequency with a narrow span (wide enough to capture the emission and its sidebands) and the resolution and video bandwidths are adjusted as required by the reference measurement standards. For transmitter measurements the appropriate detector (average, peak, normal, sample, quasi-peak) is used when making measurements for licensed devices. For receiver conducted spurious measurements the detector is set to peak.

TRANSMITTER MASK MEASUREMENTS

The transmitter mask measurements are made using resolution bandwidths as specified in the pertinent rule part(s). Where narrower bandwidths are used the measurement is corrected to account for the reduced bandwidth by either using the adjacent channel power function of the spectrum analyzer to sum the power across the required measurement bandwidth. The frequency span of the analyzer is set to ensure the fundamental signal and all significant sidebands are displayed.

The top of the mask may be set by the total output power of the signal, the power of the unmodulated signal or the peak value of the signal in the reference bandwidth being used for the mask measurement.

FREQUENCY STABILITY

The EUT is placed inside a temperature chamber with all support and test equipment located outside of the chamber. The temperature is varied across the specified frequency range in 10 degree increments with frequency measurements made at each temperature step. The EUT is allowed enough time to stabilize at each temperature variation.

The spectrum analyzer is configured to give a 5- or 6-digit display for the markerfrequency function. The spectrum analyzer's built-in frequency counter is used to measure the maximum deviation of the fundamental frequency at each temperature. Where possible the device is set to transmit an unmodulated signal. Where this is not possible the frequency drift is determined by finding a stable point on the signal (e.g. the null at the centre of an OFDM signal) or by calculating a centre frequency based on the upper and lower XdB points (where X is typically 6dB or 10dB) on the signal's skirts.

TRANSIENT FREQUENCY BEHAVIOR:

The TIA/EIA 603 procedure is used to determine compliance with transient frequency timing requirements as the radio is keyed on and off.

The EUTs RF output is connected via a combiner/splitter to the test receiver/spectrum analyzer and to a diode detector. The test receiver or spectrum analyzer video output is connected to an oscilloscope, which is triggered by the output from the diode detector.

Plots showing Ton, T1, and T2 are made when turning on the transmitter and showing T3 when turning off the transmitter.

RADIATED EMISSIONS MEASUREMENTS

Receiver radiated spurious emissions measurements are made in accordance with ANSI ANSI C63.4:2003 by measuring the field strength of the emissions from the device at a specific test distance and comparing them to a field strength limit. Where the field strength limit is specified at a longer distance than the measurement distance the measurement is extrapolated to the limit distance.

Transmitter radiated spurious emissions are initially measured as a field strength. The eirp or erp limit as specified in the relevant rule part(s) is converted to a field strength at the test distance and the emissions from the EUT are then compared to that limit. Emissions within 20dB of this limit are the subjected to a substitution measurement.

All radiated emissions measurements are performed in two phases. A preliminary scan of emissions is conducted in either an anechoic chamber or on an OATS during which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed across the complete frequency range of interest and at each operating frequency identified in the reference standard. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode).

During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. For transmitter spurious emissions, where the limit is expressed as an effective radiated power, the eirp or erp is converted to a field strength limit.

Final measurements are made on an OATS or in a semi-anechoic chamber at the significant frequencies observed during the preliminary scan(s) using the same process of rotating the EUT and raising/lowering the measurement antenna to find the highest level of the emission. The field strength is recorded and, for receiver spurious emissions, compared to the field strength limit. For the final measurement the appropriate detectors (average, peak, normal, sample, quasi-peak) are used. For receiver measurements below 1GHz the detector is a Quasi-Peak detector, above 1GHz a peak detector is used and the peak value (RB=VB=1MHz) and average value (RB=1MHz, VB=10Hz) are recorded.

For transmitter spurious emissions, the radiated power of all emissions within 20dB of the calculated field strength limit are determined using a substitution measurement. The substitution measurement is made by replacing the EUT with an antenna of known gain (typically a dipole antenna or a double-ridged horn antenna), connected to a signal source. The output power of the signal generator is adjusted until the maximum field strength from the substitution antenna is similar to the field strength recorded from the EUT. The erp of the EUT is then calculated.

INSTRUMENTATION

An EMI receiver as specified in CISPR 16-1-1 is used for radiated emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary.

For measurements above the frequency range of the receivers and for all conducted measurements a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis.

Measurement bandwidths for the test instruments are set in accordance with the requirements of the standards referenced in this document.

Software control is used to correct the measurements for transducer factors (e.g. antenna) and the insertion loss of cables, attenuators and other series elements to obtain the final measurement value. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are exported in a graphic and/or tabular format, as appropriate.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the EUT antenna port or receiving antenna and the test receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A combination of biconical, log periodic or bi-log antennas are used to cover the range from 30 MHz to 1000 MHz. Broadband antennas or tuned dipole antennas are used over the entire 25 to 1000 MHz frequency range as the reference antenna for substitution measurements.

Above 1000 MHz, a dual-ridge guide horn antenna or octave horn antenna are used as reference and measurement antennas.

The antenna calibration factors are included in site factors that are programmed into the test receivers and instrument control software when measuring the radiated field strength.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

Table mounted devices are placed on a non-conductive table at a height of 80 centimeters above the floor. Floor mounted equipment is placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. The EUT is positioned on a motorized turntable to allow it to be rotated during testing to determine the angel with the highest level of emissions.

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS

Measurements are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

 $R_r - S = M$

where:

 R_r = Measured value in dBm

S = Specification Limit in dBm

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH

Measurements of radiated field strength are compared directly to the specification limit (decibel form). The receiver and/or control software corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor is sued when measurements are made at a test distance that is different to the specified limit distance by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_{c} - L_{s}$$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS -RADIATED POWER

The erp/eirp limits for transmitter spurious measurements are converted to a field strength in free space using the following formula:

$$E = \frac{\sqrt{30 P G}}{d}$$

where:

Е	=	Field Strength in V/m
Р	=	Power in Watts
G	=	Gain of isotropic antenna (numeric gain) = 1
D	=	measurement distance in meters

The field strength limit is then converted to decibel form (dBuV/m) and the margin of a given emission peak relative to the limit is calculated (refer to *SAMPLE CALCULATIONS*–*RADIATED FIELD STRENGTH*).

When substitution measurements are required (all signals with less than 20dB of margin relative to the calculated field strength limit) the eirp of the spurious emission is calculated using:

and

$$P_s = G + P_{in}$$

 $P_{EUT} = P_{S} - (E_{S} - E_{EUT})$

where:

 P_{S} = effective isotropic radiated power of the substitution antenna (dBm)

- P_{in} = power input to the substitution antenna (dBm)
- G = gain of the substitution antenna (dBi)

 E_S = field strength the substitution antenna (dBm) at eirp P_S

 E_{EUT} = field strength measured from the EUT

Where necessary the effective isotropic radiated power is converted to effective radiated power by subtracting the gain of a dipole (2.2dBi) from the eirp value.

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS-210 Table 2, RSS-GEN Table 1 and RSS-310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

Appendix A Test Equipment Calibration Data

Manufacturer Radiated Emissions	<u>Description</u> , 30 - 18,000 MHz, 21-Feb-18	<u>Model</u>	<u>Asset #</u>	Calibrated	Cal Due
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	0		N/A
Filtek EMCO	Filter, 1 GHz High Pass Antenna, Horn, 1-18 GHz (SA40-Red)	HP12/1000-5BA 3115	957 1142	5/10/2017 9/29/2016	5/10/2018 9/29/2018
Sunol Sciences Com-Power Rohde & Schwarz	Biconilog, 30-3000 MHz Preamplifier, 30-1000 MHz EMI Test Receiver, 20 Hz-7 GHz	JB3 PA-103 ESIB 7	1548 1632 1756	10/12/2016 1/30/2018 7/8/2017	10/12/2018 1/30/2019 7/8/2018
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	1780	8/31/2017	8/31/2018
Hewlett Packard	Spectrum Analyzer (SA40) Purple 9 kHz - 40 GHz,	8564E (84125C)	2415	3/1/2017	3/1/2018
Conducted Emission	ns - AC Power Ports, 21-Feb-18	3			
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	0		N/A
Sunol Sciences Rohde & Schwarz	Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz	JB3 ESIB 7	1549 1756	5/30/2017 7/8/2017	5/30/2019 7/8/2018
Fischer Custom Comm	LISN, 25A, 150kHz to 30MHz, 25 Amp,	FCC-LISN-50- 25-2-09	2000	9/25/2017	9/25/2018
Radiated Spurious E	Emissions, 30 - 8000 MHz, 22-Fo	eb-18			
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	0		N/A
Filtek EMCO	Filter, 1 GHz High Pass Antenna, Horn, 1-18 GHz (SA40-Red)	HP12/1000-5BA 3115	957 1142	5/10/2017 9/29/2016	5/10/2018 9/29/2018
Sunol Sciences Com-Power	Biconilog, 30-3000 MHz Preamplifier, 30-1000 MHz	JB3 PA-103	1548 1632	10/12/2016 1/30/2018	10/12/2018 1/30/2019
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB 7	1756	7/8/2017	7/8/2018
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	1780	8/31/2017	8/31/2018
Hewlett Packard	Spectrum Analyzer (SA40) Purple 9 kHz - 40 GHz,	8564E (84125C)	2415	2/16/2018	2/16/2019
Radio Antenna Port Agilent Technologies	(Power and Spurious Emission PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	n s), 22-Feb-18 E4446A	2139	7/31/2017	7/31/2018
Radiated Emissions EMCO Filtek Hewlett Packard Hewlett Packard	, 1559 - 1610 MHz, 09-Mar-18 Antenna, Horn, 1-18GHz Filter, 1 GHz High Pass Spectrum Analyzer (SA40) Red 30 Hz -40 GHz Microwave Preamplifier, 1-	3115 HP12/1000-5BA 8564E (84125C) 8449B	868 957 1148 2199	6/30/2016 5/10/2017 10/14/2017 8/30/2017	6/30/2018 5/10/2018 10/14/2018 8/30/2018
	26.5GHz				

Project number PR069704-00 Report Date: April 5, 2018

Manufacturer	Description	Model	Asset #	Calibrated	Cal Due
	(Power and Spurious Emission		<u>A3301 #</u>	Galibrated	
Agilent Technologies	3Hz -44GHz PSA Spectrum	É4446A	2796	5/22/2017	5/22/2018
Envirotronics	Temperature/Humidity chamber	SH16C	3195		N/A
Radiated Emissions	, 30 - 1,000 MHz, 26-Mar-18				
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1548	10/12/2016	10/12/2018
Com-Power	Preamplifier, 30-1000 MHz	PA-103	1632	1/30/2018	1/30/2019
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB 7	1756	7/8/2017	7/8/2018
Radiated Emissions	, 1000 - 8,000 MHz, 26-Mar-18				
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	7/8/2016	7/8/2018
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	1780	8/31/2017	8/31/2018
Hewlett Packard	Spectrum Analyzer (SA40) Purple 9 kHz - 40 GHz,	8564E (84125C)	2415	2/16/2018	2/16/2019

Appendix B Test Data

TL069704-00 EMC Pages 24 - 91

EMC Test Data

Client: Nokia Solutions and Networks	PR Number: PR069704-00
Product FlexiZone Micro BTS	T-Log Number: TL069704-00 EMC
System Configuration:	Project Manager: Deepa Shetty
Contact: Terry Schwenk	Project Engineer: Alvin ILARINA
Emissions Standard(s): FCC Part 90R	Class:
Immunity Standard(s):	Environment: Radio

EMC Test Data

For The

Nokia Solutions and Networks

Product

FlexiZone Micro BTS

Date of Last Test: 3/26/2018

RF Output Power

RF output power has been measured in both Peak and RMS Average terms for each transmit chain at the center channel for all modulations and bandwidth modes. Peak to average ratio (PAR) has been calculated as described in Section 5.7.2 of KDB971168 D01 v02r02 and all results are presented in tabular form below.

		LTE-QPSK		LTE-16QAM		LTE-64QAM		LTE-256QAM					
		Peak (dBm)	Average (dBm)	PAR (dB)									
Port 1													
Center	5M	44.55	37.72	6.83	44.53	37.69	6.84	44.61	36.65	7.96	43.49	35.78	7.71
Channel	10M	44.81	36.85	7.96	44.81	37.21	7.6	44.74	36.53	8.21	44.2	35.92	8.28
Port 2													
Center	5M	44.47	37.37	7.1	44.46	37.33	7.13	44.54	37.14	7.4	44.01	36.5	7.51
Channel	10M	44.79	37.28	7.51	44.77	36.9	7.87	44.76	37.14	7.62	43.78	35.58	8.20

Based on the results above, Port 1 had the highest RMS average power and therefore it was selected for all the remaining antenna port tests on the product.

Subsequently output power levels on lowest and highest channels in both channel bandwidths were tested only at Port 1 and results presented below.

		LTE-QPSK			LTE-16QAM		LTE-64QAM		LTE-256QAM				
		Peak (dBm)	Average (dBm)	PAR (dB)									
Port 1													
Low	5M	44.44	36.71	7.73	44.35	37.22	7.13	44.43	36.88	7.55	43.85	36.09	7.76
Channel	10M												
Port 1													
High	5M	44.34	36.36	7.98	44.29	36.02	8.27	44.37	36.54	7.83	43.31	35.64	7.67
Channel	10M												

All corresponding plots included on the following pages. Total path loss of 39.7dB (Attenuator Loss: 39dB, RF cable loss: 0.7dB) accounted in via reference level offset to the spectrum analyzer.

EMC Test Data

Client:	Nokia Solutions and Networks	Job Number:	PR069704-00
Madal	FlexiZone Micro BTS	T-Log Number:	TL069704-00 EMC
wodel.		Project Manager:	Deepa Shetty
Contact:	Terry Schwenk	Project Coordinator:	Alvin ILARINA
Standard:	FCC Part 90R	Class:	N/A

FCC Part 90 subpart R

Power, Occupied Bandwidth, Frequency Stability and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

NTS

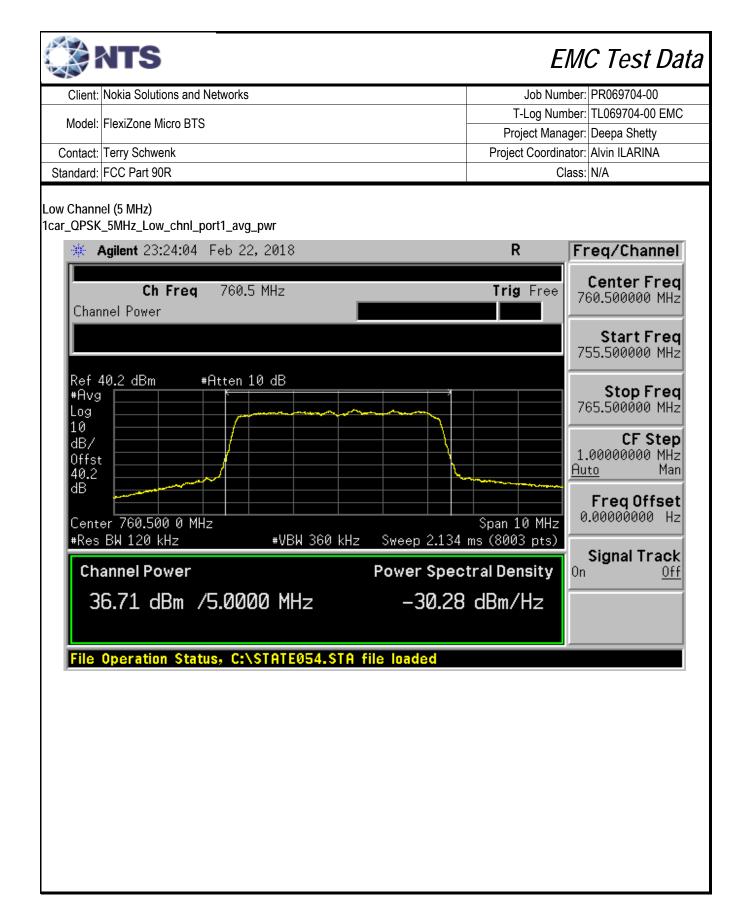
With the exception of the radiated spurious emissions tests, all measurements are made with the EUT's rf port connected to the measurement instrument via an attenuator or dc-block if necessary. All amplitude measurements are adjusted to account for the attenuation between EUT and measuring instrument. For frequency stability measurements the EUT was place inside an environmental chamber.

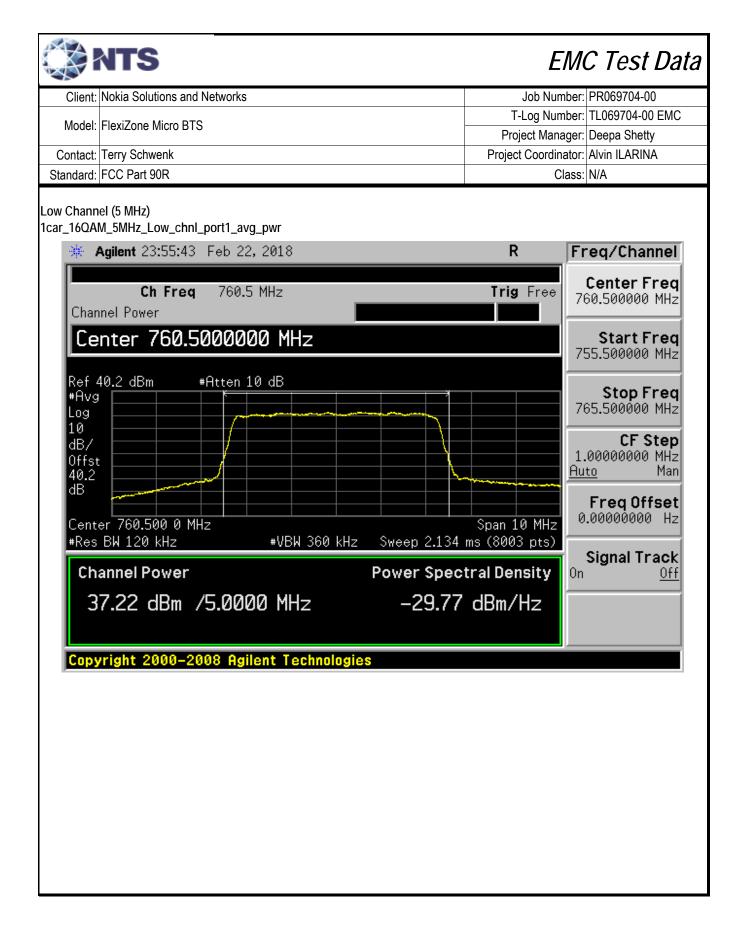
Radiated measurements are made with the EUT located on a non-conductive table, 3m from the measurement antenna.

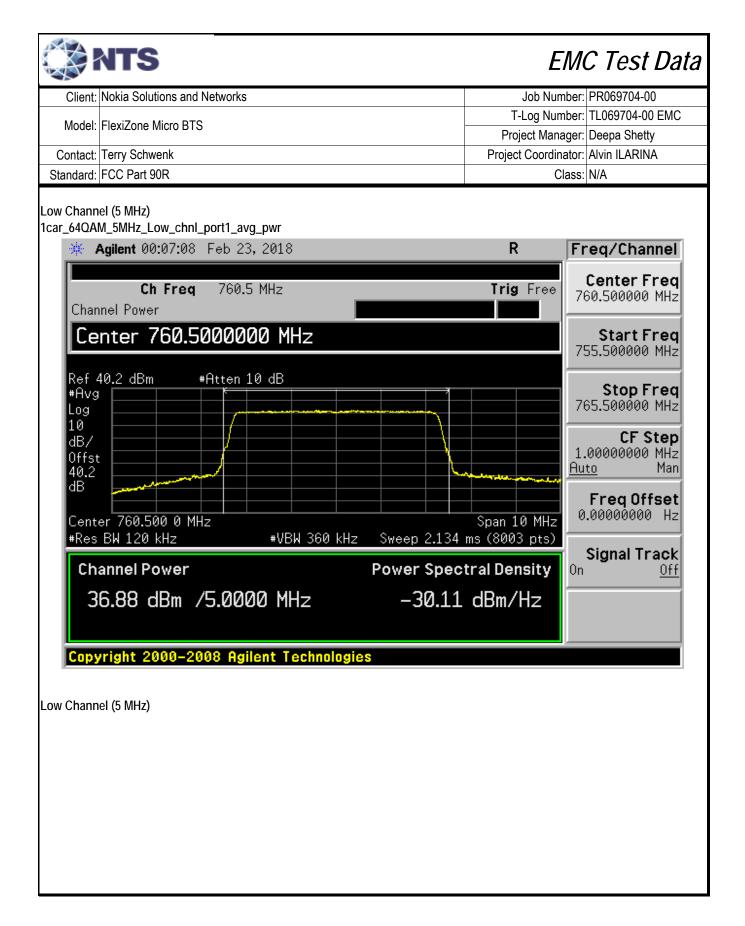
Ambient Conditions:	Temperature:	18-23 °C
	Rel. Humidity:	35-40 %

Summary of Results

, Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power	1000W	Pass	5.7 W
2	Band Edge / Block Edge	-16 dBm	Pass	- 4.7 dB
3	Occupied Bandwidth	< Channel size	Pass	4.91 MHz
5			rass	8.940 MHz
4	Spurious Emissions (conducted)	- 16dBm	Pass	- 20 dB
5	Emissions in band 1559-1610 MHz	- 70dBW/MHz	Pass	- 24 dB
7	Frequency Stability	100 ppb	Pass	22 ppb


Modifications Made During Testing


No modifications were made to the EUT during testing


Deviations From The Standard

No deviations were made from the requirements of the standard.

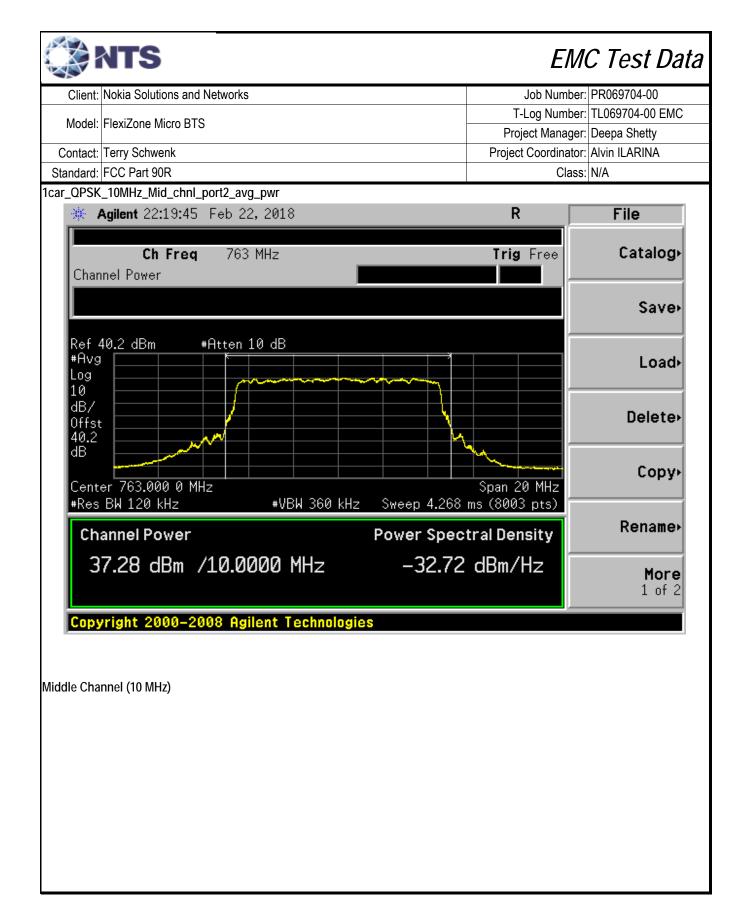
Client:	Nokia Solutions and Net	works					Job Number:	PR069704-00
Madal						T-l	_og Number:	TL069704-00 EM
wodel:	FlexiZone Micro BTS					Proje	ect Manager:	Deepa Shetty
Contact:	Terry Schwenk					Project	Coordinator:	Alvin ILARINA
Standard:	FCC Part 90R						Class:	N/A
D Tes	Itput Power Date of Test: 2/22/2018 st Engineer: Rafael Vare est Location: FT Chambe			Cor	onfig. Used: nfig Change: UT Voltage:	None		
Power		Output	Power	Antenna		El	RP	
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	
		I	5M					
QPSK	760.5	36.71	4688.1	2.0	Pass	38.7	4.531]
16QAM	760.5	37.22	5272.3		Pass	39.2	5.095	
64QAM	760.5	36.88	4875.3		Pass	38.9	4.711	
256QAM	760.5	36.09	4064.4	2.0	Pass	38.1	3.928	
QPSK	763.0	37.72	5915.6		Pass	39.7	5.717	
16QAM	763.0	37.69	5874.9		Pass	39.7	5.677	
64QAM	763.0	36.65	4623.8		Pass	38.7	4.468	
256QAM	763.0	35.78	3784.4	2.0	Pass	37.8	3.657	
QPSK	765.5 765.5	36.36	4325.1	2.0	Pass	38.4	4.180	
16QAM 64QAM	765.5	36.02 36.54	3999.4 4508.2	2.0 2.0	Pass Pass	38.0 38.5	3.865 4.357	
256QAM	765.5	35.64	3664.4	2.0	Pass	37.6	3.541	
2000/111	10010	00.04	10M	2.0	1 000	01.0	0.041	
QPSK	763.0	37.28	5345.6	2.0	Pass	39.3	5.166	
16QAM	763.0	36.90	4897.8		Pass	38.9	4.733	
64QAM	763.0	37.14	5176.1		Pass	39.1	5.002]
256QAM	763.0	35.58	3614.1	2.0	Pass	37.6	3.493]
Net: 4	Output nouse		turino en el :	or (oc		<u>بالمرمم المرامم</u>		
	Output power measured	<u> </u>		· ·	,			
Note 2:	Power setting - the softw	are power se	etting used a	uring testing,	included for	reference of	liy.	

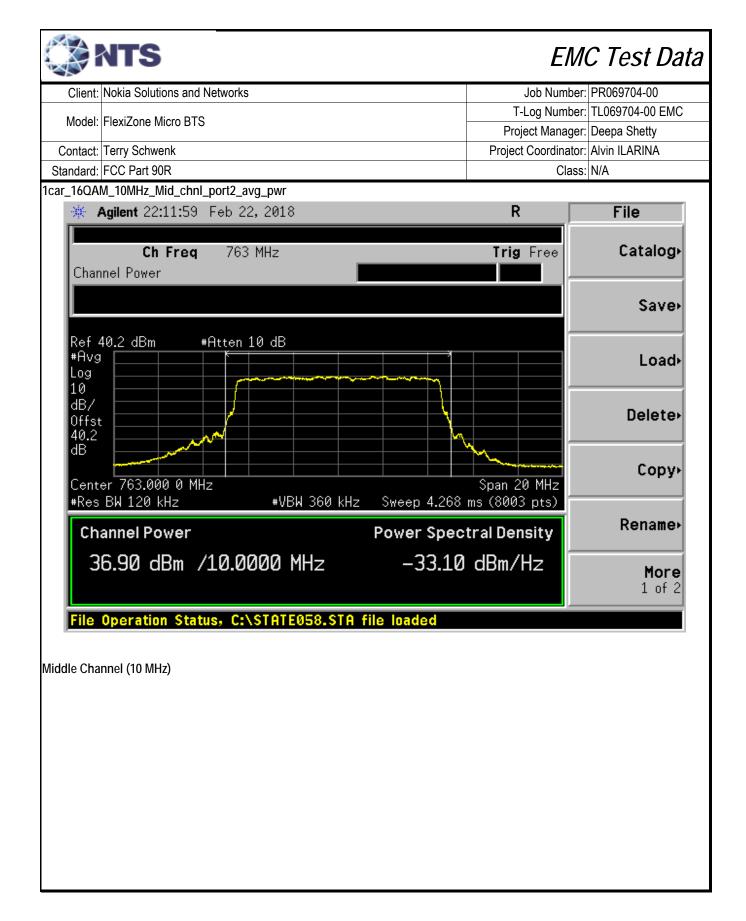
NTS	EMC Te	est Data
Client: Nokia Solutions and Networks	Job Number: PR069)704-00
Model: FlexiZone Micro BTS	T-Log Number: TL069	
Contact: Terry Schwenk	Project Manager: Deepa Project Coordinator: Alvin II	
Standard: FCC Part 90R	Class: N/A	
1car_256QAM_5MHz_Low_chnl_port1_avg_pwr		
Agilent 00:20:23 Feb 23, 2012		Channel
Ch Freq 760.5 MHz		er Freq
Channel Power	760.500	0000 MHz
		art Freq 0000 MHz
Ref 40.2 dBm #Atten 10 dB #Avg Log 10	St.	op Freq 0000 MHz
dB/ Offst 40.2 dB	1.00000 Auto	CF Step 0000 MHz Man
Center 760.500 0 MHz	Span 10 MHz 0.0000 BW 360 kHz Sweep 2.134 ms (8003 pts)	qOffset 10000 Hz
Channel Power	Signa Power Spectral Density On	al Track <u>Off</u>
36.09 dBm /5.0000 M	Hz -30.90 dBm/Hz	
Copyright 2000–2008 Agilent 1	Cerhnologies	
Middle Channel (5 MHz)		

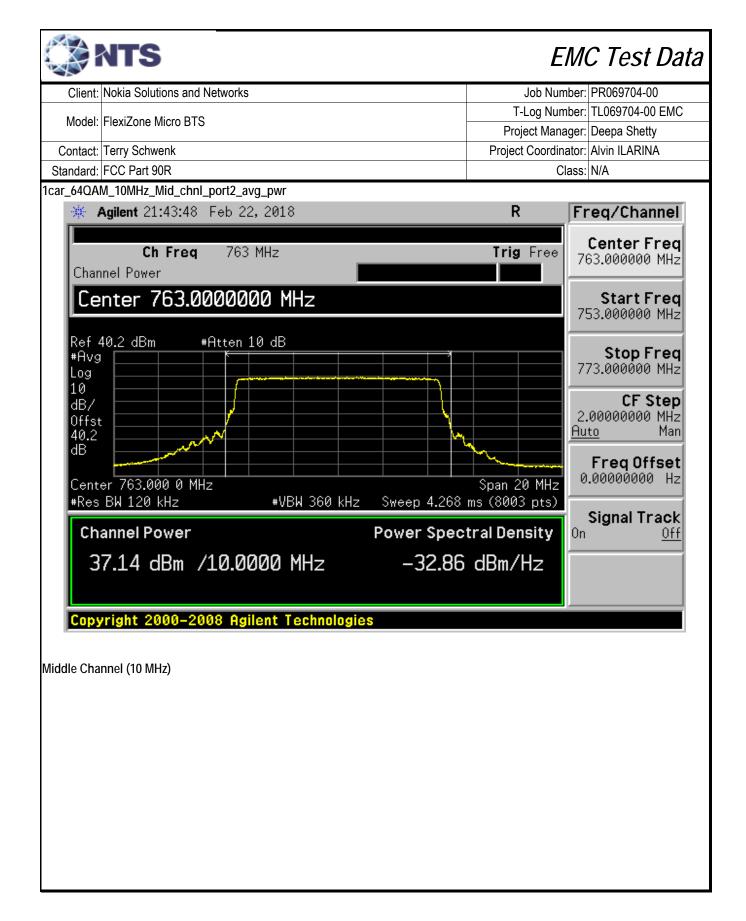
NTS	EMC Test Data
Client: Nokia Solutions and Networks	Job Number: PR069704-00
Model: FlexiZone Micro BTS	T-Log Number: TL069704-00 EMC Project Manager: Deepa Shetty
Contact: Terry Schwenk	Project Coordinator: Alvin ILARINA
Standard: FCC Part 90R	Class: N/A
1car_QPSK_5MHz_Mid_chnl_port1_avg_pwr	
Agilent 20:05:42 Feb 22, 2018	R System
Ch Freq 763 MHz Channel Power	Trig Free Show Errors
	Power On/ Preset
Ref 40.2 dBm #Atten 10 dB #Avg Log 10	Time/Date
dB/ Offst 40.2 dB	Alignments•
Center 763.000 0 MHz	Span 10 MHz ms (8003 pts)
Channel Power Power Spect	Boforonoo
37.72 dBm /5.0000 MHz -29.27	dBm/Hz More 1 of 3
File Operation Status, C:\STATE054.STA file loaded	
Middle Channel (5 MHz)	

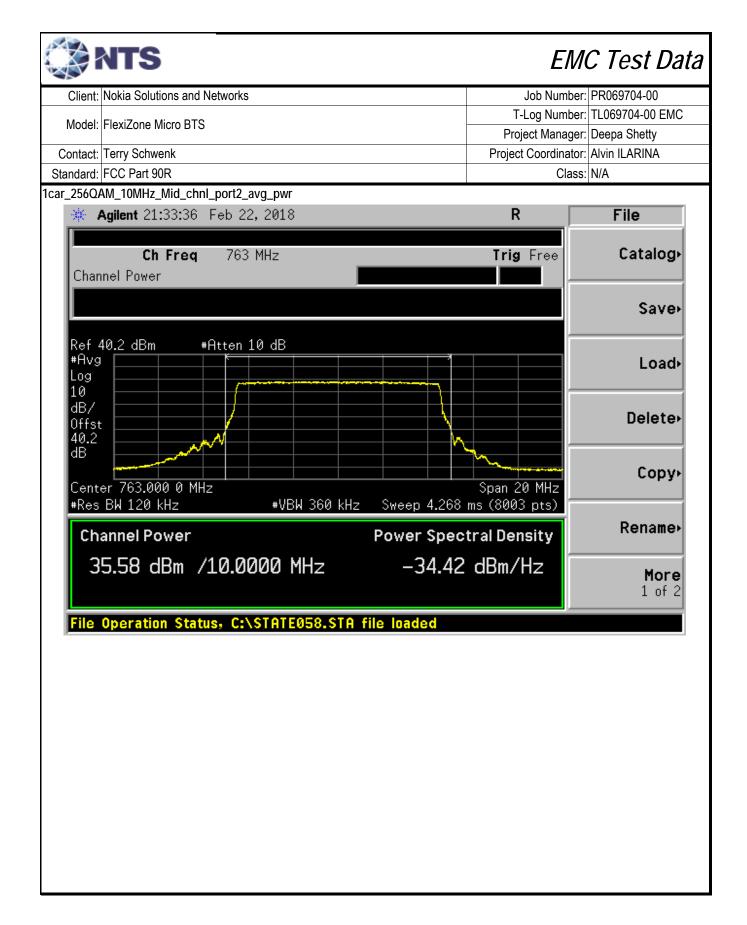
NTS	EMC Test Data
Client: Nokia Solutions and Networks	Job Number: PR069704-00
Model: FlexiZone Micro BTS	T-Log Number: TL069704-00 EMC Project Manager: Deepa Shetty
Contact: Terry Schwenk	Project Nanager. Deepa Sherry Project Coordinator: Alvin ILARINA
Standard: FCC Part 90R	Class: N/A
1car_16QAM_5MHz_Mid_chnl_port1_avg_pwr	
* Agilent 20:51:14 Feb 22, 2018	R Freg/Channel
Ch Freq 763 MHz	Trig Free 763,00000 MHz
Channel Power	
Center 763.0000000 MHz	Start Freq 758.000000 MHz
Ref 40.2 dBm #Atten 10 dB #Avg Log	Stop Freq 768.000000 MHz
10 dB/ 0ffst 40.2	CF Step 1.0000000 MHz <u>Auto</u> Man
dB Center 763.000 0 MHz #Res BW 120 kHz WBW 360 kHz Sweep	Span 10 MHz 2.134 ms (8003 pts)
	Signal Track On <u>Off</u>
37.69 dBm /5.0000 MHz -2	29.30 dBm/Hz
File Operation Status, C:\STATE054.STA file load	ed
	<u></u>
Middle Channel (5 MHz)	

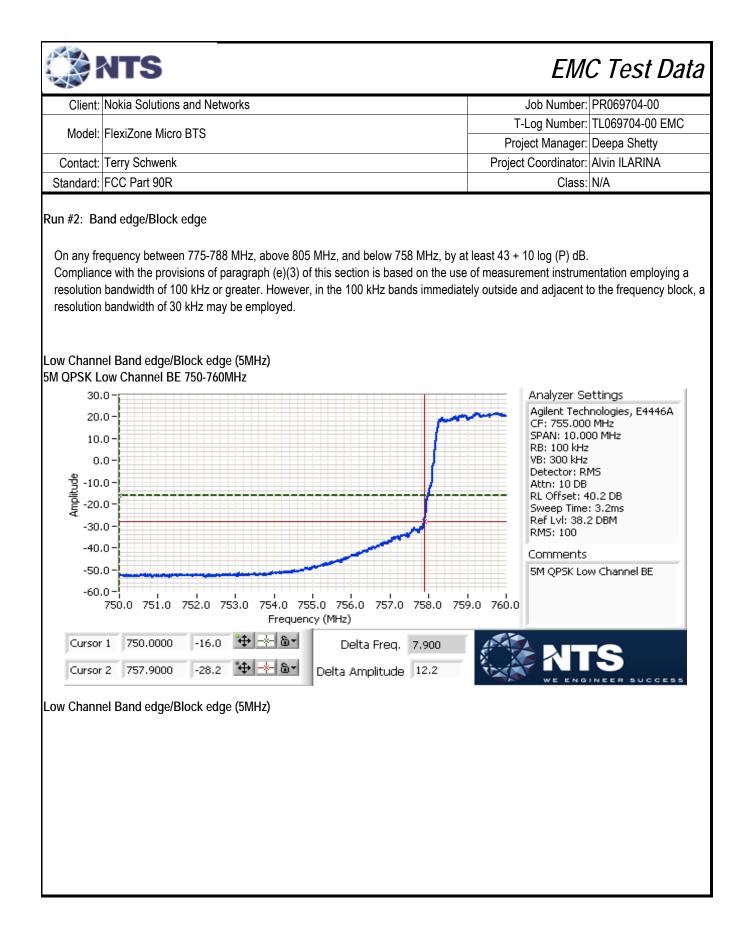
S NTS	EMC Test Data
Client: Nokia Solutions and Networks	Job Number: PR069704-00
Model: FlexiZone Micro BTS	T-Log Number: TL069704-00 EMC
	Project Manager: Deepa Shetty
Contact: Terry Schwenk	Project Coordinator: Alvin ILARINA
Standard: FCC Part 90R	Class: N/A
1car_64QAM_5MHz_Mid_chnl_port1_avg_pwr Agilent 20:51:14 Feb 22, 2018	R Freq/Channel
Ch Freq 763 MHz	Trig Free Tc2 gagage MU-
Channel Power	763.000000 MHz
Center 763.0000000 MHz	Start Freq 758.000000 MHz
Ref 40.2 dBm #Atten 10 dB #Avg Log	Stop Freq 768.000000 MHz
10 dB/ Offst 40.2	CF Step 1.0000000 MHz <u>Auto</u> Man
dB Center 763.000 0 MHz #Res BW 120 kHz #VBW 360 kHz Sweep	Span 10 MHz 2.134 ms (8003 pts)
	Signal Track On <u>Off</u>
37.69 dBm /5.0000 MHz -2	29.30 dBm/Hz
File Operation Status, C:\STATE054.STA file load	ed
Middle Channel (5 MHz)	

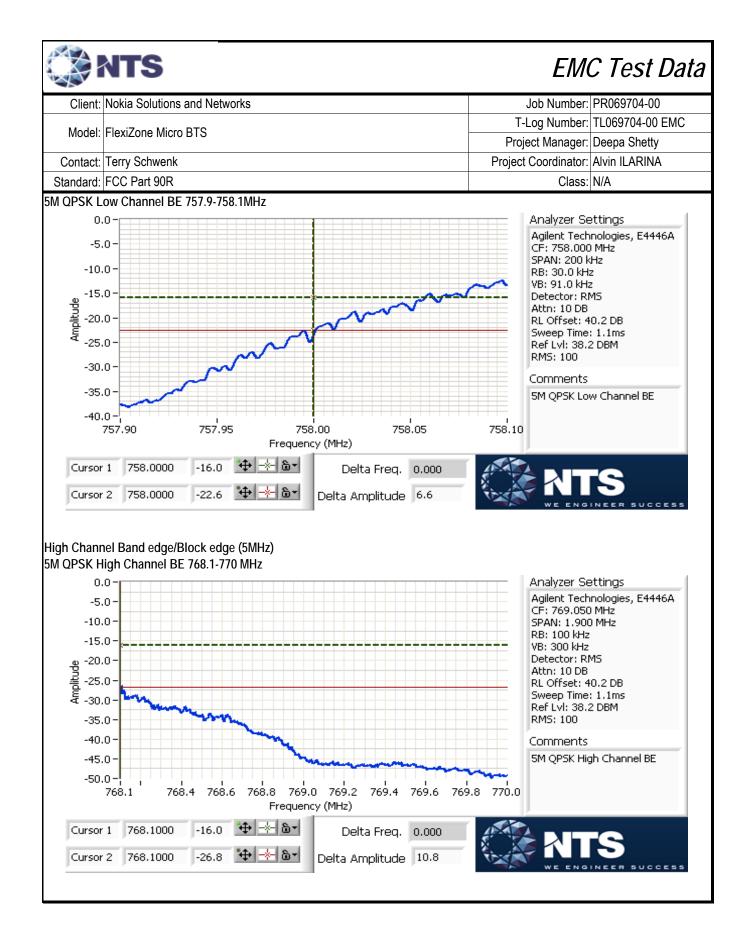

NTS	EMO	C Test Data
Client: Nokia Solutions and Networks	Job Number:	PR069704-00
Model: FlexiZone Micro BTS		TL069704-00 EMC
	Project Manager:	
Contact: Terry Schwenk	Project Coordinator:	
Standard: FCC Part 90R	Class:	N/A
1car_256QAM_5MHz_Mid_chnl_port1_avg_pwr		
Agilent 21:13:07 Feb 22, 2018	R	File
Ch Freq 763 MHz Channel Power	Trig Free	Catalog•
		Save⊦
Ref 40.2 dBm #Atten 10 dB #Avg Log 10		Load⊦
dB/ Offst 40.2 dB		Delete
Center 763.000 0 MHz	Span 10 MHz ms (8003 pts)	Сору
Channel Power Power Spec		Rename⊧
35.78 dBm /5.0000 MHz -31.21	dBm/Hz	More 1 of 2
File Operation Status, C:\STATE054.STA file loaded		
High Channel (5 MHz)		

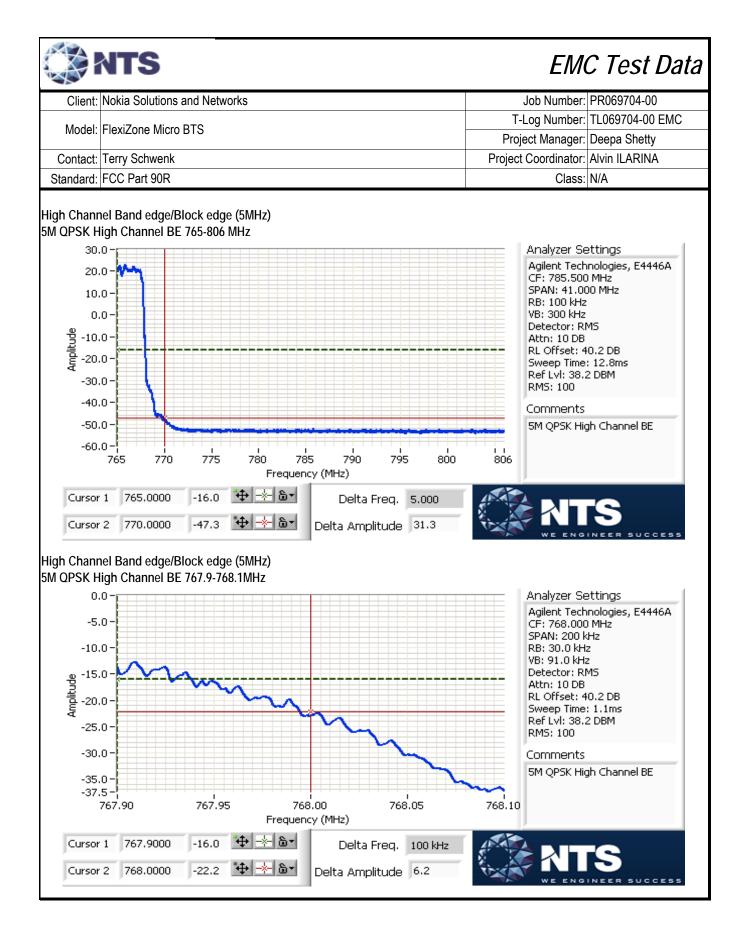

EMC Test Data	
Client: Nokia Solutions and Networks	Job Number: PR069704-00
Model: FlexiZone Micro BTS	T-Log Number: TL069704-00 EMC Project Manager: Deepa Shetty
Contact: Terry Schwenk	Project Coordinator: Alvin ILARINA
Standard: FCC Part 90R	Class: N/A
1car_QPSK_5MHz_High_chnl_port1_avg_pwr	
Agilent 23:28:42 Feb 22, 2018	R Freq/Channel
Ch Freq 765.5 MHz Channel Power	Trig Free Center Freq 765.500000 MHz
	Start Freq 760.500000 MHz
Ref 40.2 dBm #Atten 10 dB #Avg Log 10	5top Freq 770.500000 MHz
dB/ Offst 40.2 dB	CF Step 1.00000000 MHz <u>Auto</u> Man
Center 765.500 0 MHz #Res BW 120 kHz	Span 10 MHz Freq Offset 0.00000000 Hz Hz
Channel Power Spec	tral Density On <u>Off</u>
36.36 dBm /5.0000 MHz -30.63	dBm/Hz
File Operation Status, C:\STATE054.STA file loaded	
High Channel (5 MHz)	

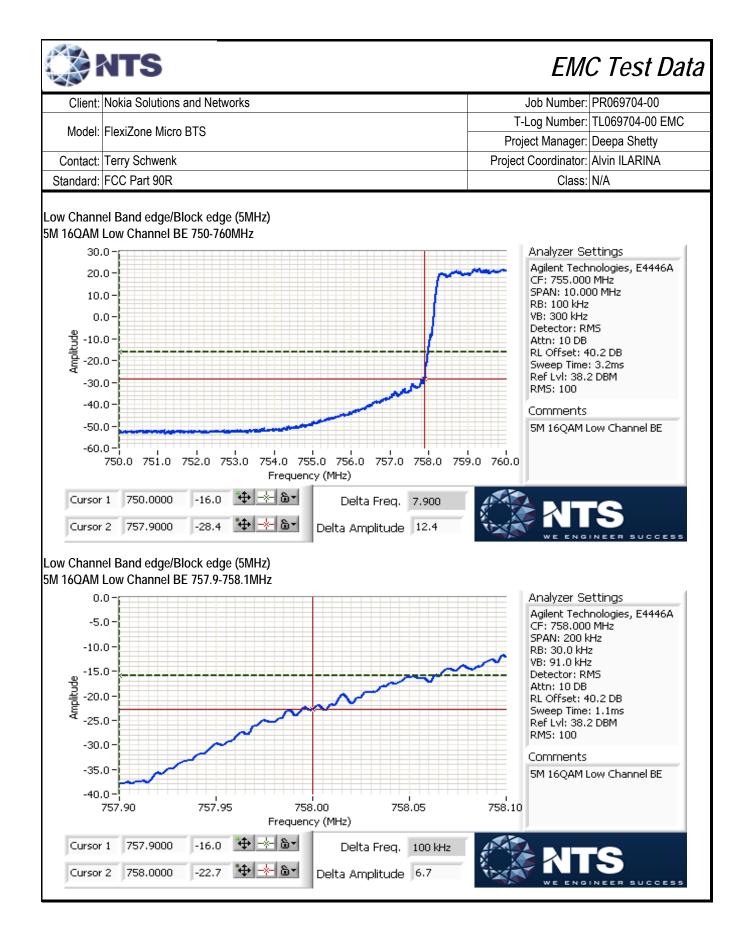

NTS	EMC Test Data				
Client: Nokia Solutions and Networks	Job Number: PR069704-00				
Model: FlexiZone Micro BTS	T-Log Number: TL069704-00 EMC Project Manager: Deepa Shetty				
Contact: Terry Schwenk	Project Coordinator: Alvin ILARINA				
Standard: FCC Part 90R	Class: N/A				
1car_16QAM_5MHz_High_chnl_port1_avg_pwr					
🔆 Agilent 00:00:21 Feb 23, 2018	R Freq/Channel				
Ch Freq 765.5 MHz Channel Power	Trig Free 765.500000 MHz				
	Start Freq 760.500000 MHz				
Ref 40.2 dBm #Atten 10 dB #Avg Log 10	Stop Freq 770.500000 MHz				
dB/ Offst 40.2 dB	CF Step 1.00000000 MHz <u>Auto</u> Man				
Center 765.500 0 MHz #Res BW 120 kHz	Span 10 MHz Freq Offset 34 ms (8003 pts) 0.00000000 Hz				
Channel Power Spe	ectral Density On <u>Off</u>				
36.02 dBm /5.0000 MHz -30.9	97 dBm/Hz				
File Operation Status, C:\STATE054.STA file loaded					
High Channel (5 MHz)					

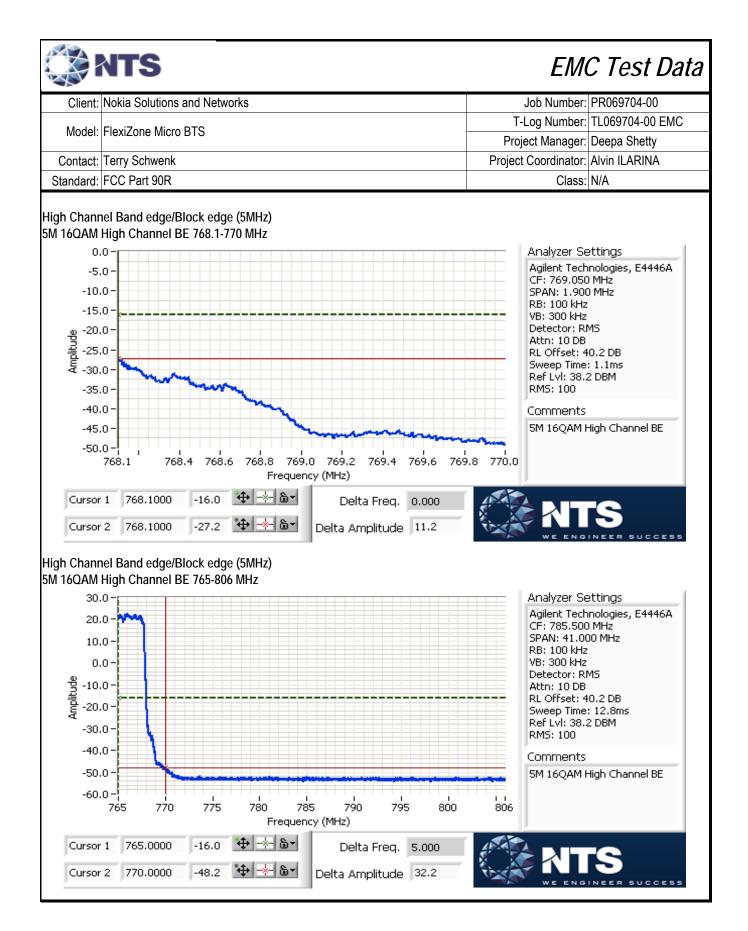

NTS	EMC Test Data	
Client: Nokia Solutions and Networks	Job Number: PR069704-00	
Model: FlexiZone Micro BTS	T-Log Number: TL069704-00 EMC Project Manager: Deepa Shetty	
Contact: Terry Schwenk	Project Coordinator: Alvin ILARINA	
Standard: FCC Part 90R	Class: N/A	
1car_64QAM_5MHz_High_chnl_port1_avg_pwr		
★ Agilent 00:11:43 Feb 23, 2018	R Freq/Channel	
Ch Freq 765.5 MHz	Trig Free Center Freq 765,500000 MHz	
Channel Power	703.388888 MHZ	
Center 765.5000000 MHz	Start Freq 760.500000 MHz	
Ref 40.2 dBm #Atten 10 dB #Avg Log	Stop Freq 770.500000 MHz	
10 dB/ 0ffst 40.2	CF Step 1.0000000 MHz <u>Auto</u> Man	
dB Center 765.500 0 MHz #Res BW 120 kHz	Span 10 MHz 134 ms (8003 pts)	
	Dectral Density On Off	
36.54 dBm /5.0000 MHz -30.45 dBm/Hz		
File Operation Status, C:\STATE054.STA file loaded		
The operation status, c. (STATE054.STA The loaded		
High Channel (5 MHz)		

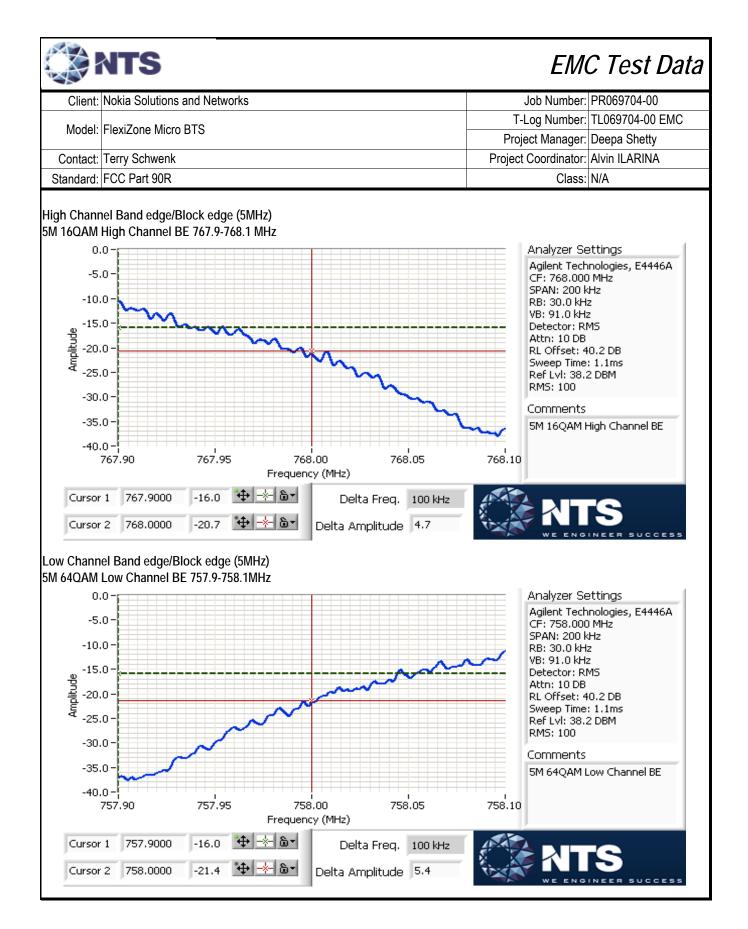

NTS	EMC Test Data		
Client: Nokia Solutions and Networks	Job Number: PR069704-00		
Model: FlexiZone Micro BTS	T-Log Number: TL069704-00 EMC		
Contact: Tarry Sobucoly	Project Manager: Deepa Shetty		
Contact: Terry Schwenk Standard: FCC Part 90R	Project Coordinator: Alvin ILARINA Class: N/A		
1car_256QAM_5MHz_High_chnl_port1_avg_pwr			
* Agilent 00:24:50 Feb 23, 2018	R Freq/Channel		
Ch Freq 765.5 MHz	Trig Free 765.500000 MHz		
Channel Power	703.300000 1112		
	Start Freq 760.500000 MHz		
Ref 40.2 dBm #Atten 10 dB #Avg Log 10	Stop Freq 770.500000 MHz		
dB/ Offst 40.2 dB	CF Step 1.0000000 MHz <u>Auto</u> Man		
Center 765.500 0 MHz	Span 10 MHz Freq Offset 0.00000000 Hz ms (8003 pts)		
	Signal Track On <u>Off</u>		
35.64 dBm /5.0000 MHz -31.35	5 dBm/Hz		
File Operation Status, C:\STATE054.STA file loaded			
Middle Channel (10 MHz)			

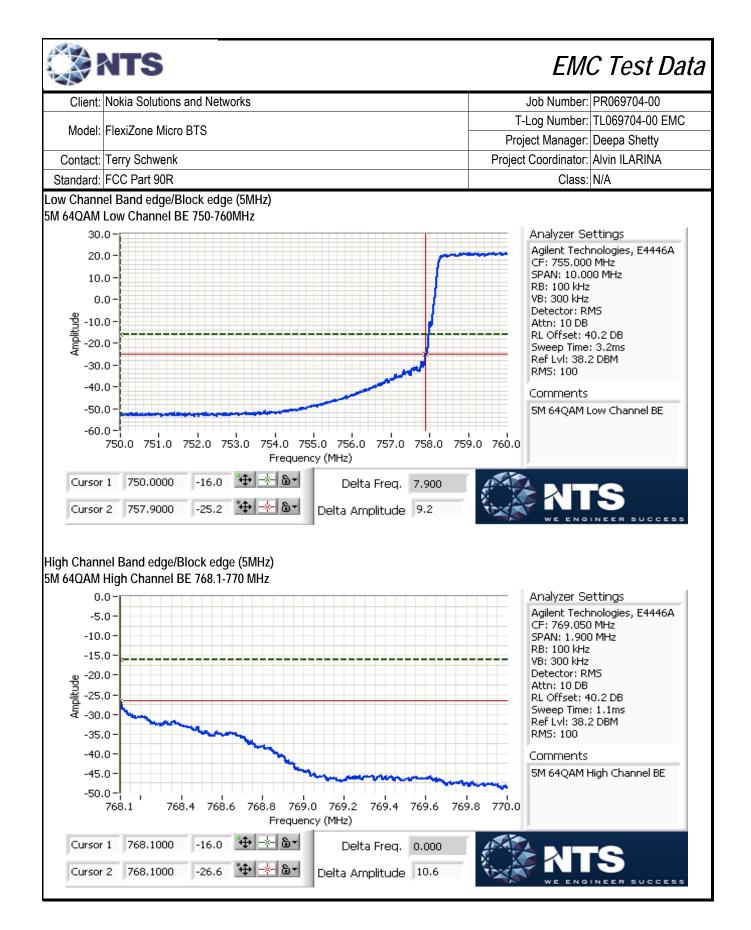


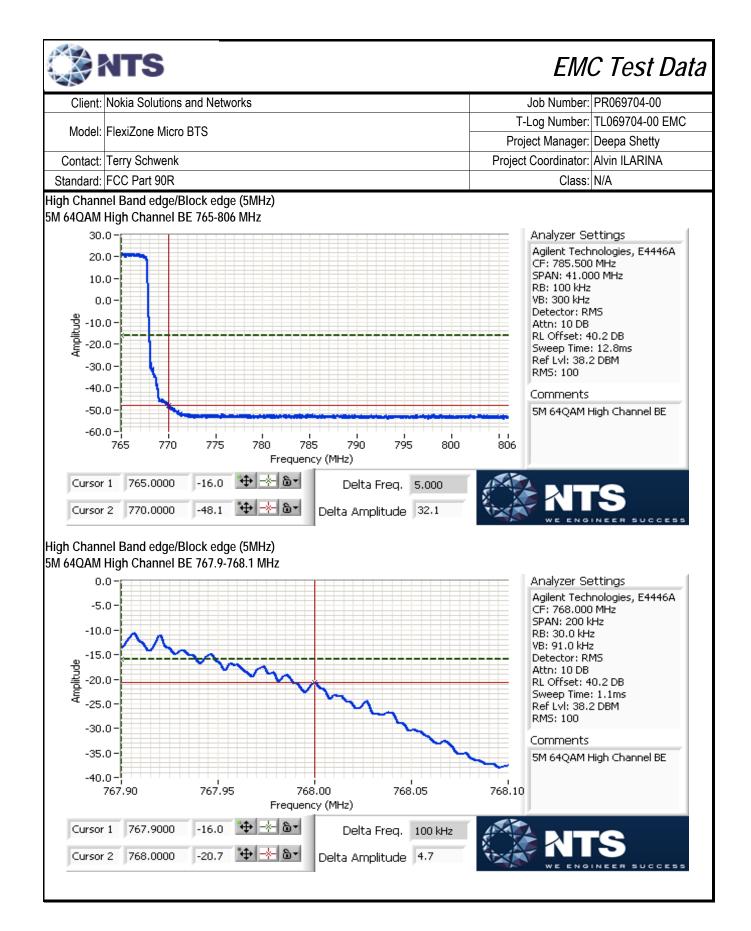


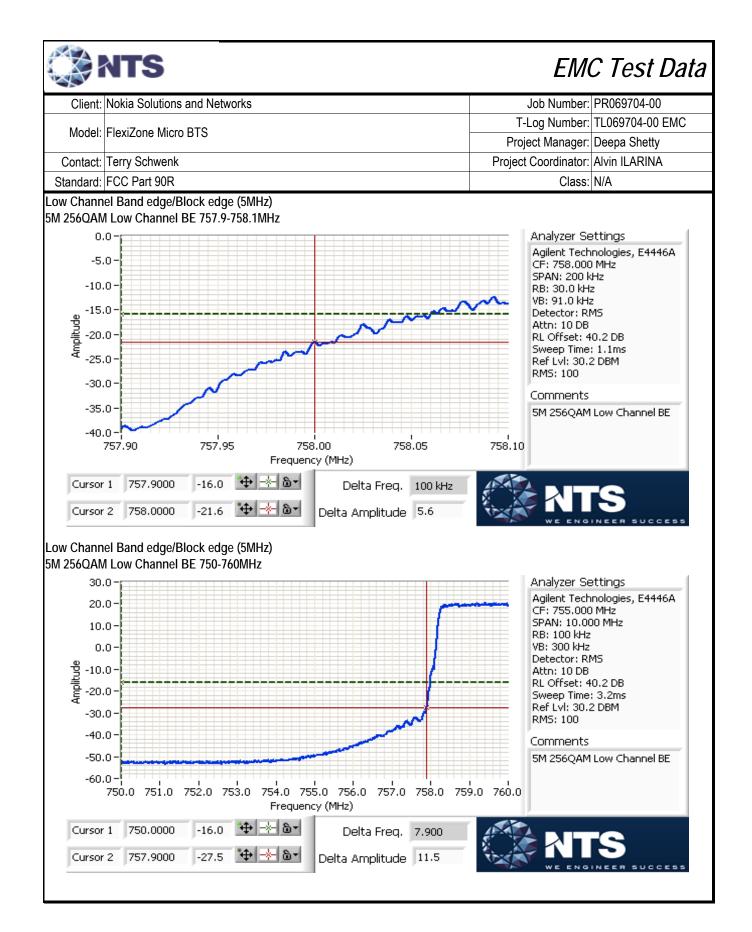


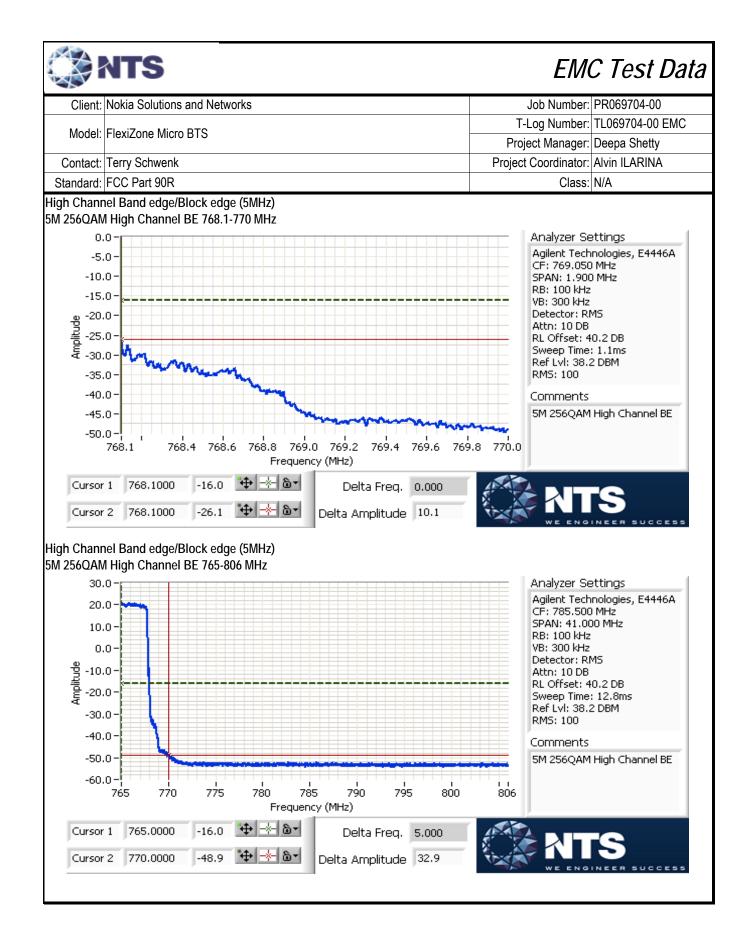


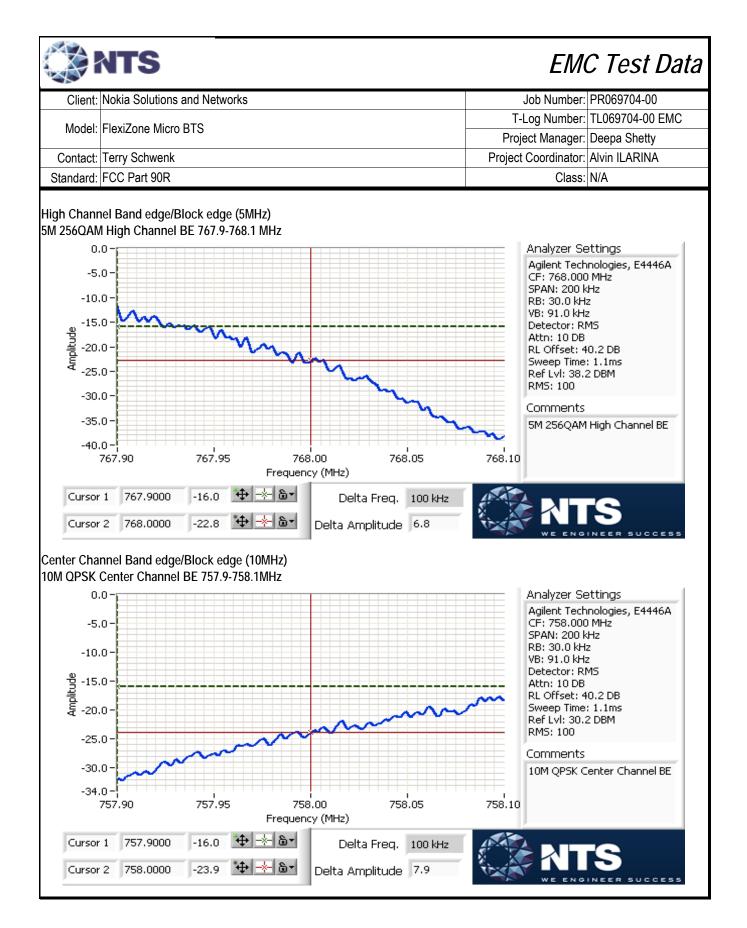


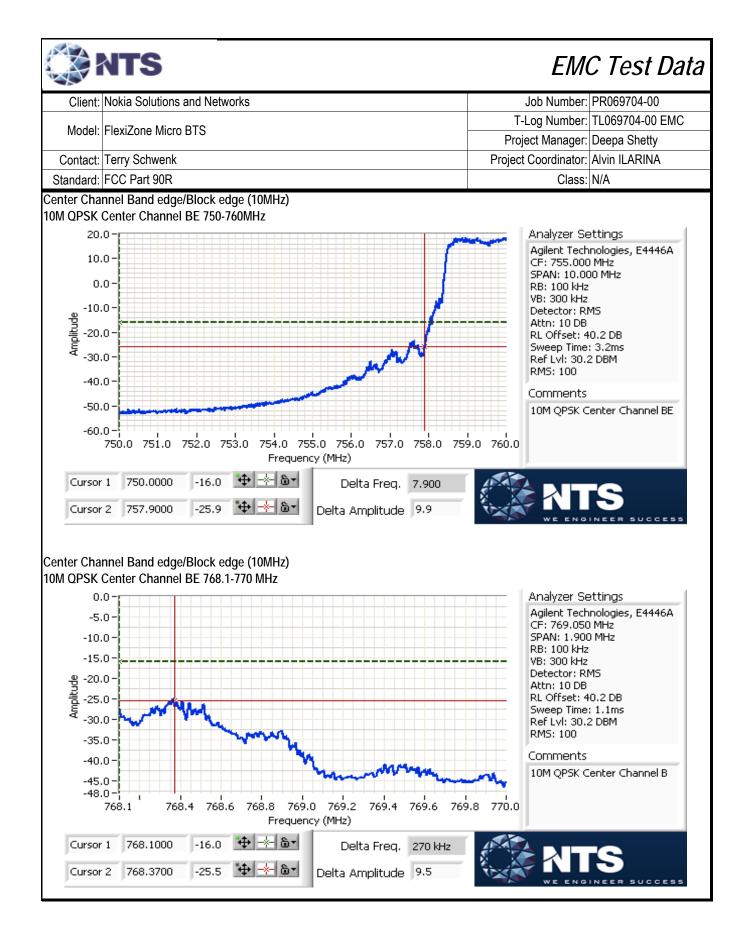


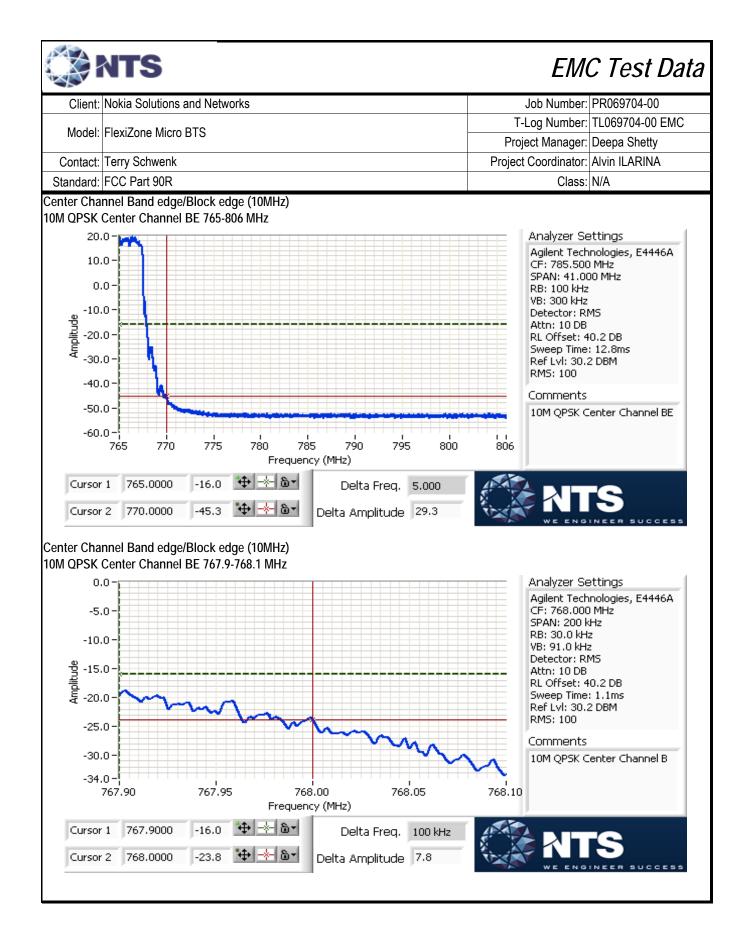


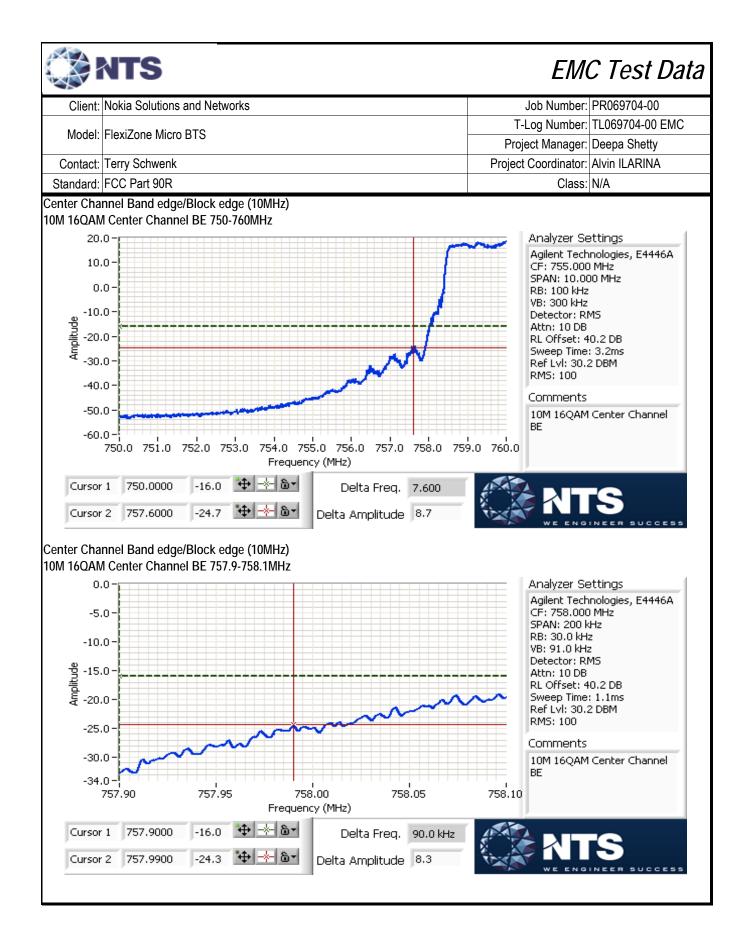


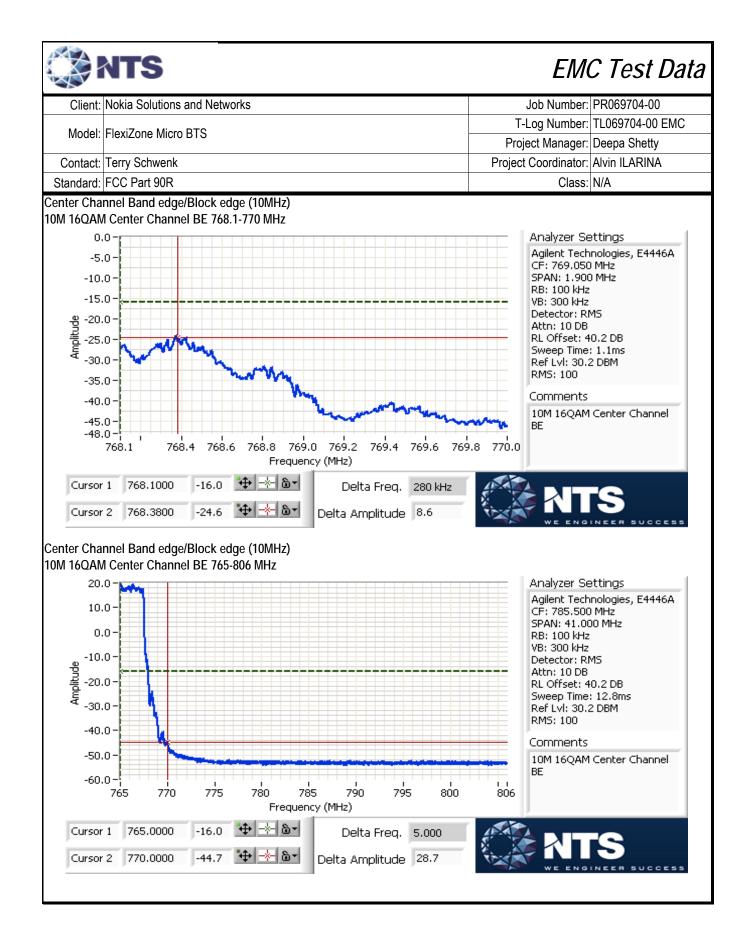


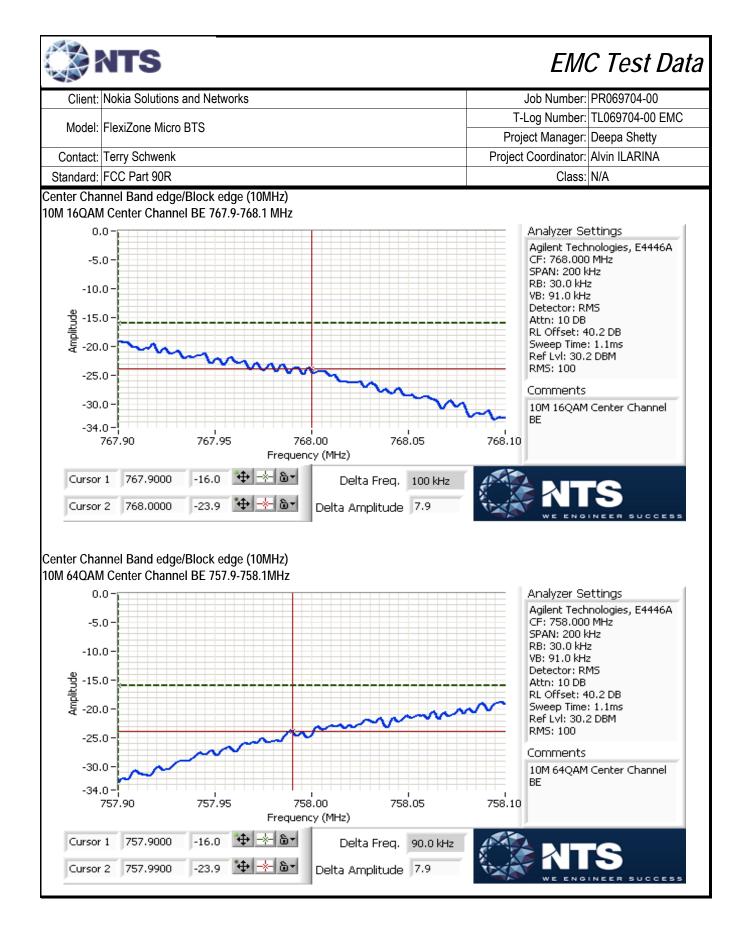


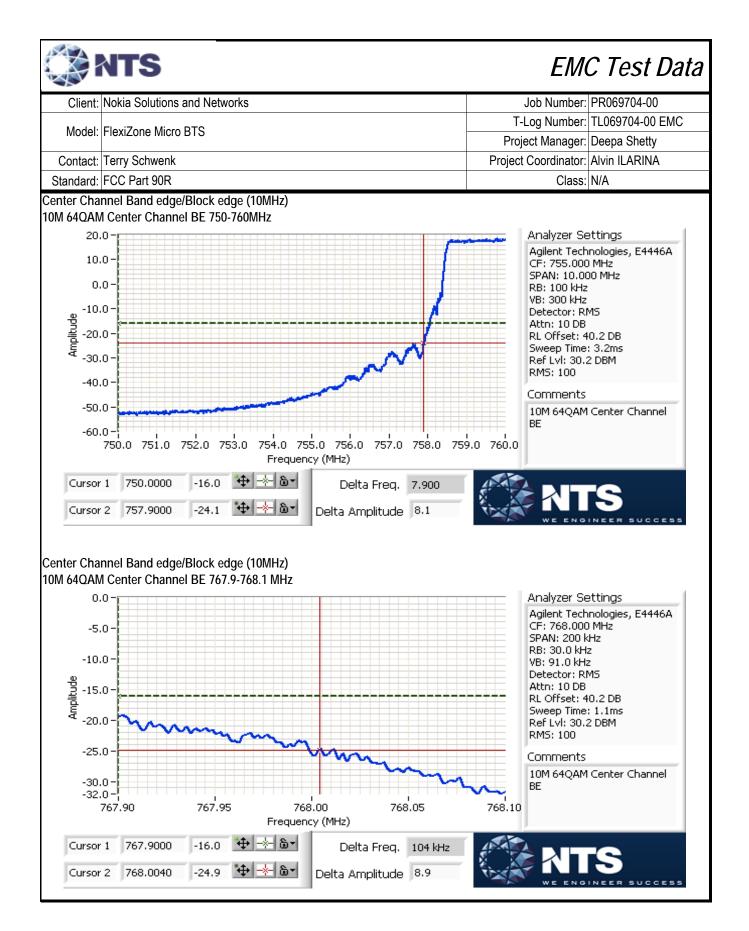


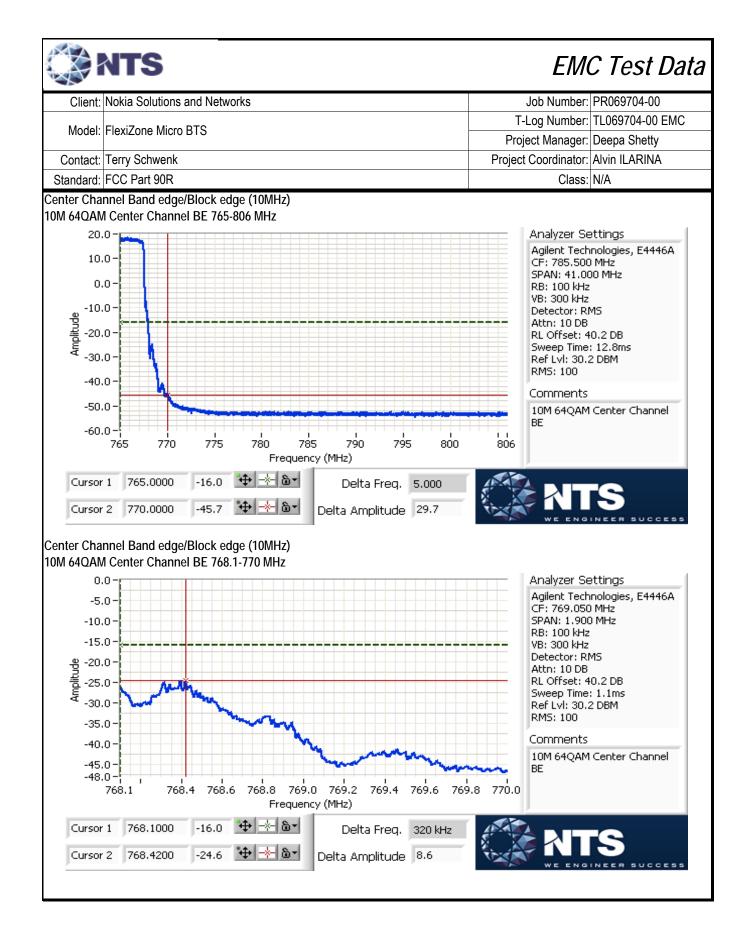


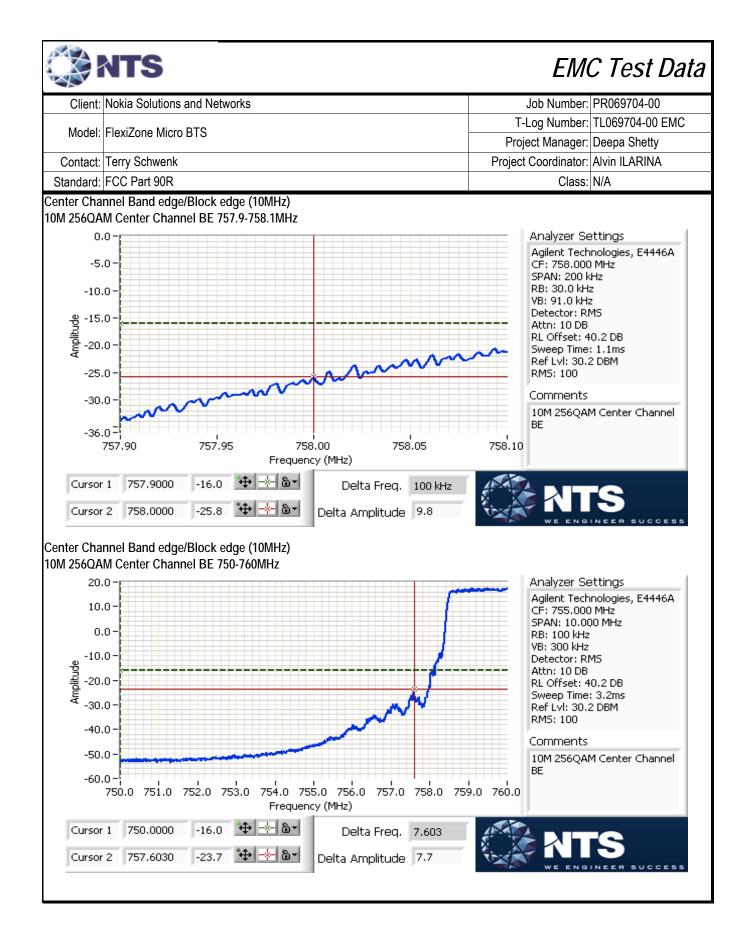


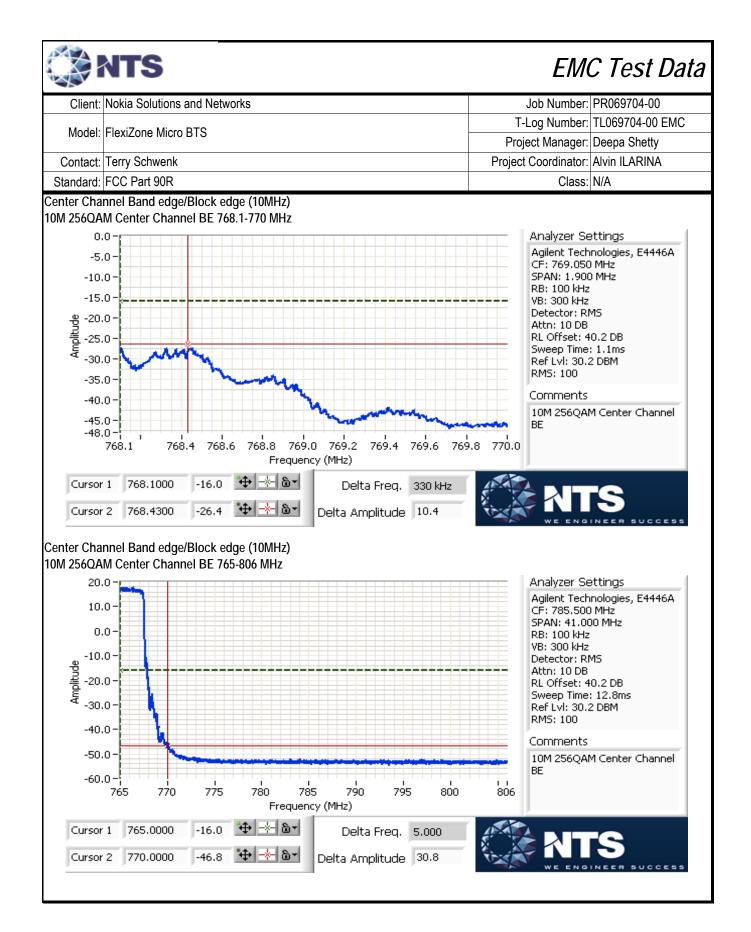


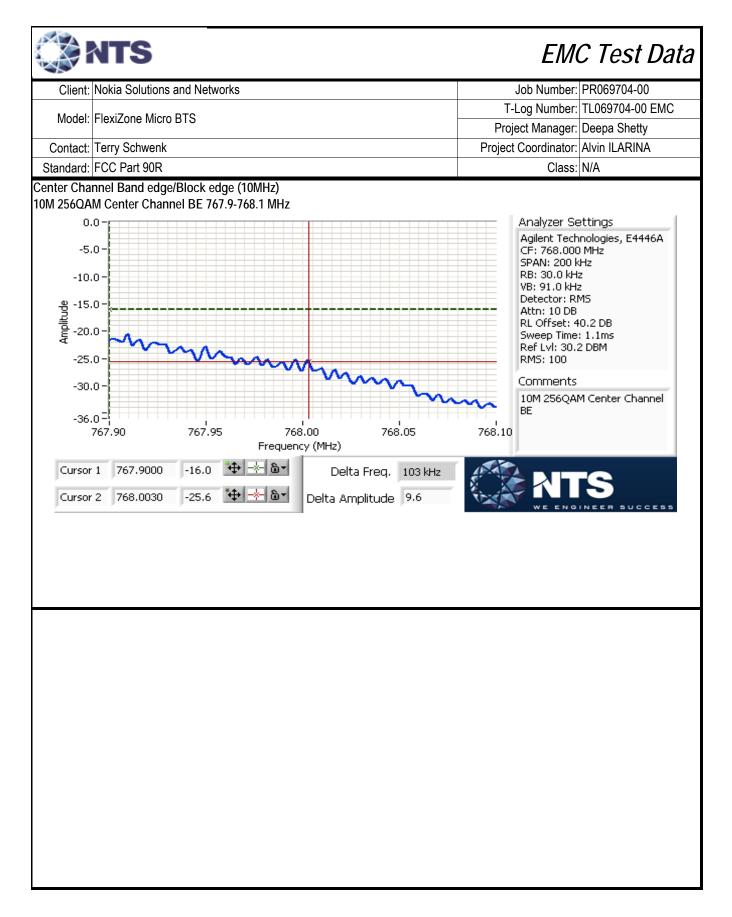


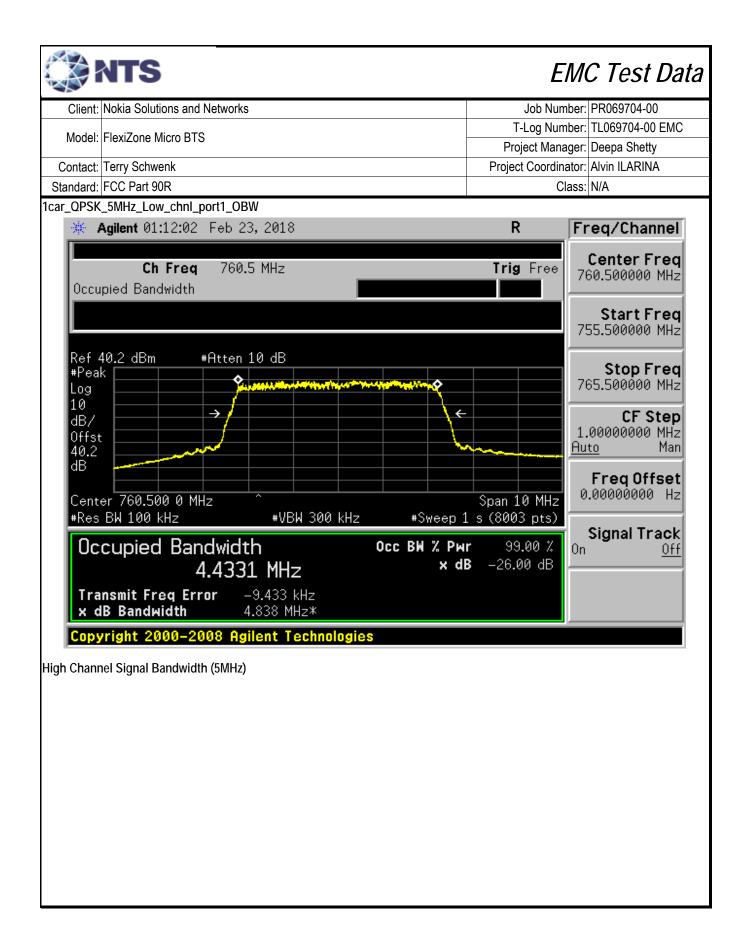


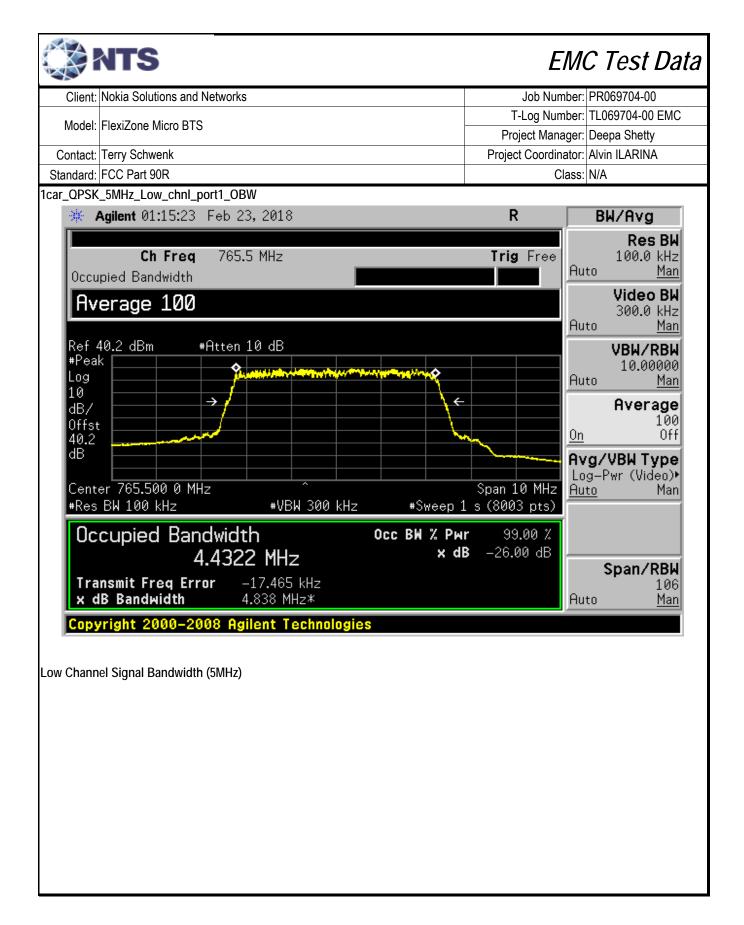


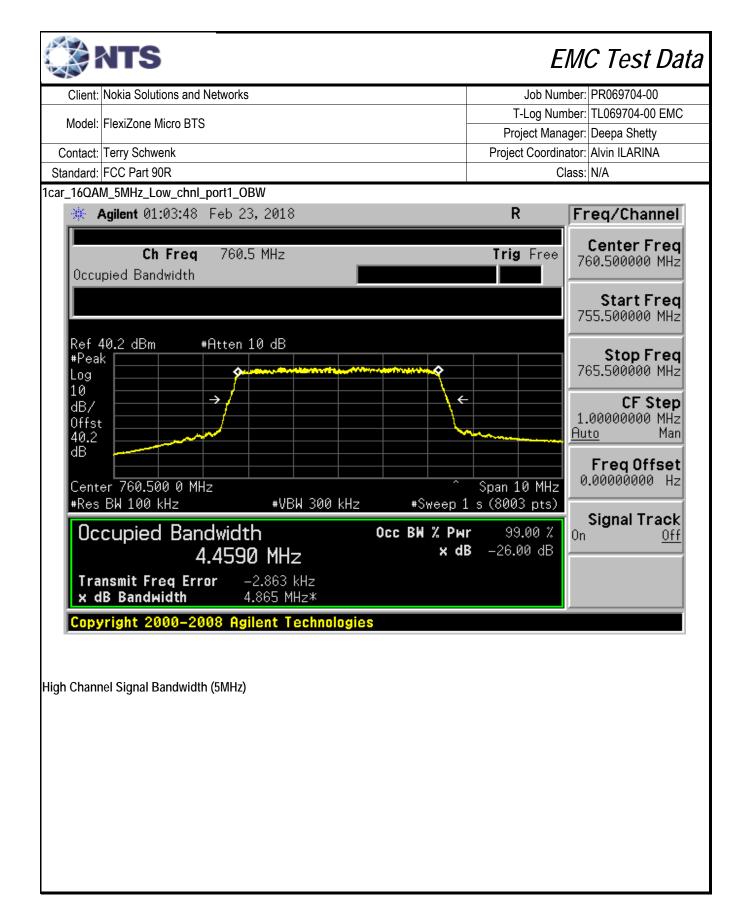


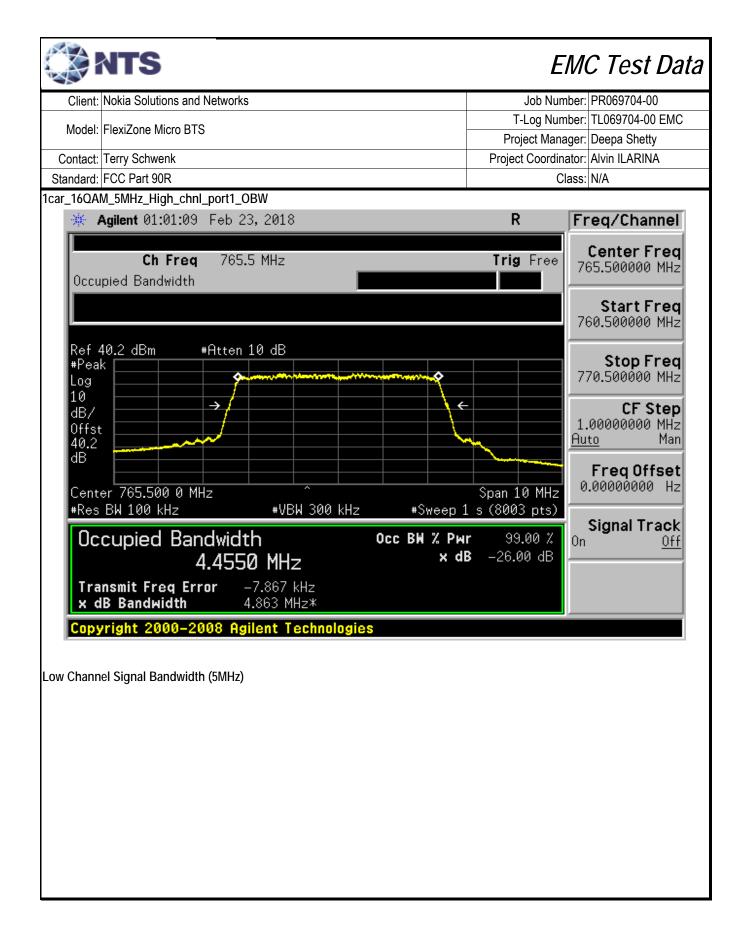


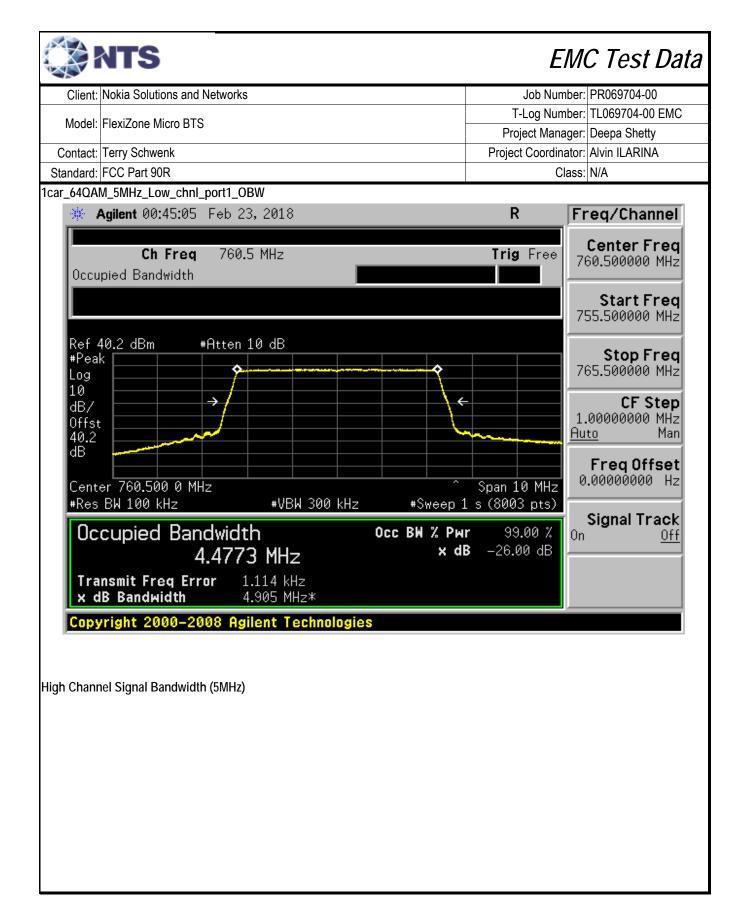


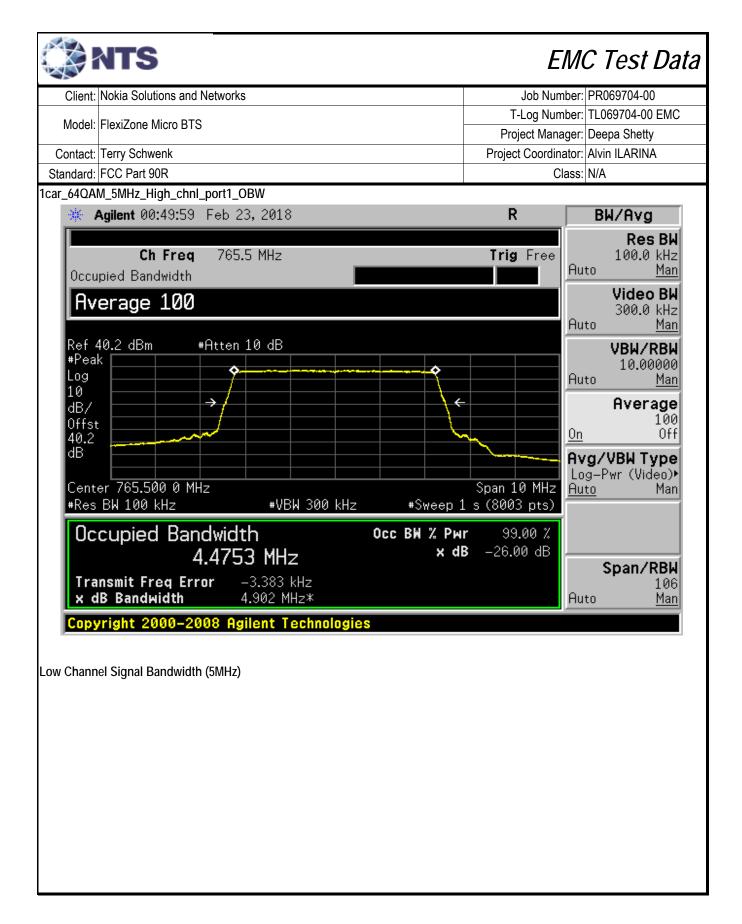


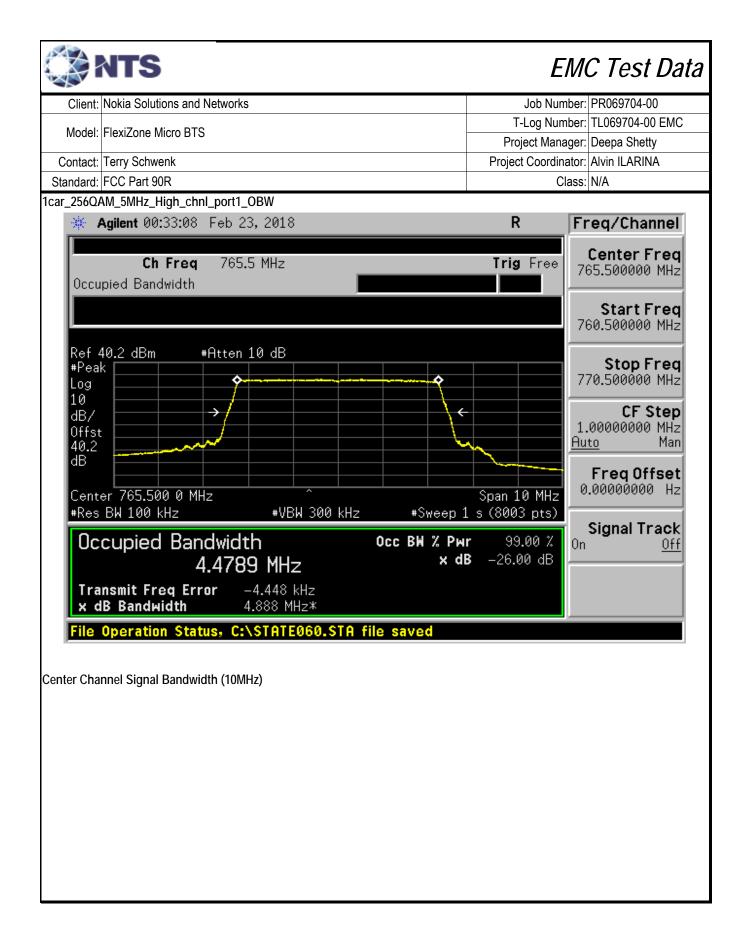


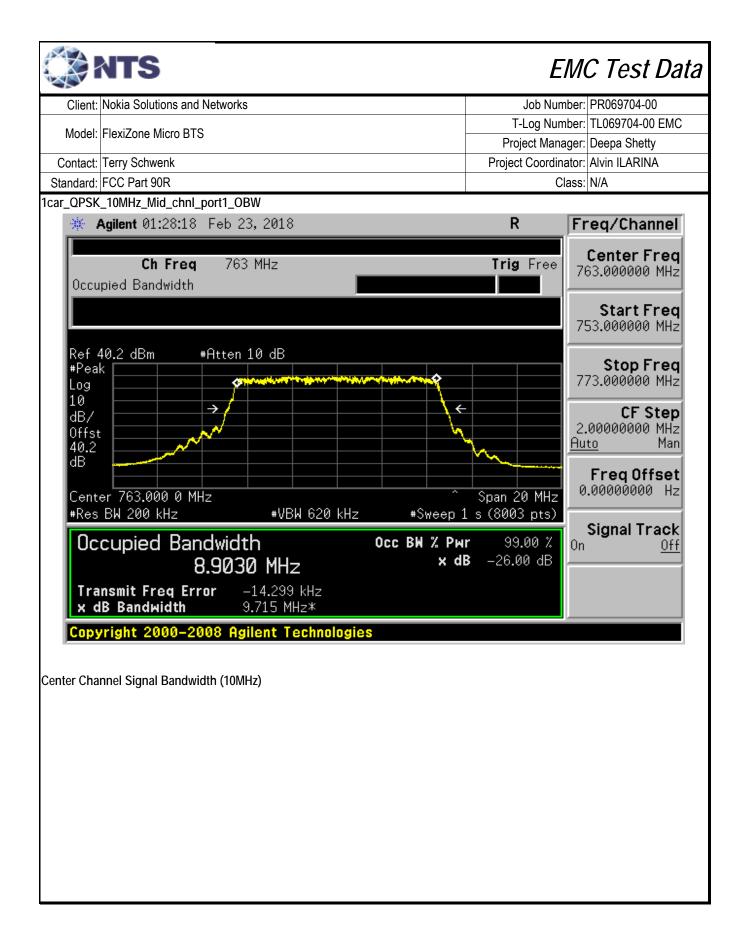


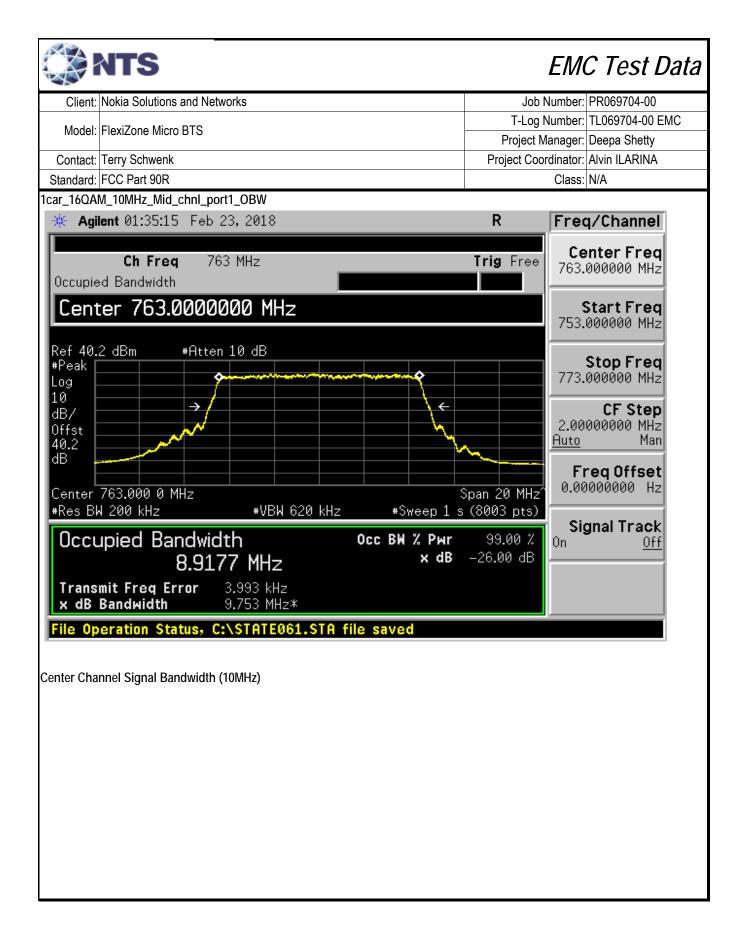



Client:	Nokia Solutio	ons and Networks					PR069704-00
Model:	FlexiZone Micro BTS				•	TL069704-00 EMC	
Contact:	Terry Schwenk				Project Manager: Project Coordinator:		
	FCC Part 90					Class:	
lanuaru.	100 Fait 30	N .				01855.	N/A
n #3: Sig	gnal Bandwid	dth					
C	Date of Test: 2	2/22/2018		C	onfig. Used:	1	
	-	Rafael Varelas			nfig Change:		
Te	est Location: I	FT Chamber #4		E	UT Voltage:	120V/60Hz	
1	Power		Resolution	Bandwid	th (MHz)	1	
	Setting	Frequency (MHz)	Bandwidth	26dB	99%		
	octaing	51	/Hz	2000	3370		
	QPSK	760.5	100kHz	4.838	4.433	1	
	16QAM	760.5	100kHz	4.865	4.459]	
	64QAM	760.5	100kHz	4.905	4.473		
	256QAM	760.5	100kHz	4.91	4.481		
	QPSK	763.0					
	16QAM	763.0					
	64QAM	763.0					
	256QAM	763.0	400141-	4.000	4 400		
	QPSK 16QAM	765.5 765.5	100kHz 100kHz	4.838	4.432		
	64QAM	765.5	100kHz	4.863 4.902	4.455 4.475	4	
	256QAM	765.5	100kHz	4.888	4.475		
	20000/111		MHz	4.000			
	QPSK	763.0	200kHz	9.715	8.903		
	16QAM	763.0	200kHz	9.753	8.917		
	64QAM	763.0	200kHz	9.808	8.940]	
	256QAM	763.0	200kHz	9.815	8.913]	
	000/ handwi			1.062.10		an 10/and 50/af the mass	
e 1:		Span \geq 1.5% and \leq 5%			III KD DEIWE	en 1% and 5% of the mea	isured bandwidth af
		5 pair \geq 1.5 % and \geq 5 %					
Chann	el Signal Bar	ndwidth (5MHz)					
	U						

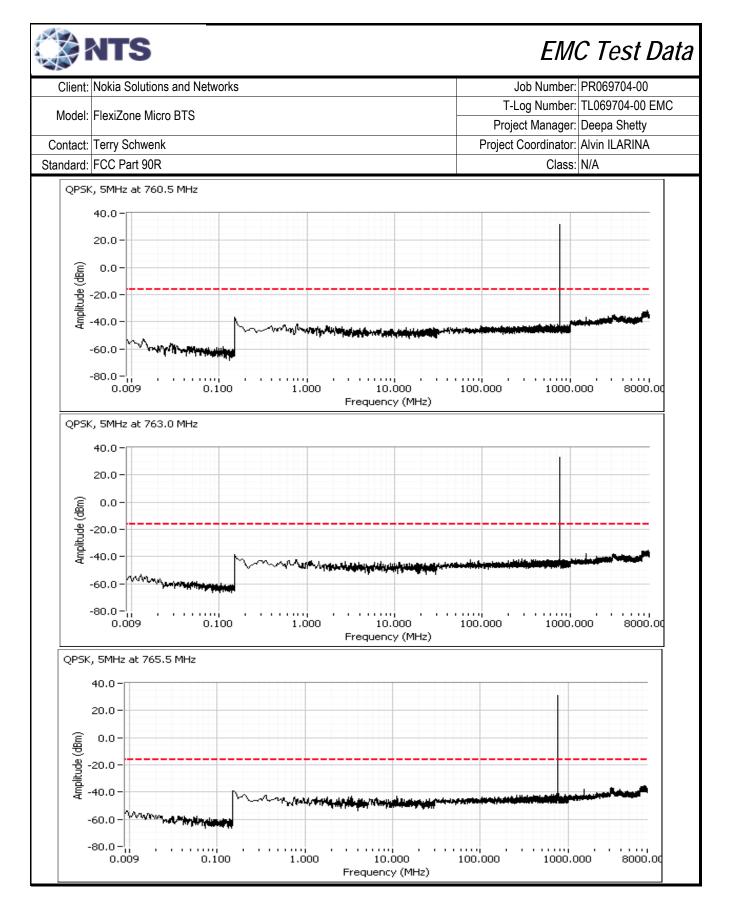


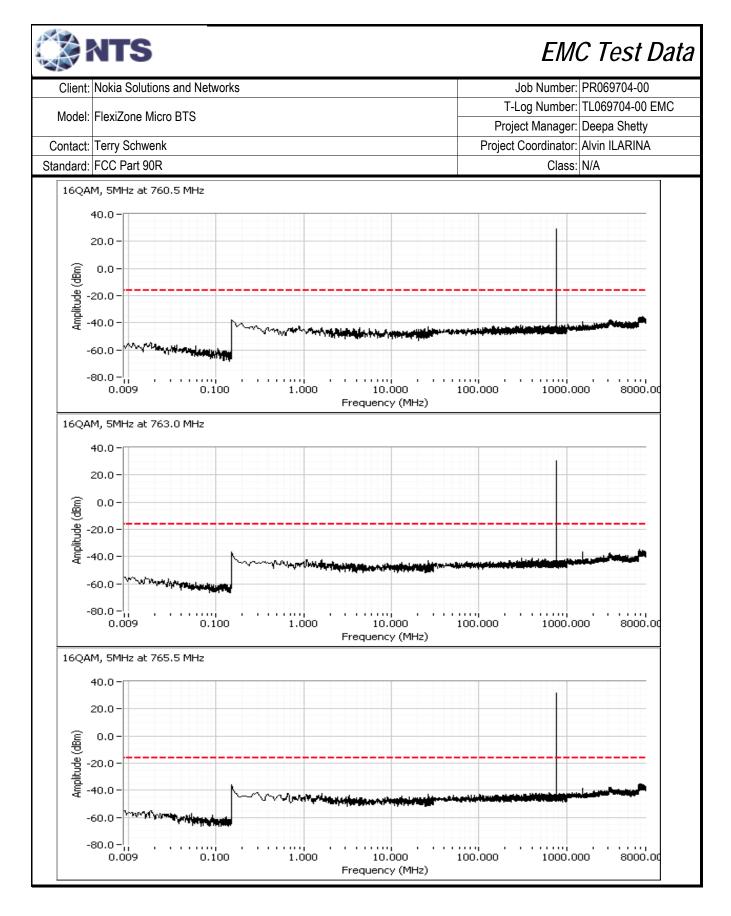


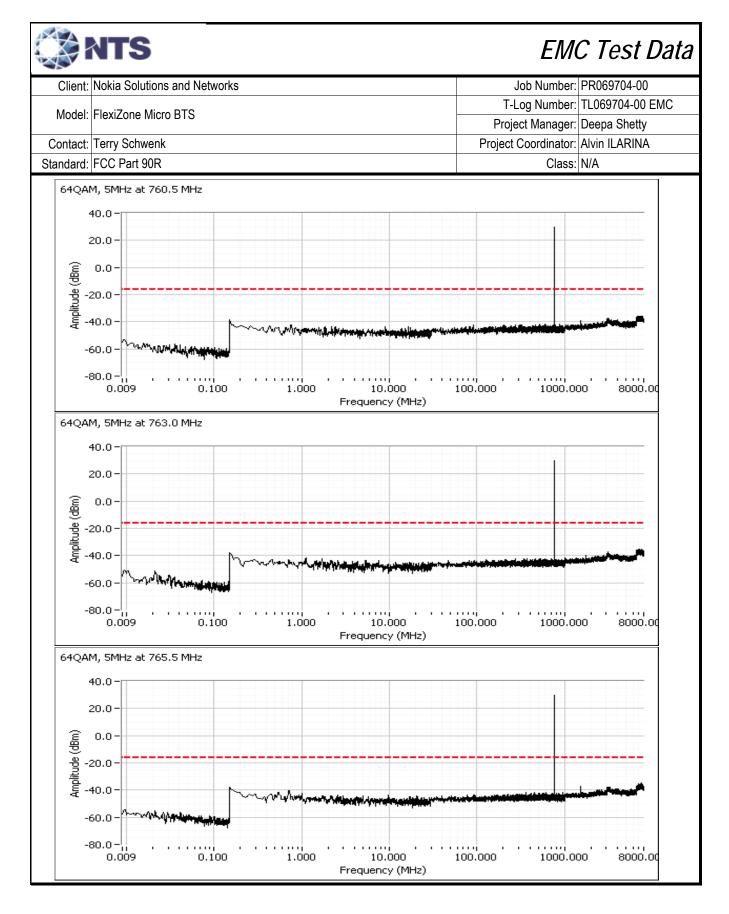


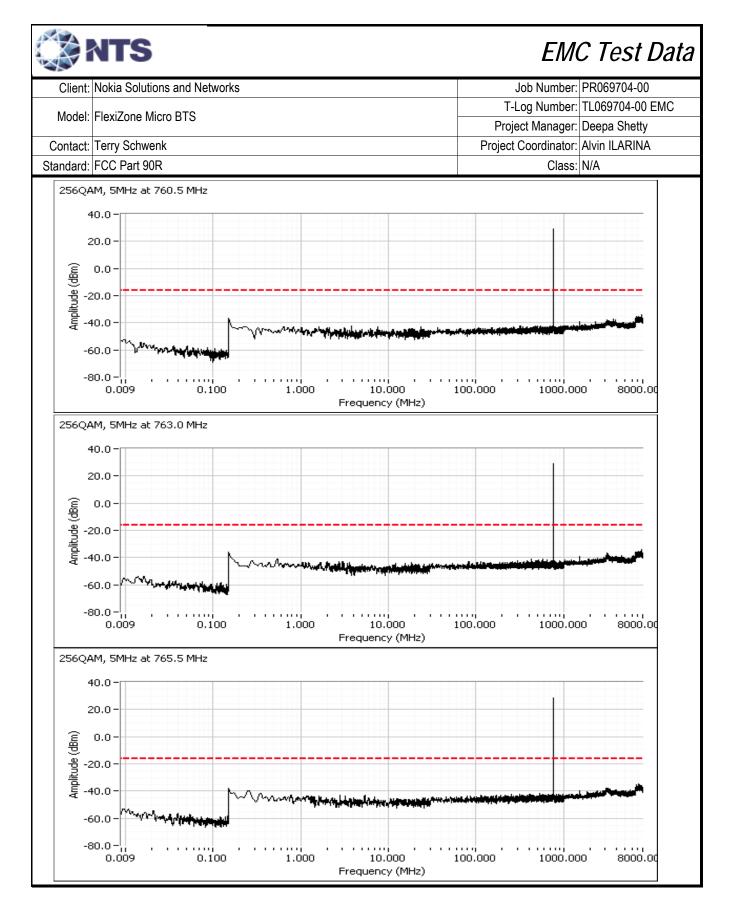


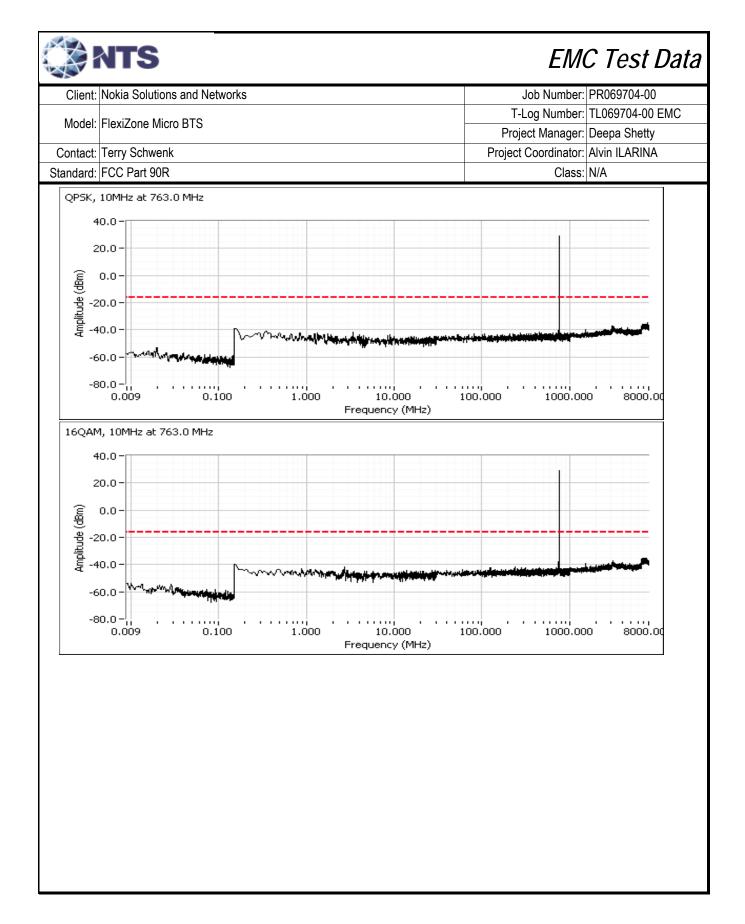
NTS	EMC Test Data					
Client: Nokia Solutions and Networks	Job Number: PR069704-00					
Model: FlexiZone Micro BTS	T-Log Number: TL069704-00 EMC					
	Project Manager: Deepa Shetty					
Contact: Terry Schwenk	Project Coordinator: Alvin ILARINA					
Standard: FCC Part 90R	Class: N/A					
1car_256QAM_5MHz_Low_chnl_port1_OBW						
Agilent 00:37:04 Feb 23, 2018	R Freq/Channel					
Ch Freg 760.5 MHz	Trig Free Center Freq					
Occupied Bandwidth	760.500000 MHz					
	Chart From					
l	Start Freq 755.500000 MHz					
Ref 40.2 dBm #Atten 10 dB						
Ref 40.2 dBm #Atten 10 dB #Peak	Stop Freq					
Log	765.500000 MHz					
$10 \\ dB/ \rightarrow$	← CF Step					
Offst	1.0000000 MHz					
40.2 dB	Auto Man					
	Freq Offset					
Center 760.500 0 MHz	Span 10 MHz 0.00000000 Hz					
#Res BW 100 kHz #VBW 300 kHz #Sweep	1 s (8003 pts)					
Occupied Bandwidth Occ BW % P	Signal Track					
4.4818 MHz *	dB –26.00 dB					
Transmit Freq Error 106.804 Hz						
x dB Bandwidth 4.910 MHz*						
Copyright 2000–2008 Agilent Technologies						
Copyright 2000 2000 fighting rechnologies						
High Channel Signal Bandwidth (5MHz)						

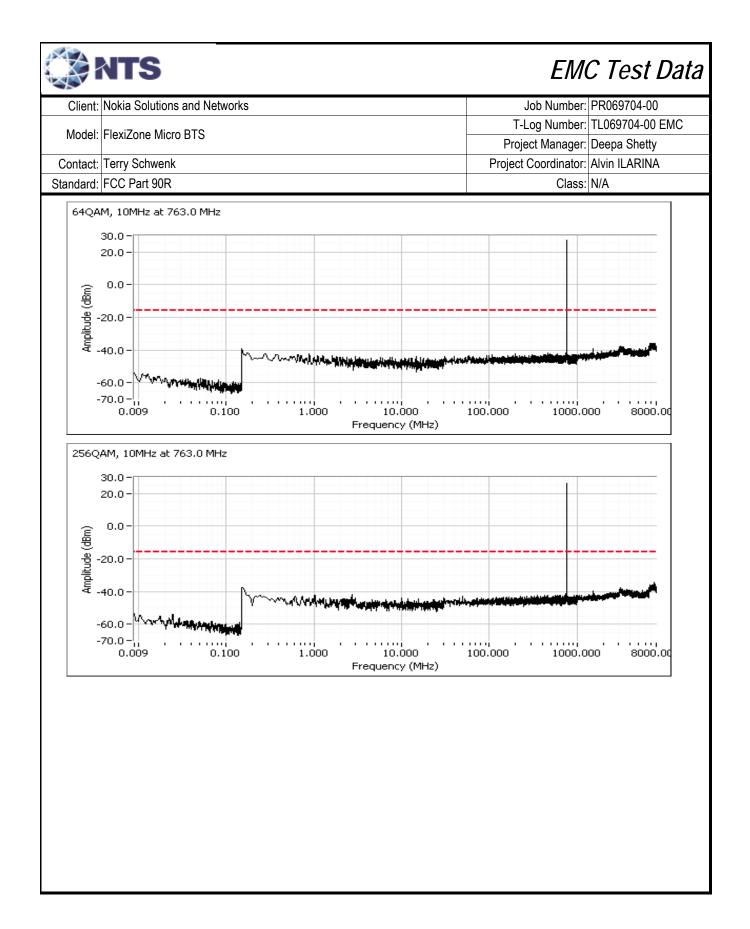


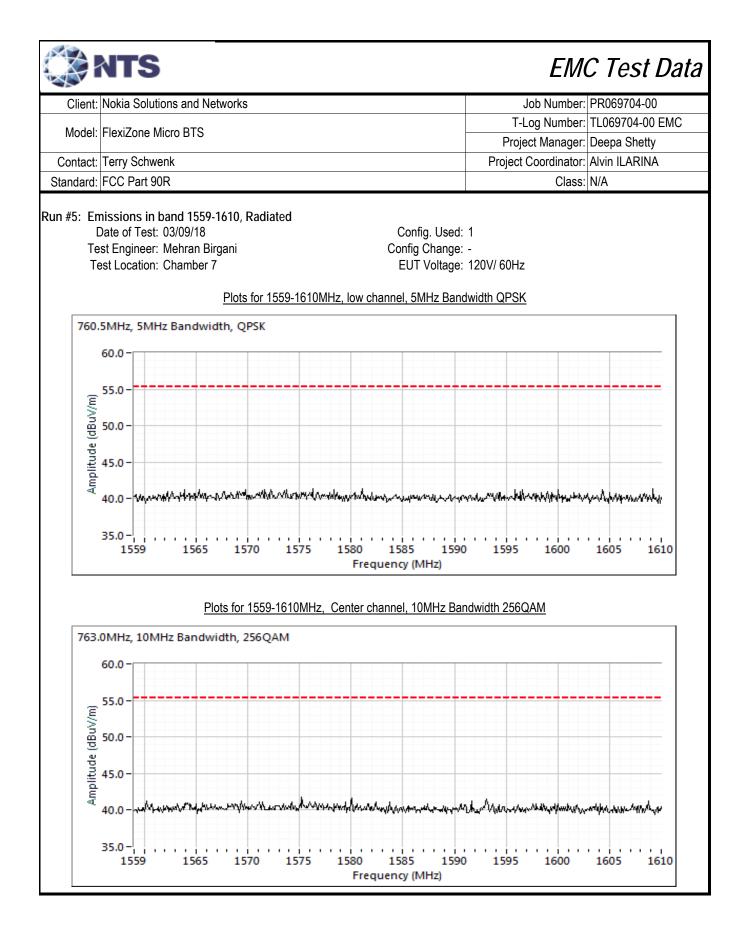


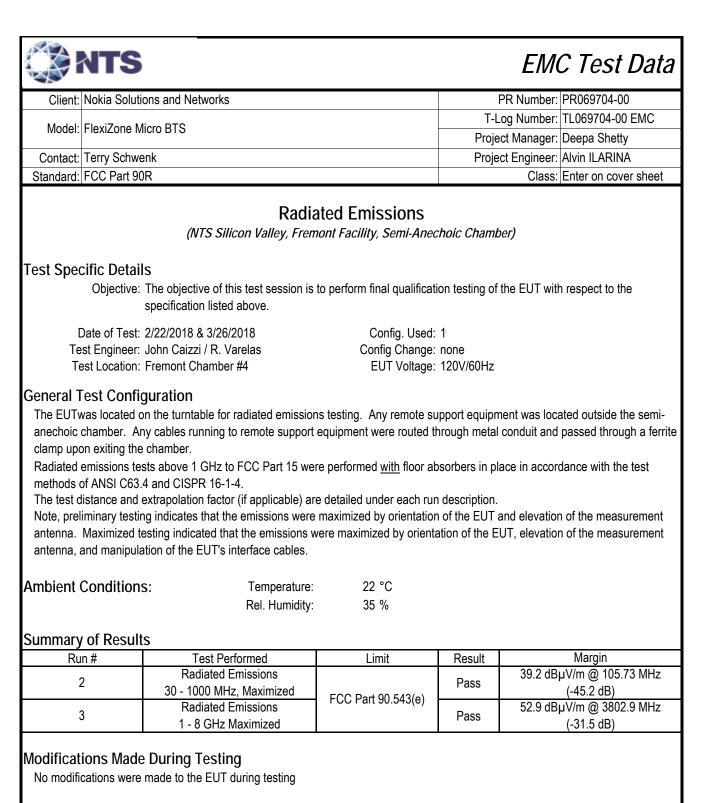

NTS	ЕМС	C Test Data
Client: Nokia Solutions and Networks	Job Number: P	PR069704-00
	T-Log Number: T	L069704-00 EMC
Model: FlexiZone Micro BTS	Project Manager: D	Deepa Shetty
Contact: Terry Schwenk	Project Coordinator: A	Ivin ILARINA
Standard: FCC Part 90R	Class: N	J/A
1car_64QAM_10MHz_Mid_chnl_port1_OBW		
🔆 Agilent 01:41:45 Feb 23, 2018	R Freq.	/Channel
Ch Freq 763 MHz Occupied Bandwidth	763.0	iter Freq 000000 MHz tart Freq 000000 MHz
	5pan 20 MHz ² (8003 pts)	top Freq 00000 MHz CF Step 00000 MHz Man eq Offset 100000 Hz
Occupied Bandwidth 8.9406 MHzOcc BW % Pwr × dBTransmit Freq Error × dB Bandwidth-4.562 kHz 9.808 MHz*	99.00 % On -26.00 dB	nal Track <u>Off</u>
Copyright 2000–2008 Agilent Technologies	p	
Center Channel Signal Bandwidth (10MHz)		

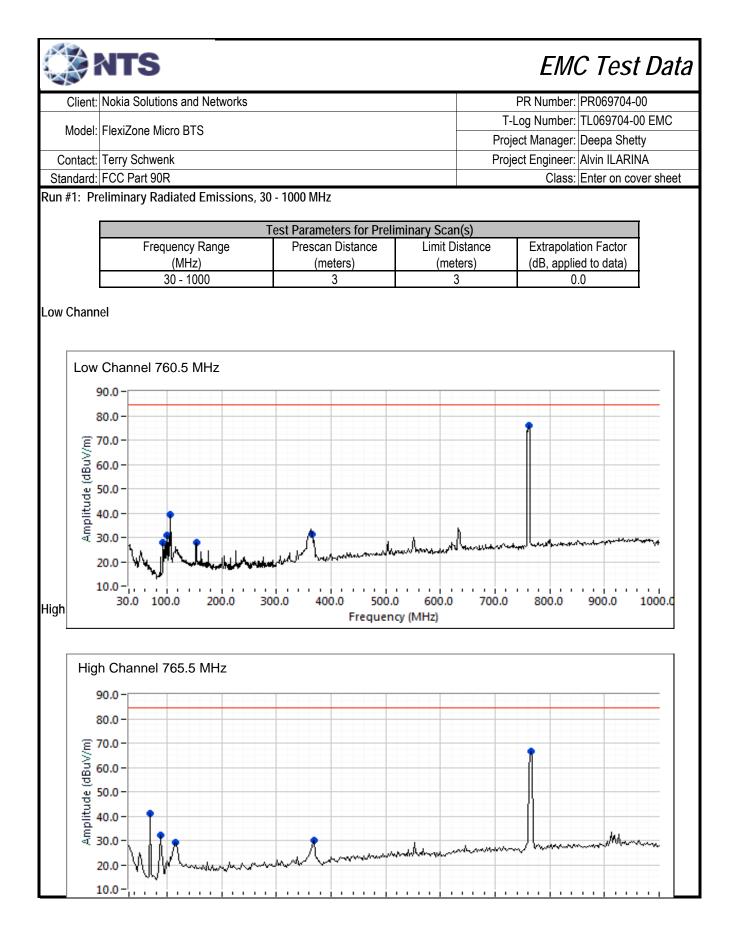

NTS		EMC Test Data
Client: Nokia Solutions and Networks	Job	Number: PR069704-00
Model: FlexiZone Micro BTS		Number: TL069704-00 EMC /anager: Deepa Shetty
Contact: Terry Schwenk		rdinator: Alvin ILARINA
Standard: FCC Part 90R		Class: N/A
1car_256QAM_10MHz_Mid_chnl_port1_OBW		
🔆 Agilent 01:51:40 Feb 23, 2018	R	BW/Avg
		Res BW
Ch Freq 763 MHz	Trig Free	200.0 kHz Auto Man
Occupied Bandwidth		
		Video BW 620.0 kHz Auto Man
Ref 40.2 dBm #Atten 10 dB		
#Peak		VBW/RBW 10.00000
Log		Auto Man
		Average
dB/ Offst		100
40.2		<u>On</u> Off
dB		Avg/VBW Type
	Anna 20 Mile	Log-Pwr (Video)►
Center 763.000 0 MHz ^ #Res BW 200 kHz #VBW 620 kHz #Sweep 1	Span 20 MHz s (8003 pts)	<u>Auto</u> Man
Occupied Bandwidth Occ BW % Pwr		
8.9357 MHz × dB	–26.00 dB	Crean (DDU
Transmit Freg Error -7.993 kHz		Span/RBW 106
x dB Bandwidth 9.815 MHz*		Auto Man
Copyright 2000–2008 Agilent Technologies		
capyright 2000 2000 fightent recimologica		


🎲 NTS			EMO	C Test Da
Client: Nokia Solutions and Net	works		Job Number:	PR069704-00
			T-Log Number:	TL069704-00 EMC
Model: FlexiZone Micro BTS			Project Manager:	
Contact: Terry Schwenk				
Standard: FCC Part 90R	Project Coordinator: Alvin ILARINA Class: N/A			
Stanuaru. FOO Fait SUR			CidSS.	IN/A
un #4: Out of Band Spurious Em	issions, Conducted			
Date of Test: 02/22/18		Config. Used		
Test Engineer: Mehran Birg	ani	Config Change		
Test Location: Lab 4A		EUT Voltage	e: 120V/ 60Hz	
Frequency (MHz)	Modulation/ BW	Limit	Result	
760.5	QPSK/ 5MHz	-16	Pass	
763.0	QPSK/ 5MHz	-16	Pass	
765.3	QPSK/ 5MHz	-16	Pass	
760.5	16QAM/ 5MHz	-16	Pass	
763.0	16QAM/ 5MHz	-16	Pass	
765.3	16QAM/ 5MHz	-16	Pass	
760.5	64QAM/ 5MHz	-16	Pass	
763.0	64QAM/ 5MHz	-16	Pass	
765.3	64QAM/ 5MHz	-16	Pass	
760.5	256QAM/ 5MHz	-16	Pass	
763.0	256QAM/ 5MHz	-16	Pass	
765.3	256QAM/ 5MHz	-16	Pass	
760.5	QPSK/ 10MHz	-16	Pass	
763.0	QPSK/ 10MHz	-16	Pass	
765.3	QPSK/ 10MHz	-16	Pass	
760.5	16QAM/ 10MHz	-16	Pass	
763.0	16QAM/ 10MHz	-16	Pass	
765.3	16QAM/ 10MHz	-16	Pass	
760.5	64QAM/ 10MHz	-16	Pass	
763.0	64QAM/ 10MHz	-16	Pass	
765.3	64QAM/ 10MHz	-16	Pass	
760.5	256QAM/ 10MHz	-16	Pass	
763.0	256QAM/ 10MHz	-16	Pass	
765.3	256QAM/ 10MHz	-16	Pass	









	NTS			EM	
Client:	Nokia Solutions and Network	S			PR069704-00
Model	FlexiZone Micro BTS			T-Log Number:	TL069704-00 EMC
wouer.				Project Manager:	Deepa Shetty
Contact:	Terry Schwenk			Project Coordinator:	Alvin ILARINA
Standard:	FCC Part 90R			Class:	N/A
0un #6∙ Fr	equency Stability				
	Date of Test: 03/26/18		Config. Use	d: 1	
	est Engineer: Mehran Birgani		Config Change		
	est Location: Lab #4A		EUT Voltage		
	Nominal Frequency:	763.0 MHz			
	Stability Over Temperature				
The EUT	Stability Over Temperature was soaked at each temperature	ure for a minimum of	30 minutes prior to mal	king the measurements to e	ensure the EUT and
emperature		וט			
(Celsius)	(MHz)	(Hz)	(ppm)	-	
	763.000016			-	
-30		16	0.021	_	
-20	763.000017	17	0.022	_	
-10 0	763.000016	16	0.021	_	
0	763.000015 763.000016	15 16	0.020	_	
	703.000010	16	0.021	_	
10	763 000016			-	
10 20	763.000016		0 0 2 2		
10 20 30	763.000017	17	0.022	-	
10 20 30 40	763.000017 763.000017	17 17	0.022	-	
10 20 30	763.000017 763.000017 763.000017	17 17 17	0.022 0.022		
10 20 30 40	763.000017 763.000017	17 17	0.022		
10 20 30 40	763.000017 763.000017 763.000017	17 17 17	0.022 0.022		
10 20 30 40 50 requency	763.000017 763.000017 763.000017 Worst case: Stability Over Input Voltage	17 17 17	0.022 0.022		
10 20 30 40 50 requency Nominal	763.000017 763.000017 763.000017 Worst case: Stability Over Input Voltage Voltage is 120Vdc.	17 17 17 17 17	0.022 0.022 0.022		
10 20 30 40 50 requency Nominal <u>Voltage</u>	763.000017 763.000017 763.000017 Worst case: Stability Over Input Voltage Voltage is 120Vdc. Frequency Measured	17 17 17 17 17 <u>Dr</u>	0.022 0.022 0.022		
10 20 30 40 50 7 requency Nominal <u>Voltage</u> (AC)	763.000017 763.000017 763.000017 Worst case: Stability Over Input Voltage Voltage is 120Vdc. Frequency Measured (MHz)	17 17 17 17 17 <u>Dr</u> (Hz)	0.022 0.022 0.022 <u>ift</u> (ppm)		
10 20 30 40 50 Frequency Nominal <u>Voltage</u> (AC) 85%	763.000017 763.000017 763.000017 Worst case: Stability Over Input Voltage Voltage is 120Vdc. Frequency Measured (MHz) 763.000016	17 17 17 17 17 <u>Dr</u> (Hz) 16	0.022 0.022 0.022 <u>ift</u> (ppm) 0.0		
10 20 30 40 50 Frequency Nominal Voltage (AC)	763.000017 763.000017 763.000017 Worst case: Stability Over Input Voltage Voltage is 120Vdc. Frequency Measured (MHz)	17 17 17 17 17 <u>Dr</u> (Hz)	0.022 0.022 0.022 <u>ift</u> (ppm)		

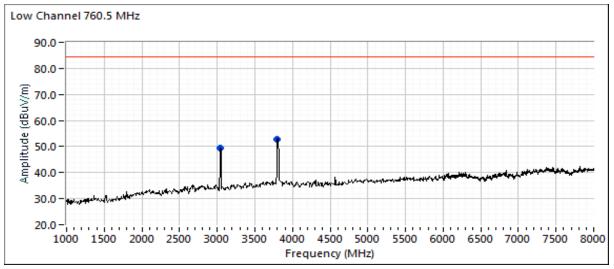
Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	Nokia Solutio	ons and N	etworks						PR069704-00
Model:	FlexiZone M	icro BTS				r		-	TL069704-00 EMC
							Project Manager: Deepa Shetty		
	Terry Schwe						Proj		Alvin ILARINA
Standard:	FCC Part 90								Enter on cover shee
Prelii	30 1	.00	200 3	00 40	00 500 Frequen		700	800	900 1000
Frequency	Level	Pol		90.543(e)	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
ow Chann			04.4	50.4		100	0.5		
92.319 100.292	28.0 31.0	<u>H</u> H	84.4 84.4	-56.4 -53.4	Peak	100 269	2.5 1.5		
105.733	39.2	<u>п</u> Н	84.4	-55.4 -45.2	Peak Peak	307	1.5		
153.367	27.8	 	84.4	-45.2	Peak	179	1.0		
363.066	31.4	H H	84.4	-53.0	Peak	207	1.0		
760.500	76.1	H	84.4	-8.3	Peak	219	1.0	Fundamneta	al
ligh Chani				5.0		,			-
68.878	40.9	V	84.4	-43.5	Peak	192	1.0	Could not fil	nd signal.
88.317	32.1	V	84.4	-52.3	Peak	216	1.0	Could not fil	nd signal.
00.317	JZ. I	,	01.1	0210					
<i>00.317</i> 115.531	29.2	V	84.4	-55.2	Peak	241	1.0		
115.531 368.236	29.2 30.0	V H	84.4 84.4	-55.2 -54.4	Peak Peak	246	1.0		
115.531	29.2	V	84.4	-55.2	Peak			Fundamenta	
115.531 368.236 764.790	29.2 30.0 66.8	V H H	84.4 84.4 NA	-55.2 -54.4 NA	Peak Peak Peak	246 251	1.0	Fundamenta	
115.531 368.236 764.790 Preliminary	29.2 30.0 66.8 y quasi-peak	V H H readings	84.4 84.4 NA (no manipu	-55.2 -54.4 NA lation of EU	Peak Peak Peak	246 251 ables)	1.0 2.0	•	
<u>115.531</u> <u>368.236</u> 764.790 Preliminary Frequency	29.2 30.0 66.8 / quasi-peak	V H H readings Pol	84.4 84.4 NA (no manipu FCC Part	-55.2 -54.4 NA lation of EU 90.543(e)	Peak Peak Peak T interface c Detector	246 251 ables) Azimuth	1.0 2.0 Height	<i>Fundamenta</i> Comments	
<u>115.531</u> 368.236 764.790 Preliminary Frequency MHz	29.2 30.0 66.8 / quasi-peak Level dBµV/m	V H H readings	84.4 84.4 NA (no manipu	-55.2 -54.4 NA lation of EU	Peak Peak Peak	246 251 ables)	1.0 2.0	•	
115.531 368.236 764.790 Preliminary Frequency MHz Low Chann	29.2 30.0 66.8 / quasi-peak Level dBµV/m nel	V H H readings Pol v/h	84.4 84.4 NA (no manipu FCC Part Limit	-55.2 -54.4 NA lation of EU 90.543(e) Margin	Peak Peak Peak T interface c Detector Pk/QP/Avg	246 251 ables) Azimuth degrees	1.0 2.0 Height meters	Comments	al
<u>115.531</u> <u>368.236</u> <u>764.790</u> Preliminary Frequency MHz <u>ow Chann</u> 92.319	29.2 30.0 66.8 / quasi-peak Level dBµV/m nel 28.0	V H H readings Pol v/h H	84.4 84.4 NA (no manipu FCC Part Limit 84.4	-55.2 -54.4 NA lation of EU 90.543(e) Margin -56.4	Peak Peak Peak T interface c Detector Pk/QP/Avg PK	246 251 ables) Azimuth degrees 100	1.0 2.0 Height meters 2.5	Comments RB 100 kHz	al ., VB: 300 kHz
115.531 368.236 764.790 Preliminary Frequency MHz ow Chann 92.319 153.367	29.2 30.0 66.8 / quasi-peak Level dBμV/m nel 28.0 27.8	V H H readings Pol v/h H V	84.4 84.4 NA (no manipu FCC Part Limit 84.4 84.4	-55.2 -54.4 NA lation of EU 90.543(e) Margin -56.4 -56.6	Peak Peak Peak T interface c Detector Pk/QP/Avg PK PK	246 251 ables) Azimuth degrees 100 179	1.0 2.0 Height meters 2.5 1.0	Comments RB 100 kHz RB 100 kHz	al , VB: 300 kHz , VB: 300 kHz
<u>115.531</u> <u>368.236</u> <u>764.790</u> Preliminary Frequency MHz <u>ow Chann</u> 92.319	29.2 30.0 66.8 / quasi-peak Level dBµV/m nel 28.0	V H H readings Pol v/h H	84.4 84.4 NA (no manipu FCC Part Limit 84.4	-55.2 -54.4 NA lation of EU 90.543(e) Margin -56.4	Peak Peak Peak T interface c Detector Pk/QP/Avg PK	246 251 ables) Azimuth degrees 100	1.0 2.0 Height meters 2.5	Comments RB 100 kHz RB 100 kHz RB 100 kHz RB 100 kHz	al , VB: 300 kHz , VB: 300 kHz , VB: 300 kHz , VB: 300 kHz
<u>115.531</u> <u>368.236</u> 764.790 Preliminary Frequency MHz _ow Chann 92.319 153.367 363.066	29.2 30.0 66.8 / quasi-peak Level dBμV/m nel 28.0 27.8 32.9 31.0	V H H readings Pol v/h H V H	84.4 84.4 NA (no manipu FCC Part Limit 84.4 84.4 84.4	-55.2 -54.4 NA ation of EU 90.543(e) Margin -56.4 -56.6 -51.5	Peak Peak Peak T interface c Detector Pk/QP/Avg PK PK PK PK	246 251 ables) Azimuth degrees 100 179 206	1.0 2.0 Height meters 2.5 1.0 1.0	Comments RB 100 kHz RB 100 kHz RB 100 kHz RB 100 kHz RB 100 kHz	al , VB: 300 kHz , VB: 300 kHz , VB: 300 kHz , VB: 300 kHz
115.531 368.236 764.790 Preliminary Frequency MHz .ow Chann 92.319 153.367 363.066 100.292 105.733	29.2 30.0 66.8 / quasi-peak Level dBμV/m nel 28.0 27.8 32.9 31.0 39.2	V H H readings Pol v/h H V H H	84.4 84.4 NA (no manipu FCC Part Limit 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4	-55.2 -54.4 NA ation of EU 90.543(e) Margin -56.4 -56.6 -51.5 -53.4	Peak Peak Peak T interface c Detector Pk/QP/Avg PK PK PK PK PK	246 251 ables) Azimuth degrees 100 179 206 268	1.0 2.0 Height meters 2.5 1.0 1.0 1.5	Comments RB 100 kHz RB 100 kHz RB 100 kHz RB 100 kHz RB 100 kHz	al , VB: 300 kHz , VB: 300 kHz , VB: 300 kHz , VB: 300 kHz , VB: 300 kHz
<u>115.531</u> <u>368.236</u> <u>764.790</u> Preliminary Frequency MHz Low Chann 92.319 153.367 363.066 100.292	29.2 30.0 66.8 / quasi-peak Level dBμV/m nel 28.0 27.8 32.9 31.0 39.2	V H H readings Pol v/h H V H H	84.4 84.4 NA (no manipu FCC Part Limit 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4	-55.2 -54.4 NA ation of EU 90.543(e) Margin -56.4 -56.6 -51.5 -53.4	Peak Peak Peak T interface c Detector Pk/QP/Avg PK PK PK PK PK	246 251 ables) Azimuth degrees 100 179 206 268	1.0 2.0 Height meters 2.5 1.0 1.0 1.5	Comments RB 100 kHz RB 100 kHz RB 100 kHz RB 100 kHz RB 100 kHz RB 100 kHz	al , VB: 300 kHz , VB: 300 kHz , VB: 300 kHz , VB: 300 kHz

🎲 NTS

EMC Test Data


Client:	Nokia Solutions and Networks	PR Number:	PR069704-00
Madal	FlexiZone Micro BTS	T-Log Number:	TL069704-00 EMC
wouer.		Project Manager:	Deepa Shetty
Contact:	Terry Schwenk	Project Engineer:	Alvin ILARINA
Standard:	FCC Part 90R	Class:	Enter on cover sheet

Run #3: Maximized Readings, 1000 - 8,000 MHz

Test Parameters for Preliminary	Scan(s)
---------------------------------	---------

Frequency Range	Prescan Distance	Limit Distance	Extrapolation Factor
(MHz)	(meters)	(meters)	(dB, applied to data)
1000 - 6000	3	3	0.0
6000 - 8000	3	3	0.0

Low Channel

Client:	Nokia Soluti	ons and N	etworks					PR Number:	PR069704-00
							T-		TL069704-00 EMC
Model:	FlexiZone M	licro BTS						•	Deepa Shetty
Contact.	Terry Schwe	enk						-	Alvin ILARINA
	FCC Part 90								Enter on cover shee
gh Chanr									l
High	Channel 7	765 5 MH	17						
_									
9	0.0-								
8	0.0-								
ξ ₇	0.0-								
3uV									
b B B	0.0-								
Amplitude (dBuV/m)	0.0-					•			
n pli	0.0-		•		1	4	1		Contraction of the local division of the loc
Ar Ar					lungager	manne	منواشمنيني	,	Warning and
3	0.0	~~~~~	المروحين	- Maria and a second	N 100 P 1				
2	0.0-								
	1000								8000
	1000				Frequenc			-	
reliminary	1000 v peak readir	• •	•••	-	ak readings				
eliminary	1000 peak readir	3.4 test m	ethods (i.e. fl	loor absorbei	ak readings rs in place)	vs. average	limit)	Commonts	
reliminary <u>CC limit us</u> requency	1000 peak readir sing ANSI C6 Level	<i>3.4 test m</i> Pol	<i>ethods (i.e. fl</i> FCC Part	<i>l<u>oor absorbei</u> 90.543(e)</i>	ak readings rs in place) Detector	vs. average Azimuth	limit) Height	Comments	
reliminary <u>CC limit us</u> requency MHz	1000 peak readir sing ANSI C6 Level dBµV/m	3.4 test m	ethods (i.e. fl	loor absorbei	ak readings rs in place)	vs. average	limit)	Comments	
reliminary <u>CC limit us</u> requency MHz pw Chann	1000 peak readir sing ANSI C6 Level dBµV/m	<i>3.4 test m</i> Pol	<i>ethods (i.e. fl</i> FCC Part	<i>l<u>oor absorbel</u> 90.543(e)</i>	ak readings rs in place) Detector	vs. average Azimuth	limit) Height	Comments	
eliminary <u>CC limit us</u> requency MHz w Chann 6042.060 802.910	1000 v peak readir sing ANSI C6 Level dBµV/m el 49.5 52.9	<i>3.4 test m</i> Pol v/h	<i>ethods (i.e. fl</i> FCC Part Limit	loor absorber 90.543(e) Margin	ak readings rs in place) Detector Pk/QP/Avg	vs. average Azimuth degrees	limit) Height meters	Comments	
reliminary <u>CC limit us</u> requency MHz w Chann 3042.060 3802.910 gh Chanr	1000 peak readir sing ANSI C6 Level dBµV/m rel 49.5 52.9 nel	<u>3.4 test m</u> Pol v/h H H	ethods (i.e. fi FCC Part Limit 84.4 84.4	000 absorber 90.543(e) Margin -34.9 -31.5	ak readings rs in place) Detector Pk/QP/Avg Peak Peak	Azimuth degrees 294 31	limit) Height meters 1.6 2.5	Comments	
reliminary <u>CC limit us</u> requency MHz w Chann 3042.060 3802.910 gh Chanr 525.000	1000 peak reading sing ANSI C6 Level $dB\mu V/m$ rel 49.5 52.9 rel 41.5	3.4 test m Pol v/h H H H	ethods (i.e. fi FCC Part Limit 84.4 84.4 84.4	90.543(e) 90.543(e) Margin -34.9 -31.5 -42.9	ak readings rs in place) Detector Pk/QP/Avg Peak Peak Peak	Azimuth degrees 294 31 101	limit) Height meters 1.6 2.5 7.0		8000
reliminary <u>CC limit us</u> requency MHz bw Chann 8042.060 8802.910 1525.000 1525.000 2283.330	1000 peak readin sing ANSI C6 Level $dB_{\mu}V/m$ rel 49.5 52.9 rel 41.5 43.7	3.4 test m Pol v/h H H H H	ethods (i.e. f) FCC Part Limit 84.4 84.4 84.4 84.4 84.4	oor absorber 90.543(e) Margin -34.9 -31.5 -42.9 -40.7	ak readings rs in place) Detector Pk/QP/Avg Peak Peak Peak Peak Peak	Azimuth degrees 294 31 101 102	limit) Height meters 1.6 2.5 7.0 1.5	Comments	8000
reliminary <u>CC limit us</u> requency MHz w Chann 042.060 802.910 gh Chanr 525.000 2283.330 8058.330	1000 peak readir <i>sing ANSI C6</i> Level dBμV/m el 49.5 52.9 nel 41.5 43.7 48.6	3.4 test m Pol v/h H H H H V	ethods (i.e. f) FCC Part Limit 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4	oor absorber 90.543(e) Margin -34.9 -31.5 -42.9 -40.7 -35.8	ak readings rs in place) Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 294 31 101 102 10	limit) Height meters 1.6 2.5 7.0 1.5 7.5		8000
eliminary <u>CC limit us</u> requency MHz w Chann 042.060 802.910 gh Chanr 525.000 283.330 058.330	1000 peak readin sing ANSI C6 Level $dB_{\mu}V/m$ rel 49.5 52.9 rel 41.5 43.7	3.4 test m Pol v/h H H H H	ethods (i.e. f) FCC Part Limit 84.4 84.4 84.4 84.4 84.4	oor absorber 90.543(e) Margin -34.9 -31.5 -42.9 -40.7	ak readings rs in place) Detector Pk/QP/Avg Peak Peak Peak Peak Peak	Azimuth degrees 294 31 101 102	limit) Height meters 1.6 2.5 7.0 1.5		8000
reliminary <u>CC limit us</u> requency MHz bw Chann 3042.060 3802.910 3802.910 3802.910 38058.330 3058.330 3816.670 nal peak	1000 peak reading sing ANSI C6 Level $dB\mu V/m$ rel 49.5 52.9 nel 41.5 43.7 48.6 44.3 readings (vs	3.4 test m Pol v/h H H H V H S. FCC lim	ethods (i.e. fi FCC Part Limit 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.	oor absorber 90.543(e) Margin -34.9 -31.5 -42.9 -40.7 -35.8 -40.1	ak readings rs in place) Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak	xs. average Azimuth degrees 294 31 101 102 10 254	limit) Height meters 1.6 2.5 1.0 1.5 1.5 1.0	Could not fi	8000
eliminary <u>CC limit us</u> requency MHz <u>ow Chann</u> 042.060 802.910 <u>gh Chann</u> 525.000 283.330 058.350 058.350 058.350 058.350 058.350 058.550 059.550 058.5500 058.5500	1000 peak readin <i>sing ANSI C6</i> Level dBμV/m rel 49.5 52.9 nel 41.5 43.7 48.6 44.3 readings (vs Level	3.4 test m Pol v/h H H H H V H S. FCC lim Pol	ethods (i.e. f) FCC Part Limit 84.4	90.543(e) 90.543(e) Margin -34.9 -31.5 -42.9 -40.7 -35.8 -40.1 90.543(e)	ak readings <i>in place)</i> Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 294 31 101 102 10 254 Azimuth	limit) Height meters 1.6 2.5 7.0 7.5 7.5 7.5 7.0 Height		8000
eliminary CC limit us requency MHz w Chann 042.060 802.910 gh Chann 525.000 283.330 058.330 816.670 nal peak requency MHz	1000 peak readin <i>sing ANSI C6</i> Level dBμV/m el 49.5 52.9 nel 41.5 43.7 48.6 44.3 readings (vs Level dBμV/m	3.4 test m Pol v/h H H H V H S. FCC lim	ethods (i.e. fi FCC Part Limit 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.	oor absorber 90.543(e) Margin -34.9 -31.5 -42.9 -40.7 -35.8 -40.1	ak readings rs in place) Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak	xs. average Azimuth degrees 294 31 101 102 10 254	limit) Height meters 1.6 2.5 1.0 1.5 1.5 1.0	Could not fi	8000
eliminary <u>CC limit us</u> equency MHz w Chann 042.060 802.910 gh Chann 525.000 283.330 058.330 816.670 nal peak requency MHz w Chann	1000 peak readir <i>sing ANSI C6</i> Level dBμV/m el 49.5 52.9 nel 41.5 43.7 48.6 44.3 readings (vs Level dBμV/m el	3.4 test m Pol v/h H H H V H S. FCC lim Pol v/h	ethods (i.e. fl FCC Part Limit 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 Example 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4	90.543(e) 90.543(e) Margin -34.9 -31.5 -42.9 -40.7 -35.8 -40.1 90.543(e) Margin	ak readings rs in place) Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 294 31 101 102 10 254 Azimuth degrees	limit) Height meters 1.6 2.5 7.0 7.5 7.5 7.0 Height meters	Could not fi	8000 nd signal.
eliminary <u>CC limit us</u> equency MHz w Chann 042.060 802.910 gh Chanr 525.000 283.330 058.330 816.670 mal peak requency MHz w Chann 042.060	1000 y peak readir <i>sing ANSI C6</i> Level dBμV/m rel 49.5 52.9 nel 41.5 43.7 48.6 44.3 readings (vs Level dBμV/m el 49.5	3.4 test m Pol v/h H H H V H S. FCC lim Pol v/h H	ethods (i.e. fl) FCC Part Limit 84.4	oor absorber 90.543(e) Margin -34.9 -31.5 -42.9 -40.7 -35.8 -40.1 90.543(e) Margin -34.9	ak readings rs in place) Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Detector Pk/QP/Avg Peak	Azimuth degrees 294 31 101 102 10 254 Azimuth degrees 294	limit) Height meters 1.6 2.5 7.0 1.5 1.5 1.0 Height meters 1.6	Could not fin	8000 nd signal.
eliminary cc limit us equency MHz w Chann 042.060 802.910 gh Chann 525.000 283.330 058.330 058.330 816.670 nal peak equency MHz w Chann 042.060 802.910	1000 peak reading sing ANSI C6 Level dBµV/m el 49.5 52.9 nel 41.5 43.7 48.6 44.3 readings (vs Level dBµV/m el 49.5 52.9	3.4 test m Pol v/h H H H V H S. FCC lim Pol v/h	ethods (i.e. fl FCC Part Limit 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 Example 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4	90.543(e) 90.543(e) Margin -34.9 -31.5 -42.9 -40.7 -35.8 -40.1 90.543(e) Margin	ak readings rs in place) Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 294 31 101 102 10 254 Azimuth degrees	limit) Height meters 1.6 2.5 7.0 7.5 7.5 7.0 Height meters	Could not fin	8000 nd signal.
eliminary cc limit us equency MHz w Chann 042.060 802.910 gh Chann 525.000 283.330 058.330 058.330 816.670 mal peak equency MHz w Chann 042.060 802.910 gh Chann	1000 peak reading sing ANSI C6 Level $dB_{\mu}V/m$ readings 49.5 52.9 hel 41.5 43.7 48.6 44.3 readings (vs Level $dB_{\mu}V/m$ readings (vs $dB_{\mu}V/m$ readings (vs $dB_{\mu}V/m$ readings (vs $dB_{\mu}V/m$ readings (vs $dB_{\mu}V/m$ readings (vs $dB_{\mu}V/m$	3.4 test m Pol v/h H H H H V H S. FCC lim Pol v/h H H H	ethods (i.e. f) FCC Part Limit 84.4	90.543(e) 90.543(e) Margin -34.9 -31.5 -42.9 -40.7 -35.8 -40.7 90.543(e) Margin -34.9 -31.5	ak readings rs in place) Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 294 31 101 102 10 254 Azimuth degrees 294 31	limit) Height meters 1.6 2.5 7.0 7.0 7.5 7.5 7.0 Height meters 1.6 2.5	Could not fin	8000 Ind signal.
eliminary <u>CC limit us</u> requency MHz <u>ow Chann</u> 042.060 802.910 <u>gh Chann</u> 525.000 283.330 058.350 058.350 058.350 058.350 058.350 058.550 059.550 058.5500 058.5500	1000 peak reading sing ANSI C6 Level dBµV/m el 49.5 52.9 nel 41.5 43.7 48.6 44.3 readings (vs Level dBµV/m el 49.5 52.9	3.4 test m Pol v/h H H H V H S. FCC lim Pol v/h H	ethods (i.e. fl) FCC Part Limit 84.4	oor absorber 90.543(e) Margin -34.9 -31.5 -42.9 -40.7 -35.8 -40.1 90.543(e) Margin -34.9	ak readings rs in place) Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Detector Pk/QP/Avg Peak	Azimuth degrees 294 31 101 102 10 254 Azimuth degrees 294	limit) Height meters 1.6 2.5 7.0 1.5 1.5 1.0 Height meters 1.6	Could not fin Could not fin RB 100 kHz RB 100 kHz RB 100 kHz	8000 nd signal.

End of Report

This page is intentionally blank and marks the last page of this test report.