

RF Exposure Evaluation Declaration

- FCC ID: 2AD8UFZCWO4A1
- APPLICANT: Nokia Solutions and Networks

Application Type:	Certification
Product:	Wi-Fi AP 4x4 OD small omni antenna US
Model No.:	WO4C-AC400
Trademark:	Nokia
FCC Classification:	Digital Transmission System (DTS)
	Unlicensed National Information Infrastructure (UNII)
Test Procedure(s):	KDB 447498 D01v06

Reviewed By : Paddy Chen (Paddy Chen) Approved By : Amy ker **Testing Laboratory** 3261 (Chenz Ker)

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
1608TW0110-U12	Rev. 01	Initial Report	07-06-2017	Valid

Note: This report is prepared for FCC Class II permissive change and supplement to MRT Original "1608TW0110-U3" Report adding "Wi-Fi AP 4x4 OD small omni antenna US ant" and related data

1. PRODUCT INFORMATION

1.1. Equipment Description

Product Name	Wi-Fi AP 4x4 OD small omni antenna US
Model No.	WO4C-AC400
Brand Name	Nokia
Hardware Version:	AM3
Frequency Range	<u>2.4GHz:</u>
	For 802.11b/g/n-HT20: 2412 ~ 2462 MHz
	For 802.11n-HT40: 2422 ~ 2452 MHz
	<u>5GHz:</u>
	For 802.11a/n-HT20/ac-VHT20
	5180~5240MHz, 5745~5825MHz
	For 802.11n-HT40/ac-VHT40:
	5190~5230MHz, 5755~5795MHz
	For 802.11ac-VHT80:
	5210MHz, 5775MHz
	For 802.11ac-VHT80+80:
	5210 MHz + 5775 MHz
Type of Modulation	802.11a/n/ac: OFDM
Modulation Technology	CCK, DQPSK, DBPSK for DSSS
	16QAM, 64QAM, QPSK, BPSK for OFDM

Note 1: We select the POE adapter (M/N: PoE35-54A) to perform all RF testing.

Note 2: The product name difference as below:

• when the device has been connected the Galtronics Small Omni antenna, the product name is "Wi-Fi AP 4x4 OD small omni antenna WW";

1.2. Antenna Description

Antenna	Manufacturer	Frequency Band (GHz)	Product Number	Tx Paths
	Coltranico	2.4	Galtronics Small Omni	2
	Galtronics	5	Antenna	2

Product	Frequency	Тx	Per Chain Max Antenna Gain			Beam	CDD Direction	nal Gain (dBi)	
Number	Band	Paths		(d	Bi)		Forming		
	(MHz)		Ant 0	Ant 1	Ant 2	Ant 3	Directional	For Power	For PSD
			Anto	Anti	Ant 2	Ant 5	Gain (dBi)		
	2412 ~2462	2	2.69	2.41	2.69	2.41	8.57	2.69	8.57
Galtronics	5150 ~ 5250	2	3.27	3.85	3.27	3.85	9.59	3.85	9.59
Small	5150 ~ 5250								
Omni	30°elevation	2	3.20	1.81	3.20	1.81	N/A	N/A	N/A
Antenna	angle								
	5725 ~ 5850	2	4.35	4.30	4.35	4.30	10.35	4.35	10.35

Note

- 1. The EUT supports Cyclic Delay Diversity (CDD) technology for 802.11a/b/g mode, and CDD signals are correlated.
- The EUT supports Beam Forming technology for 802.11n/ac mode, and exclude 802.11b/g mode.
 Correlated signals include, but are not limited to, signals transmitted in any of the following modes:
 - Any transmit Beam Forming mode, whether fixed or adaptive (e.g., phased array modes, closed loop MIMO modes, Transmitter Adaptive Antenna modes, Maximum Ratio Transmission (MRT) modes, and Statistical Eigen Beam Forming (EBF) modes).
 - CDD signals are correlated and create unintended array gain that varies with signal bandwidth, antenna geometry, and cyclic delay values. Consequently, depending on system parameters, it may be appropriate to use different values of array gain for compliance with power limits versus compliance with powerspectral density limits.
- 3. Unequal Antenna gains, with equal transmit powers. For Antenna gains given by G₁, G₂, ..., G_N dBi transmit signals are correlated, then
 - Directional gain = $10*\log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2/N_{ANT}]$ dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.]
 - For example (Galtronics Small Omni Antenna): 5150 ~ 5250MHz Directional Gain = $10*\log[(10^{3.27/20} + 10^{3.85/20} + 10^{3.85/20} + 10^{3.85/20})^2/4] = 9.59 dBi$

2. RF Exposure Evaluation

2.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time (Minutes)		
(A) Limits for Occupational/ Control Exposures						
300-1500			f/300	6		
1500-100,000			5	6		
	(B) Limits for Gene	ral Population/ Unco	ontrolled Exposures			
300-1500			f/1500	6		
1500-100,000			1	30		

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

f= Frequency in MHz

Calculation Formula: $Pd = (Pout^{*}G)/(4^{*}pi^{*}r^{2})$

Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

r = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

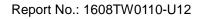
2.2. Test Result of RF Exposure Evaluation

Product	Wi-Fi AP 4x4 OD small omni antenna US
Test Item	RF Exposure Evaluation (For General Population)

Test Mode	Frequency Band (MHz)	Maximum EIRP (dBm)	Safety Distance (cm)	Power Density (mW/cm ²)	Limit of Power Density (mW/cm ²)
802.11b/g/n-HT20/ n-HT40	2412 ~ 2462	37.22	32	0.4097	1
802.11a/n-HT20/ n-H40/ac-VHT20 ac-VHT40/ac-VHT80/ ac-VHT80+80	5150 ~ 5250, 5725 ~ 5850	38.61	32	0.5643	1

Note: Directional Gain Calculation as below:

2412 ~ 2462MHz Directional Gain = $10*\log[(10^{2.69/20} + 10^{2.41/20} + 10^{2.69/20} + 10^{2.41/20})^2/4] = 8.57 \text{ dBi}$ 5150 ~ 5250MHz Directional Gain = $10^{10} \log[(10^{3.27/20} + 10^{3.85/20} + 10^{3.27/20} + 10^{3.85/20})^2/4] = 9.59 \text{ dBi}$ 5725 ~ 5850MHz Directional Gain = $10*\log[(10^{4.35/20} + 10^{4.30/20} + 10^{4.35/20} + 10^{4.30/20})^2/4] = 10.35 \text{ dBi}$


Product	Wi-Fi AP 4x4 OD small omni antenna US
Test Item	RF Exposure Evaluation (For Occupational)

Test Mode	Frequency Band (MHz)	Maximum EIRP (dBm)	Safety Distance (cm)	Power Density (mW/cm ²)	Limit of Power Density (mW/cm ²)
802.11b/g/n-HT20/ n-HT40	2412 ~ 2462	37.22	20	1.0489	5
802.11a/n-HT20/ n-H40/ac-VHT20 ac-VHT40/ac-VHT80/ ac-VHT80+80	5150 ~ 5250, 5725 ~ 5850	38.61	20	1.4445	5

Note: Directional Gain Calculation as below:

2412 ~ 2462MHz Directional Gain = $10*\log[(10^{2.69/20} + 10^{2.41/20} + 10^{2.69/20} + 10^{2.41/20})^2/4] = 8.57 \text{ dBi}$ 5150 ~ 5250MHz Directional Gain = $10*\log[(10^{3.27/20} + 10^{3.85/20} + 10^{3.27/20} + 10^{3.85/20})^2/4] = 9.59 \text{ dBi}$

5725 ~ 5850MHz Directional Gain = $10^{10} \log[(10^{4.35/20} + 10^{4.30/20} + 10^{4.35/20} + 10^{4.30/20})^2/4] = 10.35 \text{ dBi}$

2.3. Summary of Test Result

Model	Configuration	The formula of	The formula of Calculation		Result		
		calculated the MPE	Power Density				
		(mW/cm2)	(mW/cm2)				
General Population	2.4GHz + 5GHz	0.4097 + 0.5643	0.9740	1	Pass		
Occupational	2.4GHz + 5GHz	1.0489 + 1.4445	2.4934	5	Pass		

The maximum calculations of above situations

The wireless device described within this report has been shown to be capable of compliance with basic restrictions related to human exposure to electromagnetic fields for both General public and Occupational. The calculations shown in this report were made in accordance the procedures specified in the applied test specifications

Antenna Product	Configuration	Required Complian	nce Boundary (cm)
Number	Configuration	General Population	Occupational
Galtronics Small Omni	2.4GHz + 5GHz	20	20
Antenna	2.40HZ + 50HZ	32	20