

RF Exposure Report

Report No.: SA160530E01A

FCC ID: 2AD8UFZCWI4A1

Test Model: WI4A-AC400i

Received Date: May 30, 2016

Test Date: Aug. 23, 2016

Issued Date: Apr. 13, 2017

Applicant: Nokia Solutions and Networks.OY

Address: 1455 West Shure Drive, Arlington Heights, IL 60004, USA

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by any government agencies.

Report No.: SA160530E01A Page No. 1 / 9 Report Format Version: 6.1.1 Reference No.: 160530E02

Table of Contents

Relea	se Control Record	3				
1	Certificate of Conformity					
2	RF Exposure	5				
2.1	Limits for Maximum Permissible Exposure (MPE)	5				
2.2	MPE Calculation Formula	5				
	Classification					
2.4	Antenna Gain	6				
2.5	Calculation Result of Maximum Conducted Power	7				
3	Brief Summary of results	9				

Release Control Record

Issue No.	Description	Date Issued
SA160530E01	Original release.	Apr. 13, 2017

Page No. 3 / 9 Report Format Version: 6.1.1

Report No.: SA160530E01A Reference No.: 160530E02

1 Certificate of Conformity

Product: Wireless Access Point

Brand: NOKIA

Test Model: WI4A-AC400i

Hardware Version: AM2

Sample Status: ENGINEERING SAMPLE

Applicant: Nokia Solutions and Networks.OY

Test Date: July 14 to Aug. 08, 2016

Standards: FCC Part 2 (Section 2.1091)

KDB 447498 D01 General RF Exposure Guidance v06

IEEE C95.1

FCC Part 1 (Section 1.1310)

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Midoli Peng / Specialist

Approved by: , Date: Apr. 13, 2017

May/Chen / Manager

2 RF Exposure

2.1 Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm2)	Average Time (minutes)		
(A)Limits For Occupational / Control Exposures						
300-1500			F/300	6		
1500-100,000			5	6		
	(B)Limits For General Population / Uncontrolled Exposure					
300-1500			F/1500	30		
1500-100,000			1.0	30		

F = Frequency in MHz

2.2 MPE Calculation Formula

 $Pd = (Pout*G) / (4*pi*r^2)$

where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 43cm away from the body of the user. So, this device is classified as **Mobile Device**.

Report No.: SA160530E01A Reference No.: 160530E02

2.4 Antenna Gain

The antennas provided to the EUT, please refer to the following table:

Antenna spec.						
Antenna No	PCB Chain No.	Brand	Model	Antenna Type	Gain(dBi)	Frequency (MHz)
					3.92	2400
					3.99	2450
					4.28	2500
	01	0.11	00400440 0000044	DIEA	3.81	5150
1	Chain 2	Galtronics	02102140-06226A1	PIFA	3.71	5250
					4.06	5350
					5.83	5725
					6.21	5825
					2.27	2400
					1.81	2450
					1.84	2500
0	Oh ala O	O altina mila a	00400440 0000040	DIEA	5.67	5150
2	Chain 3	Galtronics	02102140-06226A2	PIFA	5.95	5250
					5.83	5350
					5.38	5725
					5.38	5825
			Galtronics 02102140-06226A3	PIFA	2.42	2400
					2.45	2450
		Oaltearia			2.71	2500
3	Chain 1				5.69	5150
3	Chain 1 Gaitronics	Gaillonics			5.41	5250
					5.2	5350
					4.92	5725
					5.07	5825
					2.88	2400
					3.22	2450
					3.82	2500
4	Chain 0	Caltranias	00400440 0600044	DIEA	4.85	5150
4	Chain 0 Galtronics 02102140-06226	Galtronics	02102140-06226A4	PIFA	4.66	5250
				4.32	5350	
					5.02	5725
					4.87	5825

Cable Spec.								
Antenna No	Brand	Model	Connector Type	Cable Loss(dB)	Cable Length (mm)			
1	Galtronics	RG-137	i-pex(MHF)	1.5	175			
2	Galtronics	RG-137	i-pex(MHF)	1.3	130			
3	Galtronics	RG-137	i-pex(MHF)	0.5	50			
4	Galtronics	RG-137	i-pex(MHF)	0.8	75			

2.5 Calculation Result of Maximum Conducted Power

For 15.247 and 15.407 (U-NII-1 band and U-NII-3 band) data was refer from the original test report (Report No.: SA160530E01)

For General Population

Frequency Band (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm ²)
2412-2462	884.423	9.33	43	0.32622	1
5180-5240	534.298	11.14	43	0.29898	1
5260-5320	249.765	8.05	43	0.03415	1
5500-5720	250.194	11.32	43	0.14592	1
5745-5825	951.593	11.45	43	0.57188	1

Note: 1. For 2.4GHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20} + 10^{G4/20})^2 / 4] = 9.33dBi$ 2. For 5GHz UNII-1: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20} + 10^{G4/20})^2 / 4] = 11.14dBi$ 3. For U-NII-2A(chain 0+chain 1): Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G2/20})^2 / 2] = 8.05dBi$ 4. For U-NII-2C: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20} + 10^{G4/20})^2 / 4] = 11.32dBi$ 5. For 5GHz UNII-3: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20} + 10^{G4/20})^2 / 4] = 11.45dBi$

For Occupational

1 or occupational						
Frequency Band (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm²)	
2412-2462	884.423	9.33	20	1.50796	5	
5180-5240	534.298	11.14	20	1.38201	5	
5260-5320	249.765	8.05	20	0.15786	5	
5500-5720	250.194	11.32	20	0.67454	5	
5745-5825	951.593	11.45	20	2.64351	5	

Note: 1. For 2.4GHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20} + 10^{G4/20})^2 / 4] = 9.33dBi$ 2. For UNII-1: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20} + 10^{G4/20})^2 / 4] = 11.14dBi$ 3. For U-NII-2A(chain 0+chain 1): Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 8.05dBi$ 4. For U-NII-2C: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20} + 10^{G4/20})^2 / 4] = 11.32dBi$ 5. For UNII-3: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20} + 10^{G4/20})^2 / 4] = 11.45dBi$

Conclusion:

The formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore the maximum calculations of above situations are less than the "1" limit.

Model	Scenario	The formula of calculated the MPE	Calcualtion Power Density	Limit	Results
General	WLAN 2.4GHz +	0.32622/1 + 0.57188/1	0.89810	1	Pass
Population)	WLAN 5GHz	0.32022/1 + 0.37 100/1			Pass
Occupational	WLAN 2.4GHz +	1 50706/5 + 2 64254/5	0.83029	1	Door
Occupational	WLAN 5GHz	1.50796/5 + 2.64351/5			Pass

3 Brief Summary of results

The wireless device described within this report has been shown to be capable of compliance with the basic restrictions related to human exposure to electromagnetic fields for both General public and Occupational. The calculations shown in this report were made in accordance the procedures specified in the applied test specification(s)

One Comment in a	Required Compliance Boundary(m)		
Configuration	Occupational General Pop		
2.4GHz WiFi + 5GHz WiFi	0.20	0.43	

--- END ---

Page No. 9 / 9