Test report No: NIE: 67469RAN.002 ## Assessment report RF EXPOSURE REPORT ACCORDING TO FCC 47 CFR Part 2.1093 | | _ | |---|--| | (*) Identification of item under evaluation | Wellness ring | | (*) Trademark | ŌURA | | (*) Model and /or type reference | Gen3 Ring (BLB_03) | | (*) Derived model not evaluated | BLB_03 Sizes: US6, US7, US8, US9, US10, US12 & US13 BLB_04 Sizes US6, US7, US8, US9, US10, US11, US12 & US13 | | (*) Other identification of the product | Ring: HW version: BLB_03/ BLB_04 SW version: 1.15.1 FCC ID: 2AD7V-OURA2101 IC: 20635-OURA2101 | | (*) Features | Sleep Analysis, Activity Monitoring, Readiness Score, Bluetooth LE | | (*) Manufacturer | Oura Health Oy
Elektroniikkatie 10, 90590 Oulu, Finland | | Test method requested, standard | FCC 47 CFR Part 2.1093. Radiofrequency radiation exposure evaluation: portable devices | | Summary | IN COMPLIANCE | | Approved by (name / position & signature) | Miguel Lacave Antennas Lab Manager | | Date of issue | 2021-11-03 | | Report template No | FAN24_02 (*) "Data provided by the client" | ### **DEKRA Testing and Certification, S.A.U.** Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456 ## Index | Competences and guarantees | 3 | |--|----| | General conditions | 3 | | Data provided by the client | 3 | | Identification of the client | 5 | | Document history | 5 | | Appendix A: FCC RF Exposure assessment result | 6 | | General description of the device under evaluation | 7 | | Assessment summary | 7 | | Evaluation Results | 8 | | Appendix B: FCC RF Exposure information | 9 | | FCC SAR test exclusion considerations for portable devices | 10 | Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456 ### Competences and guarantees In order to assure the traceability to other national and international laboratories, DEKRA Testing and Certification, S.A.U. has a calibration and maintenance program for its measurement equipment. DEKRA Testing and Certification, S.A.U. guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at DEKRA Testing and Certification, S.A.U. at the time of performance of the test. DEKRA Testing and Certification, S.A.U. is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test. The results presented in this Assessment Report apply only to the particular item under test established in this document. IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA Testing and Certification, S.A.U. ### General conditions - 1. This report is only referred to the item that has undergone the assessment. - 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities. - 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA Testing and Certification, S.A.U. - 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA Testing and Certification, S.A.U. and the Accreditation Bodies ### Data provided by the client The following data has been provided by the client: - 1. Information relating to the description of the sample ("Identification of the item under evaluation", "Trademark", "Model and/or type reference", "General description of the device" and "Other identification of the product"). - 2. Maximum output power, maximum antenna gain and use distance information. - OURA is a revolutionary wellness ring and app, designed to help user gets more restful sleep and performs better. It enables user to learn how the lifestyle choices affect user's sleep, and how the quality of the sleep affects user's ability to perform. The OURA ring can automatically tell when user is sleeping. When user goes to sleep, the ŌURA ring analyzes the quality of the rest and recovery by measuring the heart rate (optically), respiration rate, body temperature, and movement. While user is awake, it monitors the duration and intensity of the activities, and the time user spends sitting. The OURA app integrates and visualizes this data to identify patterns between the sleep quality and daily activities. By understanding how well user slept and recharged, it can determine the readiness to perform and help user adjust the intensity and duration of the day's activities. It can also uncover actionable insights for changes to the daily activities that can help user sleep better. 4. Customer provides the following information related the Derived Models not evaluated: ## Declaration of differences ### Purpose of the document: This document contains general information of the Oura Ring Gen3 HW differences. ### Ring sizes: There are eight sizes of the rings: US6, US7, US8, US9, US10, US11, US12 and US13. All sizes are identical in RF characteristics. All sizes were pre-tested and size US11 was selected as worst case to represent all sizes. The rings in different sizes also have different size circuit boards and capacity batteries. Every eight size of rings need dedicated battery type/physical size. Batteries are Li-ion type. - Li-ion type - Nominal voltage 3.7V - Capacities varying from 15mAh to 22mAh depending on battery size. - Batteries are CB certified and tested according to UN 38.3 requirements | Component / | Manufacturer/ | Type No./ | Technical data | Standard No., | Mark(s) & | |-------------|-----------------|-------------|-----------------|------------------|-----------------| | Part No. | Trademark | Model | | Edition/year | Certificates of | | | | | | | conformity 1 | | Battery | Shenzhen Grepow | 1)YE160722G | 3.7 Vdc Li-ion, | IEC 62133 (ed.2) | 1)DK-73416-UL | | | Battery CO. LTD | 2)YE160723G | 15-22 mAh, | edition | 2)DK-73886-UL | | | | 3)YE160724G | 0.0555Wh | | 3)DK-73253-UL | | | | 4)YE160725G | -0.0703Wh, | | 4)DK-73413-UL | | | | 5)YE160726G | Charging | | 5)DK-73251-UL | | | | 6)YE160727G | voltage 4.2Vdc, | | 6)DK73573-UL | | | | 7)YE160728G | min. discharge | | 7)DK-73720-UL | | | | 8)YE160729G | voltage 3 Vdc | | 8)DK-73572-UL | DEKRA Testing and Certification S.A.U. declines any responsibility with respect to the information provided by the client and that may affect the validity of results. Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456 ## Identification of the client Oura Health Oy Elektroniikkatie 10, 90590 Oulu, Finland ## **Document** history | Report number | Date | Description | |---------------|------------|---------------| | 67469RAN.001 | 2021-11-03 | First release | Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456 ## Appendix A: FCC RF Exposure assessment result ## General description of the device under evaluation The device under evaluation consists of a ring which supports Bluetooth low Energy. According to the manufacturer, during its normal use, the separation distance between the radiating structures of the device and nearby users will be 0 cm. | Technology / Mode | Band | Frequency
(MHz) | Maximum
Conducted
Output Power
(dBm) | Antenna
peak gain
(dBi) | Maximum
E.I.R.P.
(dBm) | Maximum
E.I.R.P.
(mW) | |-------------------|---------|--------------------|---|-------------------------------|------------------------------|-----------------------------| | BTLE | 2.4 GHz | 2400 - 2483.5 | 4.00 | -24.90 | -20.90 | 0.01 | Table 1: Equipment specifications ### Assessment summary The assessment summary according to the radiofrequency radiation exposure limits defined in FCC 47 CFR § 2.1093 is the following: | Technology /
Mode | Band | Frequency
(MHz) | Verdict | |----------------------|---------|--------------------|---------| | BTLE | 2.4 GHz | 2400 - 2483.5 | Pass | Table 2: Assessment summary ### **Evaluation Results** The evaluation according to the minimum intended use distance of 0 mm (5mm applied for the evaluation according to KDB 447498 D01 General RF Exposure Guidance, see Appendix B for additional information) will be as follow: | Technology / Mode | Band | Frequency
(MHz) | Distance
(cm) | Result | Limit 1-g
SAR | SAR Test
Exclusion | |-------------------|---------|--------------------|------------------|--------|------------------|-----------------------| | BTLE | 2.4 GHz | 2400 - 2483.5 | 0.50 | 0.79 | 3.00 | Pass | **Table 3:** FCC Evaluation Result The computed value(s) are below the limit(s), so according to KDB 447498 D01 – General RF Exposure Guidance, these modes qualify for Standalone SAR test exclusion for 1-g SAR and 10-g Extremity SAR. **DEKRA Testing and Certification, S.A.U.** Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456 # **Appendix B:** FCC RF Exposure information ## FCC SAR test exclusion considerations for portable devices For transmission frequencies below 6GHz, as stated by the FCC (47 CFR §2.1093), human exposure to RF emissions from portable devices, which are defined as transmitting devices to be used so that the radiating structure(s) of the device is/are within 20 centimeters of the body of the user, must be evaluated with respect to the FCC-adopted limits for SAR. According to FCC OET KDB 447498 D01 General RF Exposure Guidance: Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition is satisfied. ### - For distances ≤ 50 mm The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR ### Where - f(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. Approximate SAR Test Exclusion Power Thresholds at Selected Frequencies and Test Separation Distances are illustrated in the following Table: | MHz | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | mm | |------|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----------| | 150 | 39 | 77 | 116 | 155 | 194 | 232 | 271 | 310 | 349 | 387 | | | 300 | 27 | 55 | 82 | 110 | 137 | 164 | 192 | 219 | 246 | 274 | | | 450 | 22 | 45 | 67 | 89 | 112 | 134 | 157 | 179 | 201 | 224 | | | 835 | 16 | 33 | 49 | 66 | 82 | 98 | 115 | 131 | 148 | 164 | SAR Test | | 900 | 16 | 32 | 47 | 63 | 79 | 95 | 111 | 126 | 142 | 158 | | | 1500 | 12 | 24 | 37 | 49 | 61 | 73 | 86 | 98 | 110 | 122 | Exclusion | | 1900 | 11 | 22 | 33 | 44 | 54 | 65 | 76 | 87 | 98 | 109 | Threshold | | 2450 | 10 | 19 | 29 | 38 | 48 | 57 | 67 | 77 | 86 | 96 | (mW) | | 3600 | 8 | 16 | 24 | 32 | 40 | 47 | 55 | 63 | 71 | 79 | | | 5200 | 7 | 13 | 20 | 26 | 33 | 39 | 46 | 53 | 59 | 66 | | | 5400 | 6 | 13 | 19 | 26 | 32 | 39 | 45 | 52 | 58 | 65 | | | 5800 | 6 | 12 | 19 | 25 | 31 | 37 | 44 | 50 | 56 | 62 | | SAR Test Exclusion Thresholds for 100 MHz – 6 GHz and ≤ 50 mm C.I.F. A29 507 456 #### - For distances > 50 mm For 100 MHz to 6 GHz frequencies and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following: - 1) [Power allowed at numeric threshold for 50 mm in table 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz - 2) [Power allowed at numeric threshold for 50 mm in table 1) + (test separation distance 50 mm)-10] mW, at > 1500 MHz and \leq 6 GHz Approximate SAR test exclusion power thresholds at selected frequencies and test separation distances are illustrated in the following table | MHz | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 | mm | |------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|-----------| | 100 | 474 | 481 | 487 | 494 | 501 | 507 | 514 | 521 | 527 | 534 | 541 | 547 | 554 | 561 | 567 | | | 150 | 387 | 397 | 407 | 417 | 427 | 437 | 447 | 457 | 467 | 477 | 487 | 497 | 507 | 517 | 527 | | | 300 | 274 | 294 | 314 | 334 | 354 | 374 | 394 | 414 | 434 | 454 | 474 | 494 | 514 | 534 | 554 | | | 450 | 224 | 254 | 284 | 314 | 344 | 374 | 404 | 434 | 464 | 494 | 524 | 554 | 584 | 614 | 644 | | | 835 | 164 | 220 | 275 | 331 | 387 | 442 | 498 | 554 | 609 | 665 | 721 | 776 | 832 | 888 | 943 | SAR Test | | 900 | 158 | 218 | 278 | 338 | 398 | 458 | 518 | 578 | 638 | 698 | 758 | 818 | 878 | 938 | 998 | Exclusion | | 1500 | 122 | 222 | 322 | 422 | 522 | 622 | 722 | 822 | 922 | 1022 | 1122 | 1222 | 1322 | 1422 | 1522 | Threshold | | 1900 | 109 | 209 | 309 | 409 | 509 | 609 | 709 | 809 | 909 | 1009 | 1109 | 1209 | 1309 | 1409 | 1509 | (mW) | | 2450 | 96 | 196 | 296 | 396 | 496 | 596 | 696 | 796 | 896 | 996 | 1096 | 1196 | 1296 | 1396 | 1496 | | | 3600 | 79 | 179 | 279 | 379 | 479 | 579 | 679 | 779 | 879 | 979 | 1079 | 1179 | 1279 | 1379 | 1479 | | | 5200 | 66 | 166 | 266 | 366 | 466 | 566 | 666 | 766 | 866 | 966 | 1066 | 1166 | 1266 | 1366 | 1466 | | | 5400 | 65 | 165 | 265 | 365 | 465 | 565 | 665 | 765 | 865 | 965 | 1065 | 1165 | 1265 | 1365 | 1465 | | | 5800 | 62 | 162 | 262 | 362 | 462 | 562 | 662 | 762 | 862 | 962 | 1062 | 1162 | 1262 | 1362 | 1462 | | SAR Test Exclusion Thresholds for 100 MHz - 6 GHz and > 50 mm ### - For frequencies below 100 MHz The following may be considered for SAR test exclusion: - 1) For test separation distances > 50 mm and < 200 mm, the power threshold at the corresponding test separation distance at 100 MHz in step b) is multiplied by [1 + log(100/f(MHz))] - 2) For test separation distances \leq 50 mm, the power threshold determined by the equation in c) 1) for 50 mm and 100 MHz is multiplied by $\frac{1}{2}$ Approximate SAR test exclusion power thresholds at selected frequencies and test separation distances are illustrated in the following table | MHz | < 50 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 | mm | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 100 | 237 | 474 | 481 | 487 | 494 | 501 | 507 | 514 | 521 | 527 | 534 | 541 | 547 | 554 | 561 | 567 | | | 50 | 308 | 617 | 625 | 634 | 643 | 651 | 660 | 669 | 677 | 686 | 695 | 703 | 712 | 721 | 729 | 738 | | | 10 | 474 | 948 | 961 | 975 | 988 | 1001 | 1015 | 1028 | 1041 | 1055 | 1068 | 1081 | 1095 | 1108 | 1121 | 1135 | mW | | 1 | 711 | 1422 | 1442 | 1462 | 1482 | 1502 | 1522 | 1542 | 1562 | 1582 | 1602 | 1622 | 1642 | 1662 | 1682 | 1702 | IIIVV | | 0.1 | 948 | 1896 | 1923 | 1949 | 1976 | 2003 | 2029 | 2056 | 2083 | 2109 | 2136 | 2163 | 2189 | 2216 | 2243 | 2269 | | | 0.05 | 1019 | 2039 | 2067 | 2096 | 2125 | 2153 | 2182 | 2211 | 2239 | 2268 | 2297 | 2325 | 2354 | 2383 | 2411 | 2440 | | | 0.01 | 1185 | 2370 | 2403 | 2437 | 2470 | 2503 | 2537 | 2570 | 2603 | 2637 | 2670 | 2703 | 2737 | 2770 | 2803 | 2837 | | SAR Test Exclusion Thresholds for frequencies < 100 MHz