

Report No.: EED32H00200503 Page 1 of 68

TEST REPORT

Product : Smart Security Light
Trade mark : MAXIMUS, KUNA

Model/Type reference : SPL06-07A1W4-BKT, SPL06-07A1W4-ORB,

SPL08-07A1W4-BKT, SPL08-07A1W4-ORB, SPL09-05A1W4-BKT, SPL09-05A1W4-ORB, SPL11-07A1W4-BKT, SPL11-07A1W4-ORB

Serial Number : N/A

Report Number : EED32H00200503

FCC ID : 2AD7D-KNP01

Date of Issue : Nov. 25, 2015

Test Standards : 47 CFR Part 15 Subpart C (2014)

Test result : PASS

Prepared for:

Shenzhen Jiawei Photovoltaic Lighting Co., Ltd. No.1, 2, 3, 4, Xinfa Industry Zone, Central Community, Pingdi Road, Longgang District, Shenzhen City, Guangdong Province, P.R. China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by Report Seal

Ware Xin

Reviewed by:

Eman - Li

. .

Date

Nov. 25, 2015

Sheek Luo Lab supervisor

Check No.: 2295532334

Page 2 of 68

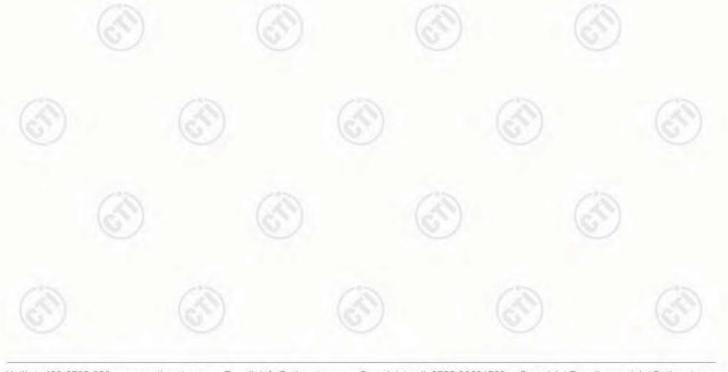
2 Version

Version No.	Date	Description	
00	Nov. 25, 2015	Original	
		(25)	(38)
			6

Page 3 of 68

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS


Remark: All test are according to ANSI C63.10-2013 and ANSI C63.4-2014

The tested sample(s) and the sample information are provided by the client.

Model No.: SPL06-07A1W4-BKT, SPL06-07A1W4-ORB, SPL08-07A1W4-BKT, SPL08-07A1W4-ORB,

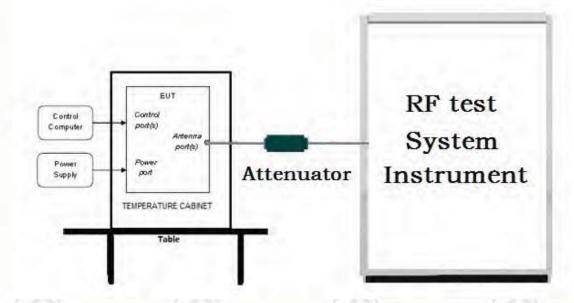
SPL09-05A1W4-BKT, SPL09-05A1W4-ORB, SPL11-07A1W4-BKT, SPL11-07A1W4-ORB

Only the Model SPL06-07A1W4-BKTwas tested, since the electrical circuit design, layout, components used and internal wiring were identical for all above models. Only different on color, size and package.

Page 4 of 68

4 Content

1 COVER PAGE		1
2 VERSION		2
3 TEST SUMMARY		3
4 CONTENT		4
5 TEST REQUIREMENT		5
5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 5.1.3 For Conducted Emissions test setup		5
5.2 Test Environment		6
6 GENERAL INFORMATION		7
6.1 CLIENT INFORMATION	ARD	7 8 8
6.6 TEST FACILITY	· · · · · · · · · · · · · · · · · · ·	9
7 EQUIPMENT LIST		10
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	ON	. 13
Appendix A) Conducted Peak Output Power	ns	. 18 . 22 25 32 36
Appendix H) Restricted bands around fundamental Appendix I) Radiated Spurious Emissions	frequency (Radiated)	40
APPENDIX 1 PHOTOGRAPHS OF TEST SETUP		. 50
APPENDIX 2 PHOTOGRAPHS OF EUT		52



Report No.: EED32H00200503 Page 5 of 68

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

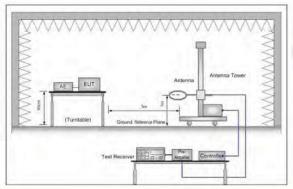


Figure 1. Below 30MHz

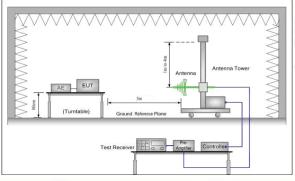


Figure 2. 30MHz to 1GHz

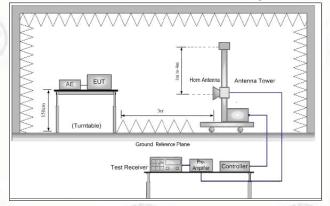
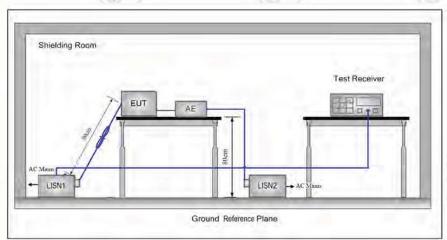



Figure 3. Above 1GHz

Report No.: EED32H00200503 Page 6 of 68

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:	(0)	(6)
Temperature:	23 °C	
Humidity:	53 % RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx -2412MHz ~2462 MHz -	RF Channel				
rest Mode		Low(L)	Middle(M)	High(H)		
902 11h/a/p/UT20)		Channel 1	Channel 6	Channel11		
802.11b/g/n(HT20)		2412MHz	2437MHz	2462MHz		
	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate. (Dutycycle>98%)					

Test mode:

Pre-scan under all rate at lowest channel 1

Mode		802	.11b			_			
Data Rate	1Mbps	2Mbps	5.5Mbps	11Mbps					- 10
EIRP(dBm)	16.19	16.34	16.61	17.79					
Mode	8		6	802.	.11g	6			16
Data Rate	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	541	Mbps
EIRP(dBm)	16.14	16.03	15.79	15.34	15.11	14.99	14.90	14	1.80
Mode		(253)		802.1	1n (HT20)		(3	37	
Data Rate	6.5Mbps	13Mbps	19.5Mbp	s 26Mbp	s 39Mbps	52Mbp	s 58.5MI	ops	65Mbp
EIRP(dBm)	16.86	16.76	16.65	16.51	16.40	16.27	16.1	1	16.01

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n (HT20).

Report No. : EED32H00200503 Page 7 of 68

6 General Information

6.1 Client Information

Applicant:	Shenzhen Jiawei Photovoltaic Lighting Co., Ltd.					
Address of Applicant:	No.1, 2, 3, 4, Xinfa Industry Zone, Central Community, Pingdi Road, Longgang District, Shenzhen City, Guangdong Province, P.R. China					
Manufacturer:	Shenzhen Jiawei Photovoltaic Lighting Co., Ltd. Gaoqiao Subsidiary					
Address of Manufacturer:	A, B, C, D Plants, No.4, Fugao East Road, Gaoqiao Community, Pingdi Road, Longgang District, Shenzhen City, Guangdong Province, P.R. China					
Factory:	Shenzhen Jiawei Photovoltaic Lighting Co., Ltd. Gaoqiao Subsidiary					
Address of Factory:	A, B, C, D Plants, No.4, Fugao East Road, Gaoqiao Community, Pingdi Road, Longgang District, Shenzhen City, Guangdong Province, P.R. China					

6.2 General Description of EUT

Product Name:	Smart Security Light
Mode No.(EUT):	SPL06-07A1W4-BKT, SPL06-07A1W4-ORB, SPL08-07A1W4-BKT, SPL08-07A1W4-ORB, SPL09-05A1W4-BKT, SPL09-05A1W4-ORB, SPL11-07A1W4-BKT, SPL11-07A1W4-ORB
Test Mode No.:	SPL06-07A1W4-BKT
Trade Mark:	MAXIMUS, KUNA
EUT Supports Radios application:	Wlan 2.4GHz 802.11b/g/n(HT20)
Power Supply:	AC 120V/60Hz
Sample Received Date:	Oct. 16, 2015
Sample tested Date:	Oct. 16, 2015 to Nov. 09, 2015

6.3 Product Specification subjective to this standard

Operation	Frequency:	IEEE 80	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz						
Channel N	Numbers:	IEEE 80	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels						
Channel S	Separation:	5MHz	5MHz						
Type of M	lodulation:	IEEE fo	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20): OFDM (64QAM, 16QAM, QPSK,BPSK)						
Sample T	ype:	Fixed production					-/3		
Antenna Type and Gain: Type: Integral Gain:4dBi						64			
Test Volta	ige:	AC 120	V/60Hz						
Operation	Frequency ea	ch of channe	el(802.11b/g/n	HT20)					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2412MHz	4	4 2427MHz 7 2442MHz 10						
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz		
3	2422MHz	6	2437MHz	9	2452MHz		1515		

Report No.: EED32H00200503 Page 8 of 68

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd.has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 565659

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 565659.

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

Report No.: EED32H00200503 Page 9 of 68

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions None.

6.9 Other Information Requested by the Customer None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB(1GHz-18GHz)
3	Padiated Spurious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB(1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
24/	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

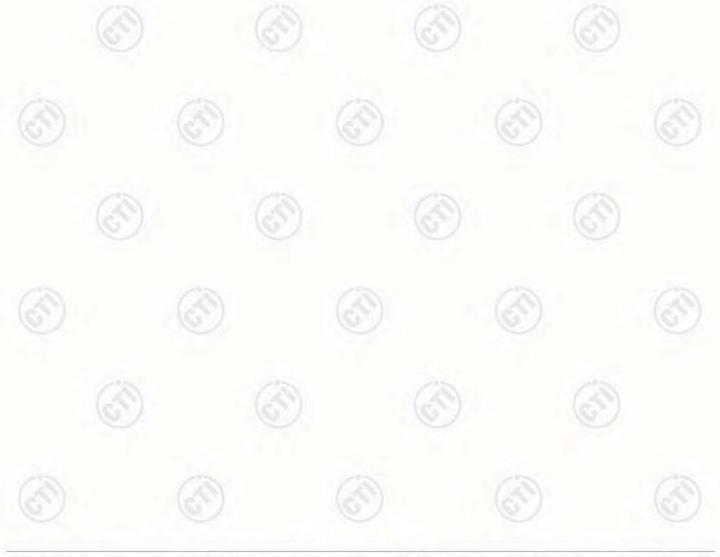
Report No.: EED32H00200503 Page 10 of 68

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Communication test set test set	Agilent	N4010A	MY47230124	04-02-2015	04-01-2016
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2015	03-31-2016
Attenuator	HuaXiang	SHX370	15040701	04-01-2015	03-31-2016
Signal Generator	Keysight	N5182B	MY53051549	03-31-2015	03-30-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002	(0)	01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-13-2015	01-12-2016
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-13-2015	01-12-2016
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002		01-13-2015	01-12-2016
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001	(4)	01-13-2015	01-12-2016
DC Power	Keysight	E3642A	MY54436035	03-31-2015	03-30-2016
PC-1	Lenovo	R4960d		04-01-2015	03-31-2016
BT&WI-FI Automatic control	R&S	OSPB157	101374	04-01-2015	03-31-2016
RF control unit	JS Tonscend	JS0806-2	2015860006	04-01-2015	03-31-2016
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		04-01-2015	03-31-2016

Page 11 of 68

		3M Semi/full-anecl	asia Chambar		
		Swi Semi/fuii-aneci			
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber	TDK	SAC-3		06-02-2013	06-01-2016
TRILOG Broadband Antenna	schwarzbeck	VULB9163	9163-617	07-13-2015	07-29-2016
Microwave Preamplifier	Agilent	8449B	3008A02425	02-05-2015	02-04-2016
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-30-2015	06-28-2016
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016
Multi device Controller	maturo	NCD/070/10711112		01-13-2015	01-12-2016
LISN	schwarzbeck	NNBM8125	81251547	06-30-2015	06-28-2016
LISN	schwarzbeck	NNBM8125	81251548	06-30-2015	06-28-2016
Signal Generator	Agilent	E4438C	MY45095744	04-19-2015	04-18-2016
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Temperature/ Humidity Indicator	TAYLOR	1451	1905	07-08-2015	07-06-2016
Communication test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016
Cable line	Fulai(7M)	SF106	5219/6A	01-13-2015	01-12-2016
Cable line	Fulai(6M)	SF106	5220/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5216/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5217/6A	01-13-2015	01-12-2016
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18NM 12-0398-002	(32)	01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA09CL1 2-0395-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA08CL1 2-0393-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA04CL1 2-0396-002		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA03CL1 2-0394-001	(A)	01-13-2015	01-12-2016



Page 12 of 68

Conducted disturbance Test						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016	
Receiver	R&S	ESCI	100009	06-30-2015	06-28-2016	
Temperature/ Humidity Indicator	Belida	TT-512	101	07-09-2015	07-07-2016	
Communication test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016	
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016	
LISN	R&S	ENV216	100098	06-30-2015	06-28-2016	
LISN	schwarzbeck	NNLK8121	8121-529	06-30-2015	06-28-2016	
LISN	ETS-LINDGREN	3850/2	00051952	11-14-2014	11-13-2015	
Voltage Probe	R&S	ESH2-Z3	100042	07-09-2014	07-08-2017	
Current Probe	R&S	EZ17	100106	07-09-2014	07-08-2017	
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017	

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2014)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)



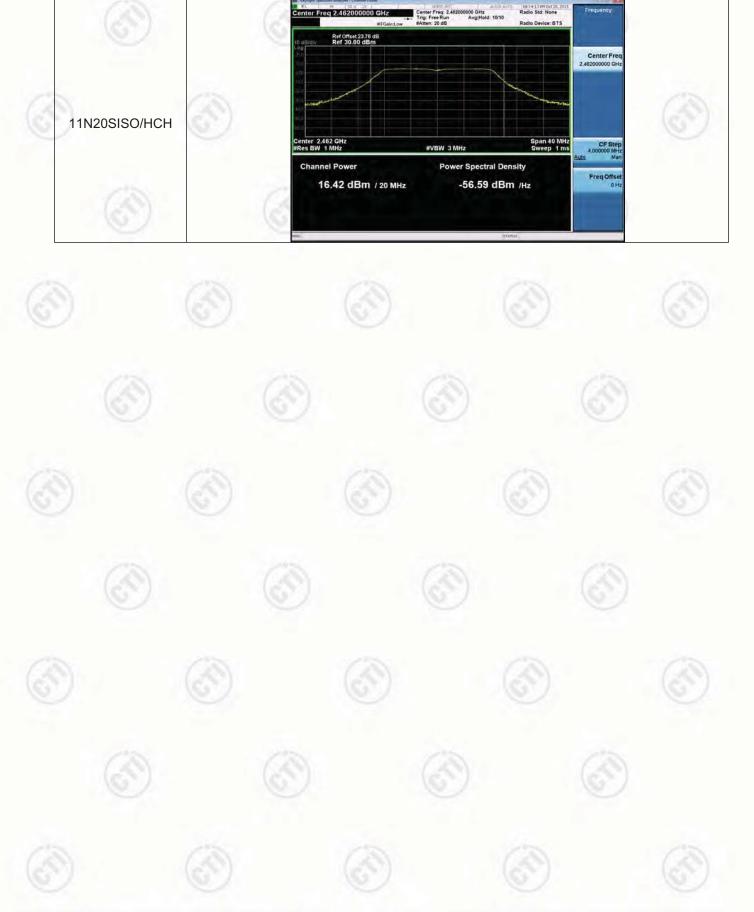
Appendix A) Conducted AV Output Power

Result Table

Mode	Channel	Conducted AV Output Power [dBm]	Verdict
11B	LCH	16.19	PASS
11B	MCH	17.79	PASS
11B	HCH	17.22	PASS
11G	LCH	14.8	PASS
11G	MCH	16.14	PASS
11G	HCH	15.47	PASS
11N20SISO	LCH	16.01	PASS
11N20SISO	MCH	16.86	PASS
11N20SISO	HCH	16.42	PASS

Page 15 of 68

Page 16 of 68



Page 17 of 68

Page 18 of 68 Report No.: EED32H00200503

Appendix B) 6dB Occupied Bandwidth

Result Table

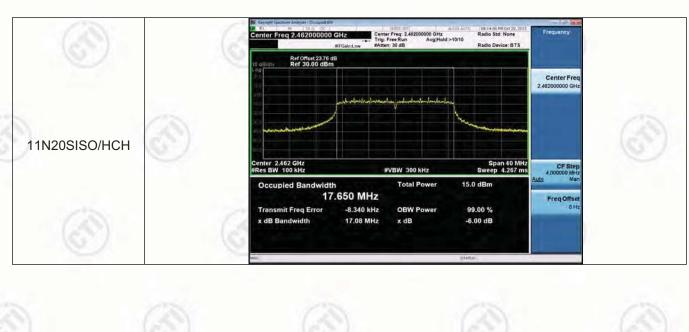
NOSUR TUDIO					
Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	
11B	LCH	10.04	13.916	PASS	
11B	MCH	10.08	13.948	PASS	
11B	НСН	10.07	13.952	PASS	
11G	LCH	16.30	16.458	PASS	
11G	MCH	16.32	16.446	PASS	
11G	НСН	16.32	16.456	PASS	
11N20SISO	LCH	17.18	17.651	PASS	
11N20SISO	MCH	17.05	17.643	PASS	
11N20SISO	НСН	17.08	17.650	PASS	

Remark: peak detector

Test Graph

Page 19 of 68

Page 20 of 68



Page 21 of 68

Report No.: EED32H00200503 Page 22 of 68

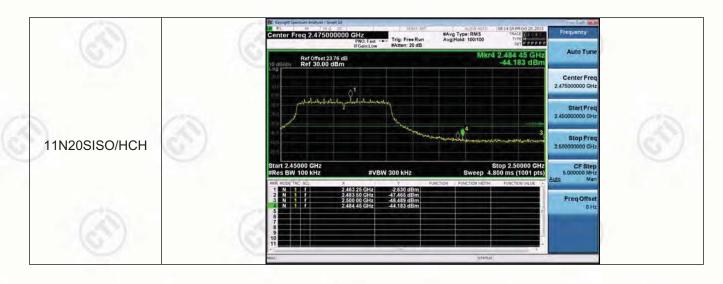
Appendix C) Band-edge for RF Conducted Emissions

Result Table

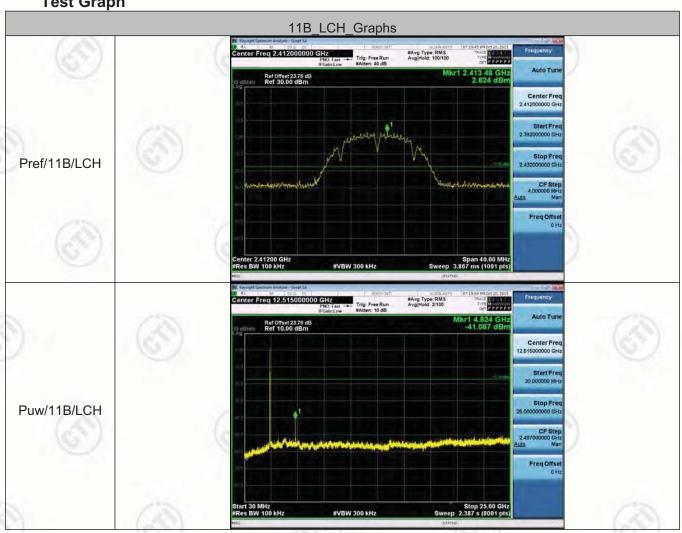
Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	2.524	-45.748	-27.48	PASS
11B	НСН	3.599	-46.242	-26.40	PASS
11G	LCH	-4.013	-45.812	-34.01	PASS
11G	HCH	-3.668	-45.452	-33.67	PASS
11N20SISO	LCH	-2.437	-46.162	-32.44	PASS
11N20SISO	HCH	-2.630	-44.183	-32.63	PASS

Test Graph

Page 23 of 68



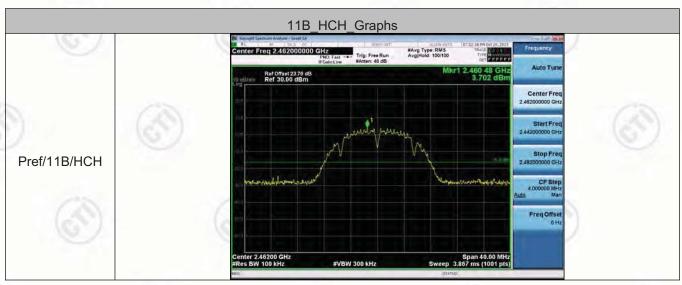
Page 24 of 68


Page 25 of 68 Report No.: EED32H00200503

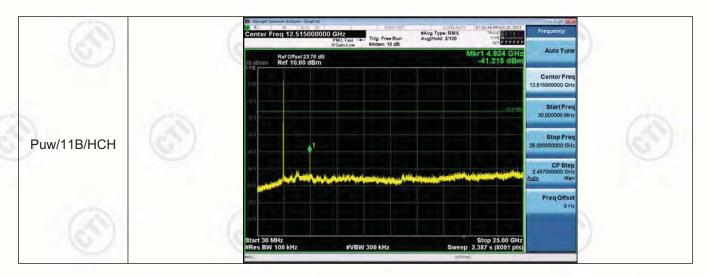
Appendix D) RF Conducted Spurious Emissions

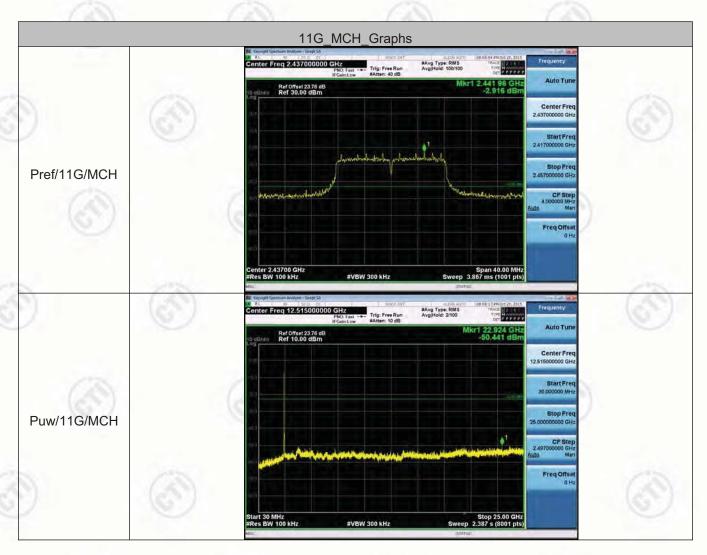
Result Table

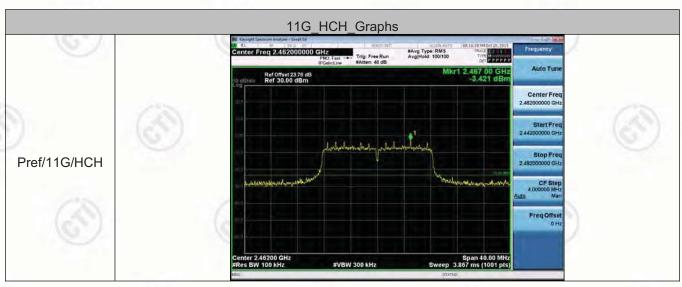
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	2.624	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	4.238	<limit< td=""><td>PASS</td></limit<>	PASS
11B	НСН	3.702	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	-3.892	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	-2.916	<limit< td=""><td>PASS</td></limit<>	PASS
11G	HCH	-3.421	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-2.615	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	-2.034	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	НСН	-2.388	<limit< td=""><td>PASS</td></limit<>	PASS


Test Graph

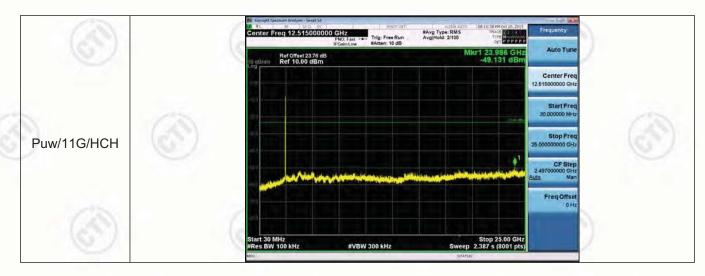
Page 26 of 68

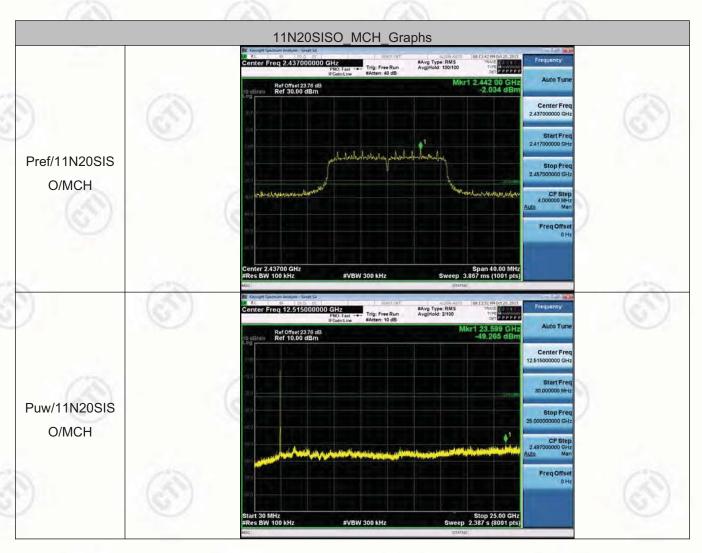


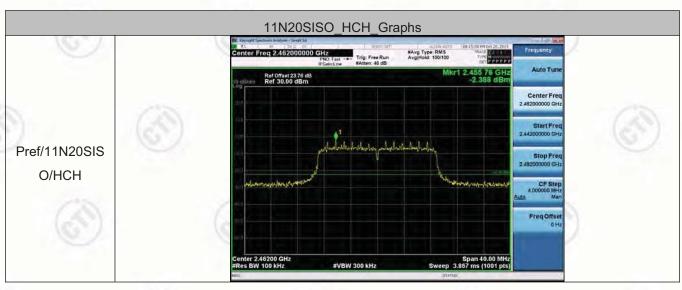




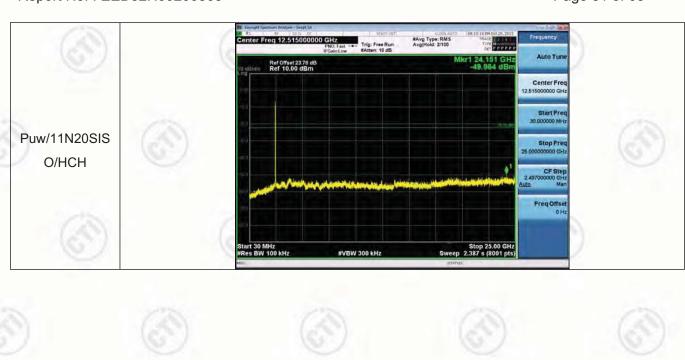
Report No. : EED32H00200503 Page 28 of 68







Report No. : EED32H00200503 Page 30 of 68

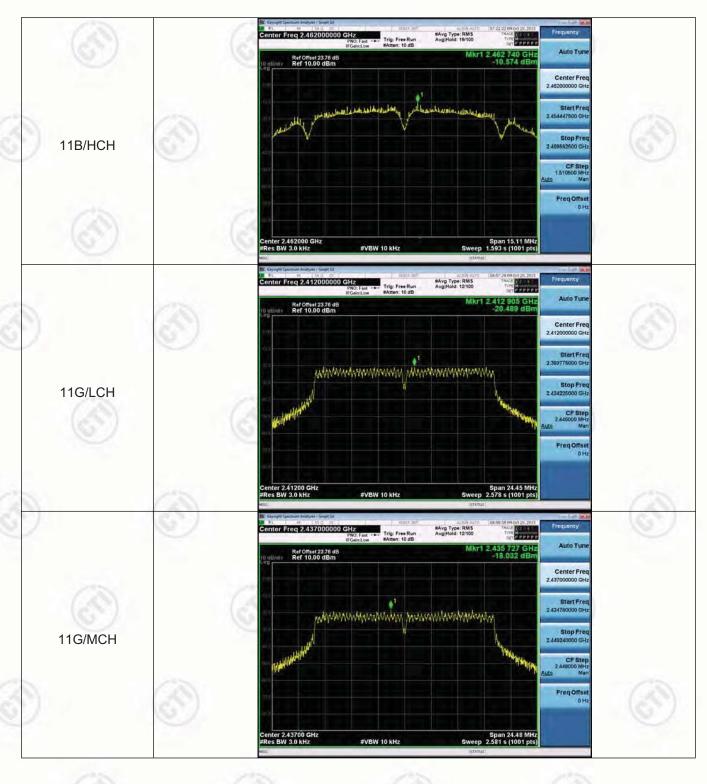


Page 31 of 68

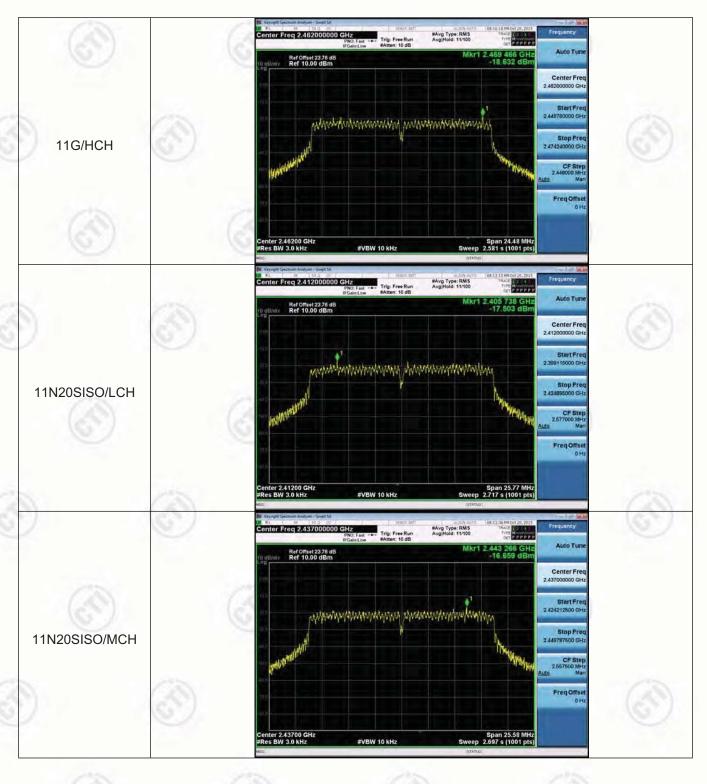
Report No.: EED32H00200503 Page 32 of 68

Appendix E) Power Spectral Density

Result Table


Result Table			
Mode	Channel	Power Spectral Density [dBm]	Verdict
11B	LCH	-12.509	PASS
11B	MCH	-9.891	PASS
11B	HCH	-10.574	PASS
11G	LCH	-20.489	PASS
11G	MCH	-18.032	PASS
11G	HCH	-18.632	PASS
11N20SISO	LCH	-17.503	PASS
11N20SISO	MCH	-16.659	PASS
11N20SISO	НСН	-17.784	PASS

Test Graph

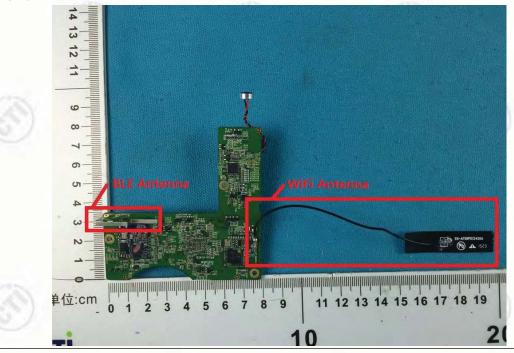

Page 33 of 68

Page 34 of 68

Report No.: EED32H00200503 Page 36 of 68

Appendix F) Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

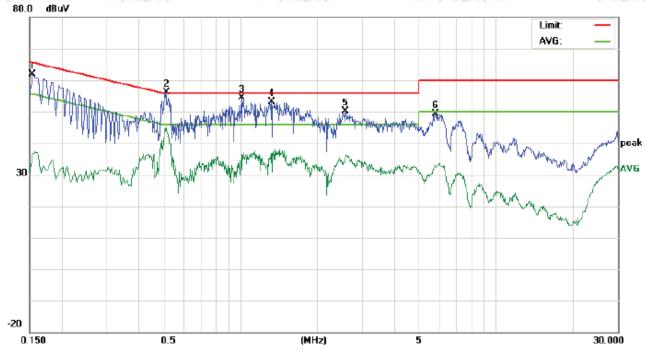
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 4dBi.

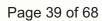
3)	The mains terminal disturbar The EUT was connected to Stabilization Network) which power cables of all other unwhich was bonded to the great for the unit being measured multiple power cables to a sexceeded. The tabletop EUT was place reference plane. And for floor horizontal ground reference. The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the reference plane was bonded 1 was plane was bonded 1 w	AC power source thrap provides a 50Ω/50 points of the EUT were bound reference planed. A multiple socket of the EUSN provided the displayed arrangement of the EUSN provided the displayed plane, a vertical ground refered to the horizontal ground refered to the horizontal ground reference were the source of the provides a source of the provides	ough a LISN 1 (Line a) III + 5Ω linear important to a sector in the same way a coutlet strip was used he rating of the LISI lic table 0.8m above tent, the EUT was preference plane. The rence plane. The vertical interest of the strip was preference plane. The vertical interest is a supplementation of the license plane. The vertical interest is a supplementation of the license plane.	e Impedance edance. The cond LISN 2, is the LISN 1 d to connect N was not e the ground placed on the ertical ground ne. The LISN 1
	The tabletop EUT was place reference plane. And for floor horizontal ground reference. The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the stable of the table of tabl	or-standing arrangem plane, h a vertical ground re vertical ground refer d to the horizontal gro	ent, the EUT was perference plane. The rence plane. The verbund reference plane.	e rear of the ertical ground ne. The LISN
4)	EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the	vertical ground refer to the horizontal gro	rence plane. The ve ound reference plan	rtical ground ne. The LISN
	ground reference plane for plane. This distance was be All other units of the EUT ar LISN 2.	LISNs mounted of tween the closest po	n top of the grour ints of the LISN 1 a	nd reference and the EUT.
5)	In order to find the maximur all of the interface cables conducted measurement.			•
Limit:	Frequency range (MHz)	Limit (c	,	
249	0.45.0.5	Quasi-peak	Average	215
(4)	0.15-0.5	66 to 56*	56 to 46*	(20)
6	0.5-5 5-30	56 60	46 50	
	The limit decreases linearly women MHz to 0.50 MHz. OTE: The lower limit is applic	(20)	(8)	⊐ ∍ range 0.15


Page 38 of 68

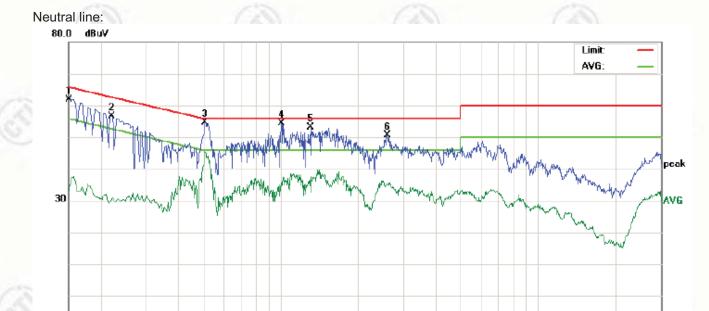
Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



No.	Freq.		ding_Le dBuV)	vel	Correct Factor	М	leasurem (dBuV)	ent	Lim (dB)		Mai (c	rgin IB)		
S	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1539	52.07	43.40	25.58	9.80	61.87	53.20	35.38	65.78	55.78	-12.58	-20.40	Р	
2	0.5140	46.30	42.17	34.39	9.90	56.20	52.07	44.29	56.00	46.00	-3.93	-1.71	Ρ	
3	1.0180	44.40	39.10	24.58	10.00	54.40	49.10	34.58	56.00	46.00	-6.90	-11.42	Р	
4	1.3300	43.11	36.35	24.57	10.00	53.11	46.35	34.57	56.00	46.00	-9.65	-11.43	Ρ	
5	2.5940	40.09		25.25	10.00	50.09		35.25	56.00	46.00	-5.91	-10.75	Р	
6	5.8220	39.41		23.12	10.00	49.41		33.12	60.00	50.00	-10.59	-16.88	Ρ	



30.000

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasurem (dBuV)	ent	Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	52.07	43.89	24.65	9.80	61.87	53.69	34.45	65.99	55.99	-12.30	-21.54	Р	
2	0.2220	52.07	37.97	19.92	9.80	61.87	47.77	29.72	62.74	52.74	-14.97	-23.02	Р	
3	0.5100	44.81	41.40	34.38	9.90	54.71	51.30	44.28	56.00	46.00	-4.70	-1.72	Ρ	
4	1.0100	44.39	37.47	25.64	10.00	54.39	47.47	35.64	56.00	46.00	-8.53	-10.36	Ρ	
5	1.3099	43.08	36.00	25.43	10.00	53.08	46.00	35.43	56.00	46.00	-10.00	-10.57	Ρ	
6	2.5980	40.59	33.04	24.15	10.00	50.59	43.04	34.15	56.00	46.00	-12.96	-11.85	Р	

(MHz)

Notes:

0.150

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

0.5

Appendix H) Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	
	Ab 4011-	Peak	1MHz	3MHz	Peak	13
) (6	Above 1GHz	Peak	1MHz	10Hz	Average	0
Test Procedure:	Below 1GHz test procedure. a. The EUT was placed of at a 3 meter semi-aneodetermine the position. b. The EUT was set 3 me was mounted on the tot. c. The antenna height is determine the maximular polarizations of the anion. d. For each suspected er the antenna was tuned table was turned from. e. The test-receiver system Bandwidth with Maxim.	ure as below: on the top of a rochoic camber. The of the highest rate away from op of a variable-had are set to mission, the EUT to heights from 0 degrees to 360 am was set to Peum Hold Mode.	otating table table was adiation. the interfer neight anter to four eld strength make the nature was arran 1 meter to 0 degrees teak Detect	e 0.8 meter is rotated 3 ence-recei nna tower. ur meters n. Both hor neasurement ged to its way 4 meters a o find the in	rs above the gases to ving antenna, above the group rizontal and versity worst case and the rotata maximum reactions.	whice whice which was a construction which which which will be a constructed with the construction which which which which which which which which will be a constructed with the construction which which which which which will be a constructed with the construction which will be a constructed with the construction which will be a constructed with the construction will be a
	f. Place a marker at the frequency to show con bands. Save the spect for lowest and highest	npliance. Also m rum analyzer plo	easure any	emissions	s in the restric	
	frequency to show con bands. Save the spect	npliance. Also m rum analyzer plo channel ure as below: we is the test site nber change form 1 meter and tab west channel, t	easure any ot. Repeat f e, change fr n table 0.8 de is 1.5 me he Highest	remissions for each por rom Semi- metre to 1 etre). channel	s in the restric ower and mod Anechoic Cha .5 metre(Abo	ulatio
Limit:	frequency to show conbands. Save the spect for lowest and highest Above 1GHz test proceding. Different between about to fully Anechoic Chanal 18GHz the distance is h. Test the EUT in the lowest save to show the same test of th	npliance. Also m rum analyzer plo channel ure as below: we is the test site nber change form 1 meter and tab west channel, t	easure any ot. Repeat f e, change fr n table 0.8 de is 1.5 me he Highest uencies me	rom Semi- metre to 1 etre). channel	s in the restric ower and mod Anechoic Cha .5 metre(Abo	ulatio
Limit:	frequency to show conbands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Chanal 18GHz the distance is h. Test the EUT in the low. Repeat above procedure.	npliance. Also m rum analyzer plo channel ure as below: we is the test site aber change form 1 meter and tab west channel, the ures until all frequence.	easure any ot. Repeat f e, change fr n table 0.8 le is 1.5 me he Highest uencies me	rom Semi- metre to 1 etre). channel easured wa	Anechoic Cha .5 metre(Abo	ulatio
Limit:	frequency to show conbands. Save the spect for lowest and highest Above 1GHz test proceding. Different between about of fully Anechoic Chanal 18GHz the distance is h. Test the EUT in the look. Repeat above procedure.	npliance. Also m rum analyzer plo channel ure as below: ve is the test site aber change form 1 meter and tab west channel , the ures until all frequency	easure any ot. Repeat f e, change fr n table 0.8 le is 1.5 me he Highest uencies me /m @3m)	rom Semi- metre to 1 etre). channel easured wa Rer Quasi-pe	s in the restrict ower and mod Anechoic Cha .5 metre(Abo as complete.	ulatio
Limit:	frequency to show conbands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Chanal 18GHz the distance is h. Test the EUT in the low i. Repeat above procedure. Frequency 30MHz-88MHz	npliance. Also m rum analyzer plo channel ure as below: ve is the test site nber change forr 1 meter and tab west channel , to ures until all frequence Limit (dBuV) 40.6	easure any ot. Repeat f e, change fr n table 0.8 de is 1.5 me he Highest uencies me /m @3m)	rom Semi- metre to 1 etre). channel easured wa Rer Quasi-pe	Anechoic Cha .5 metre(Abo	ulatio
Limit:	frequency to show conbands. Save the spect for lowest and highest Above 1GHz test proceding. Different between about 18GHz the distance is h. Test the EUT in the lower in th	npliance. Also m rum analyzer plo channel ure as below: we is the test site aber change form 1 meter and tab west channel , to ures until all frequences Limit (dBuV) 40.6 43.6	easure any ot. Repeat for table 0.8 le is 1.5 me he Highest uencies me me (m @3m)	rom Semi- metre to 1 etre). channel easured wa Rer Quasi-pe Quasi-pe	Anechoic Cha .5 metre(Abo as complete. mark eak Value	ulatio
Limit:	frequency to show conbands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Chanal 18GHz the distance is h. Test the EUT in the loward in the EUT in the EUT in the loward in the EUT in the EUT in the loward in the EUT in	npliance. Also m rum analyzer plo channel ure as below: we is the test site aber change form 1 meter and tab west channel , the ures until all frequences Limit (dBuV/ 40.0 43.5	easure any of the control of the con	rom Semi- metre to 1 etre). channel easured wa Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe	Anechoic Cha .5 metre(Abo as complete. mark eak Value eak Value	ulatio

Page 41 of 68

Test plot as follows:

		-										
Worse case	e mode:	802.11b (1	1Mbps)					(6.5)				
Frequency (MHz)	Read Level (dBµV)	Level (dBµV/m)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel		
2390.00	42.93	42.53	32.53	4.28	37.21	74	-31.47	Н	PK	Lowest		
2390.00	44.50	44.10	32.53	4.28	37.21	74	-29.90	V	PK	Lowest		
2483.50	43.62	43.65	32.71	4.51	37.19	74	-30.35	Н	PK	Highest		
2483.50	45.86	45.89	32.71	4.51	37.19	74	-28.11	V	PK	Highest		

Worse case	e mode:	802.11g (6l	Mbps)		10			6		
Frequency (MHz)	Read Level (dBµV)	Level (dBµV/m)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel
2390.00	48.15	47.75	32.53	4.28	37.21	74	-26.25	Н	PK	Lowest
2390.00	46.68	46.28	32.53	4.28	37.21	74	-27.72	V	PK	Lowest
2483.50	45.77	45.80	32.71	4.51	37.19	74	-28.20	Н	PK	Highest
2483.50	49.63	49.66	32.71	4.51	37.19	74	-24.34	V	PK	Highest

Worse case	e mode:	802.11n(H	Γ20) (6.5Mb	ps)	100	7		(0)		
Frequency (MHz)	Read Level (dBµV)	Level (dBµV/m)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel
2390.00	49.42	49.02	32.53	4.28	37.21	74	-24.98	Н	PK	Lowest
2390.00	44.68	44.28	32.53	4.28	37.21	74	-29.72	V	PK	Lowest
2483.50	44.86	44.89	32.71	4.51	37.19	74	-29.11	Н	PK	Highest
2483.50	48.26	48.29	32.71	4.51	37.19	74	-25.71	V	PK	Highest

Note

- 1) Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20),and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I) Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above 1GHZ	Peak	1MHz	10Hz	Average

Test Procedure:

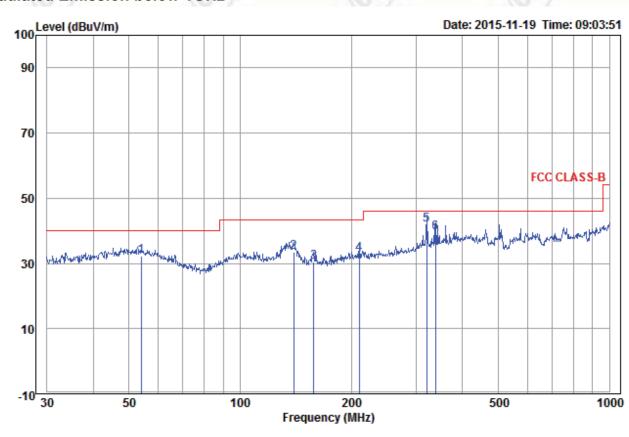
Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

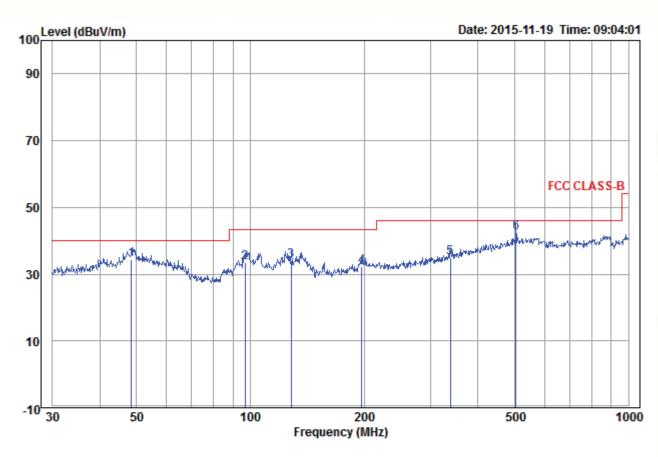
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre (Above 18GHz the distance is 1 meter and table is 1.5 metre)..
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Limit:


Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	J-15	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(29)	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz



	Freq		Cable Loss					Pol/Phase	Remark
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	53.88	14.57	1.41	16.22	32.20	40.00	-7.80	Horizontal	
2	139.85	10.30	1.58	21.51	33.39	43.50	-10.11	Horizontal	
3	158.11	10.05	1.70	18.73	30.48	43.50	-13.02	Horizontal	
4	210.05	11.78	2.24	18.95	32.97	43.50	-10.53	Horizontal	
5 pp	319.94	14.04	2.52	25.20	41.76	46.00	-4.24	Horizontal	
6	338.40	14.52	2.64	22.20	39.36	46.00	-6.64	Horizontal	

		Ant	Cable	Read		Limit	0ver			
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark	
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	——dB			
1	48.50	14.98	1.28	18.07	34.33	40.00	-5.67	Vertical		
2	96.77	12.58	1.58	19.19	33.35	43.50	-10.15	Vertical		
3	128.11	11.06	1.58	21.46	34.10	43.50	-9.40	Vertical		
4	197.20	11.51	2.18	18.70	32.39	43.50	-11.11	Vertical		
5	338.40	14.52	2.64	17.89	35.05	46.00	-10.95	Vertical		
6 pp	504.71	18.42	3.14	20.81	42.37	46.00	-3.63	Vertical		

Page 45 of 68

Transmitter Emission above 1GHz

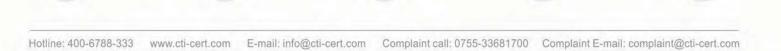
Test mo	ode: 8	302.11b(11M	bps) Te	st channel:			Lowest		
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1329.894	30.52	38.24	2.66	49.56	44.50	74	-29.50	Pass	Н
1659.574	31.16	37.73	2.97	55.54	51.94	74	-22.06	Pass	Н
2995.538	33.59	37.10	5.61	50.51	52.61	74	-21.39	Pass	Н
4824.000	34.73	36.82	5.1	49.18	52.19	74	-21.81	Pass	Н
7236.000	36.42	37.45	6.69	47.40	53.06	74	-20.94	Pass	Н
9648.000	37.93	37.83	7.70	44.91	52.71	74	-21.29	Pass	Н
1135.731	30.07	38.61	2.44	52.19	46.09	74	-27.91	Pass	V
1889.633	31.54	37.43	3.15	48.63	45.89	74	-28.11	Pass	V
3003.173	33.60	37.10	5.62	48.22	50.34	74	-23.66	Pass	V
4824.000	34.73	36.82	5.10	56.52	59.53	74	-14.47	Pass	V
4824.000	34.73	36.82	5.10	49.24	52.25	54	-1.75	Pass	V-AV
7236.000	36.42	37.45	6.69	51.89	57.55	74	-16.45	Pass	V
7236.000	36.42	37.45	6.69	40.67	46.33	54	-7.67	Pass	V-AV
9648.000	37.93	37.83	7.70	43.35	51.15	74	-22.85	Pass	V

Test m	ode:	802.11b(11	Mbps)	Test chann	iel:			Middle		
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)		evel µV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1367.659	30.60	38.18	2.70	49.06	44	1.18	74	-29.82	Pass	Н
1659.574	31.16	37.73	2.97	48.21	44	1.61	74	-29.39	Pass	Н
2995.538	33.59	37.10	5.61	49.47	5	1.57	74	-22.43	Pass	Н
4874.000	34.84	36.81	5.09	43.30	46	6.42	74	-27.58	Pass	Н
7311.000	36.43	37.43	6.76	43.53	49	9.29	74	-24.71	Pass	Н
9748.000	38.03	37.85	7.61	43.95	5	1.74	74	-22.26	Pass	Н
1659.574	31.16	37.73	2.97	47.56	43	3.96	74	-30.04	Pass	V
1884.829	31.53	37.44	3.15	46.79	44	1.03	74	-29.97	Pass	V
2995.538	33.59	37.1	5.61	48.11	50).21	74	-23.79	Pass	V
4874.000	34.84	36.81	5.09	57.68	60	0.80	74	-13.20	Pass	V
4874.000	34.84	36.81	5.09	46.55	49	9.67	54	-4.33	Pass	V-AV
7311.000	36.43	37.43	6.76	50.78	56	6.54	74	-17.46	Pass	V
7311.000	36.43	37.43	6.76	43.56	49	9.32	54	-4.68	Pass	V-AV
9748.000	38.03	37.85	7.61	43.62	5	1.41	74	-22.59	Pass	V

Page 46 of 68

Test m	ode:	802.11b(11	(Mbps)	Test chann	nel:		Highest		
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1296.469	30.45	38.30	2.62	48.04	42.81	74	-31.19	Pass	Н
1651.146	31.15	37.74	2.96	47.92	44.29	74	-29.71	Pass	Н
2995.538	33.59	37.10	5.61	49.77	51.87	74	-22.13	Pass	Н
4924.000	34.94	36.81	5.07	42.46	45.66	74	-28.34	Pass	Н
7386.000	36.44	37.42	6.83	42.70	48.55	74	-25.45	Pass	Н
9848.000	38.14	37.87	7.53	43.05	50.85	74	-23.15	Pass	Н
1659.574	31.16	37.73	2.97	47.56	43.96	74	-30.04	Pass	V
1953.211	31.63	37.35	3.20	45.97	43.45	74	-30.55	Pass	V
3104.217	33.51	37.08	5.60	46.61	48.64	74	-25.36	Pass	V
4924.000	34.94	36.81	5.07	56.10	59.30	74	-14.70	Pass	V
4924.000	34.94	36.81	5.07	47.89	51.09	54	-2.91	Pass	V-AV
7386.000	36.44	37.42	6.83	47.12	52.97	74	-21.03	Pass	V
9848.000	38.14	37.87	7.53	43.29	51.09	74	-22.91	Pass	V

Test mod	e:	802	2.11g(6Mbps	s) Te	st channel:			Lowest		
Frequency (MHz)	Anter Fact (dB/	tor	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1326.513	30.5	52	38.25	2.66	48.61	43.54	74	-30.46	Pass	Н
1533.648	30.9	93	37.91	2.86	48.80	44.68	74	-29.32	Pass	Н
2995.538	33.5	59	37.10	5.61	50.52	52.62	74	-21.38	Pass	Н
4824.000	34.7	73	36.82	5.10	43.61	46.62	74	-27.38	Pass	Н
7236.000	36.4	42	37.45	6.69	42.47	48.13	74	-25.87	Pass	Н
9648.000	37.9	93	37.83	7.70	43.91	51.71	74	-22.29	Pass	Н
1740.250	31.3	30	37.62	3.04	44.36	41.08	74	-32.92	Pass	V
3197.250	33.4	12	37.06	5.58	45.36	47.30	74	-26.70	Pass	V
4360.500	33.6	69	36.86	5.29	44.83	46.95	74	-27.05	Pass	V
4824.000	34.7	73	36.82	5.10	41.26	44.27	74	-29.73	Pass	V
7236.000	36.4	42	37.45	6.69	42.73	48.39	74	-25.61	Pass	V
9648.000	37.9	93	37.83	7.70	42.80	50.60	74	-23.40	Pass	V



Page 47 of 68

Test n	node:	802.11g((6Mbps)	Test char	inel:	Middle			
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1663.803	31.17	37.72	2.97	46.55	42.97	74	-31.03	Pass	Н
1832.785	31.45	37.50	3.11	45.85	42.91	74	-31.09	Pass	Н
3003.173	33.60	37.10	5.62	50.35	52.47	74	-21.53	Pass	Н
4874.000	34.84	36.81	5.09	42.26	45.38	74	-28.62	Pass	Н
7311.000	36.43	37.43	6.76	43.49	49.25	74	-24.75	Pass	Н
9748.000	38.03	37.85	7.61	43.59	51.38	74	-22.62	Pass	Н
1663.803	31.17	37.72	2.97	52.18	48.60	74	-25.40	Pass	V
2995.538	33.59	37.10	5.61	47.20	49.30	74	-24.70	Pass	V
4399.537	33.78	36.86	5.27	45.01	47.20	74	-26.80	Pass	V
4874.000	34.84	36.81	5.09	45.36	48.48	74	-25.52	Pass	V
7311.000	36.43	37.43	6.76	43.25	49.01	74	-24.99	Pass	V
9748.000	38.03	37.85	7.61	44.12	51.91	74	-22.09	Pass	V

Test mo	de:	802.11g(6Mb	ps) 1	Test channel:			Highest		
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1333.284	30.53	38.24	2.66	47.91	42.86	74	-31.14	Pass	Н
1663.803	31.17	37.72	2.97	51.65	48.07	74	-25.93	Pass	Н
2995.538	33.59	37.10	5.61	50.11	52.21	74	-21.79	Pass	Н
4924.000	34.94	36.81	5.07	42.12	45.32	74	-28.68	Pass	Н
7386.000	36.44	37.42	6.83	43.14	48.99	74	-25.01	Pass	Н
9848.000	38.14	37.87	7.53	43.06	50.86	74	-23.14	Pass	Н
1541.476	30.95	37.90	2.87	45.69	41.61	74	-32.39	Pass	V
1668.044	31.18	37.72	2.98	47.89	44.33	74	-29.67	Pass	V
3316.617	33.32	37.03	5.56	44.93	46.78	74	-27.22	Pass	V
4924.000	34.94	36.81	5.07	43.01	46.21	74	-27.79	Pass	V
7386.000	36.44	37.42	6.83	42.75	48.60	74	-25.40	Pass	V
9848.000	38.14	37.87	7.53	43.35	51.15	74	-22.85	Pass	V

Page 48 of 68

Test n	node:	802.11r	802.11n(HT20)(6.5Mbps)			Test channel:		Lowest			
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Li (dBµV/		Over Limit (dB)	Result	Antenna Polaxis	
1280.072	30.41	38.33	2.61	47.57	42.26	74	4	-31.74	Pass	Н	
1993.395	31.69	37.31	3.23	45.01	42.62	74	9	-31.38	Pass	Н	
2995.538	33.59	37.10	5.61	50.37	52.47	74		-21.53	Pass	Н	
4824.000	34.73	36.82	5.10	42.45	45.46	74		-28.54	Pass	Н	
7236.000	36.42	37.45	6.69	42.74	48.40	74		-25.60	Pass	Н	
9648.000	37.93	37.83	7.70	44.48	52.28	74		-21.72	Pass	Н	
1244.726	30.33	38.39	2.57	47.96	42.47	74		-31.53	Pass	V	
1668.044	31.18	37.72	2.98	46.22	42.66	74		-31.34	Pass	V	
3291.385	33.34	37.04	5.56	46.54	48.40	74	38	-25.60	Pass	V	
4824.000	34.73	36.82	5.10	45.32	48.33	74	3	-25.67	Pass	V	
7236.000	36.42	37.45	6.69	43.52	49.18	74		-24.82	Pass	V	
9648.000	37.93	37.83	7.70	44.81	52.61	74		-21.39	Pass	V	

Test n	node:	802.11r	802.11n(HT20)(6.5Mbps)			Test channel:		Middle			
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit L (dBµV		Over Limit (dB)	Result	Antenna Polaxis	
1329.894	30.52	38.24	2.66	49.02	43.96	74	8	-30.04	Pass	Н	
1851.542	31.48	37.48	3.12	46.01	43.13	74	8	-30.87	Pass	Н	
2995.538	33.59	37.10	5.61	50.93	53.03	74		-20.97	Pass	Н	
4874.000	34.84	36.81	5.09	41.73	44.85	74		-29.15	Pass	Н	
7311.000	36.43	37.43	6.76	44.03	49.79	74		-24.21	Pass	Н	
9748.000	38.03	37.85	7.61	43.43	51.22	74		-22.78	Pass	Н	
1518.111	30.90	37.94	2.84	46.99	42.79	74		-31.21	Pass	V	
1668.044	31.18	37.72	2.98	46.83	43.27	74		-30.73	Pass	V	
3225.037	33.40	37.05	5.57	46.06	47.98	74		-26.02	Pass	V	
4874.000	34.84	36.81	5.09	43.46	46.58	74	33	-27.42	Pass	V	
7311.000	36.43	37.43	6.76	44.22	49.98	74		-24.02	Pass	V	
9748.000	38.03	37.85	7.61	44.33	52.12	74		-21.88	Pass	V	
					Car						

Page 49 of 68

Test n	node:	802.11n(HT20)(6.5	Mbps)	Test channel:		Highe	est	
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1280.072	30.41	38.33	2.61	48.43	43.12	74	-30.88	Pass	Н
1597.401	31.05	37.82	2.92	47.64	43.79	74	-30.21	Pass	Н
3003.173	33.60	37.10	5.62	50.73	52.85	74	-21.15	Pass	Н
4924.000	34.94	36.81	5.07	41.97	45.17	74	-28.83	Pass	Н
7386.000	36.44	37.42	6.83	44.12	49.97	74	-24.03	Pass	Н
9848.000	38.14	37.87	7.53	44.42	52.22	74	-21.78	Pass	Н
1381.656	30.63	38.15	2.71	47.1	42.29	74	-31.71	Pass	V
1889.633	31.54	37.43	3.15	45.43	42.69	74	-31.31	Pass	V
3088.453	33.52	37.08	5.6	46.58	48.62	74	-25.38	Pass	V
4924.000	34.94	36.81	5.07	42.90	46.10	74	-27.90	Pass	V
7386.000	36.44	37.42	6.83	43.42	49.27	74	-24.73	Pass	V
9848.000	38.14	37.87	7.53	45.21	53.01	74	-20.99	Pass	V

Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

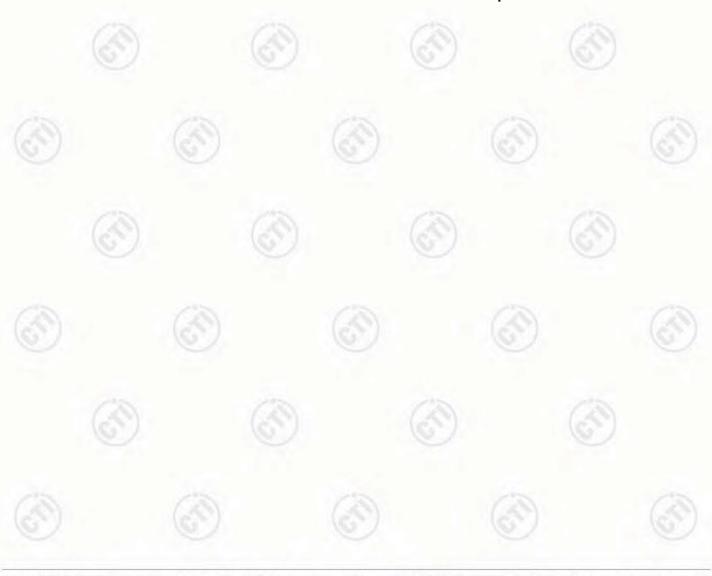
APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

Test Model No.: SPL06-07A1W4-BKT

Radiated spurious emission Test Setup-1 (Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

3



Report No.: EED32H00200503

Page 51 of 68

Conducted Emissions Test Setup

APPENDIX 2 PHOTOGRAPHS OF EUT

Test mode No.: SPL06-07A1W4-BKT

View of Product-1

View of Product-2


View of Product-3


View of Product-4

View of Product-5

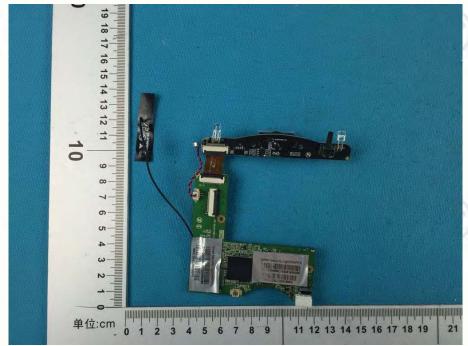
View of Product-7

Report No. : EED32H00200503 Page 56 of 68

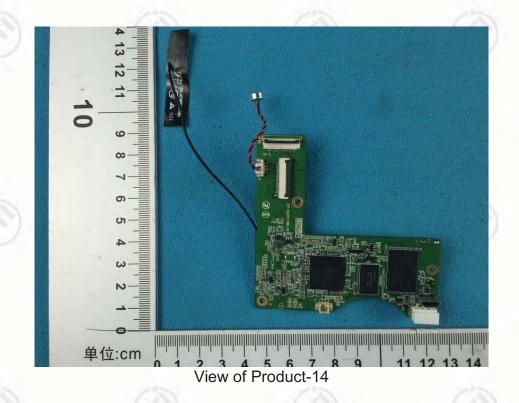
View of Product-9

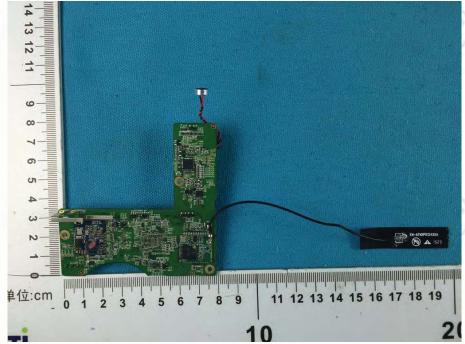
View of Product-10

CTI



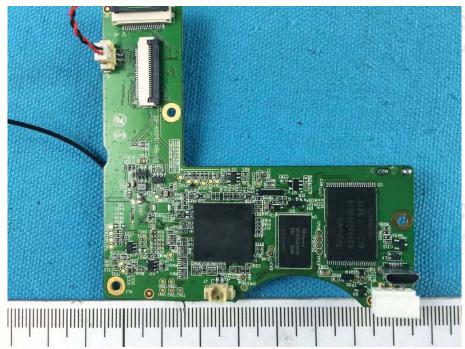
View of Product-11

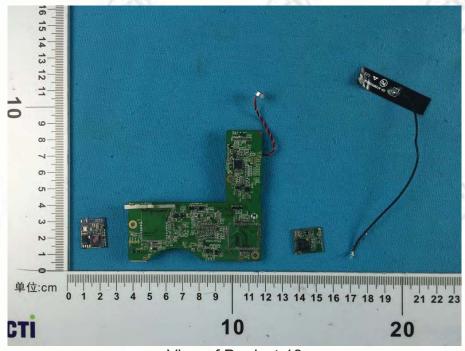




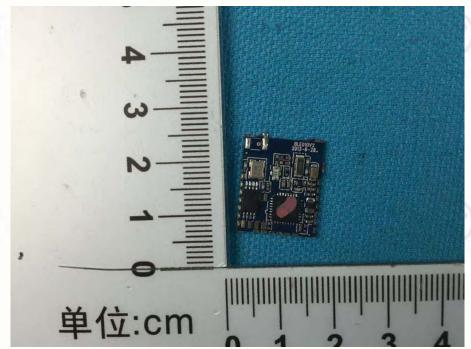
View of Product-13

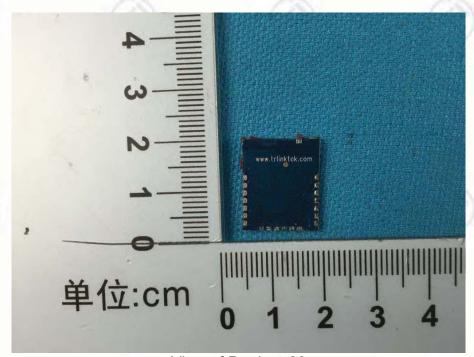


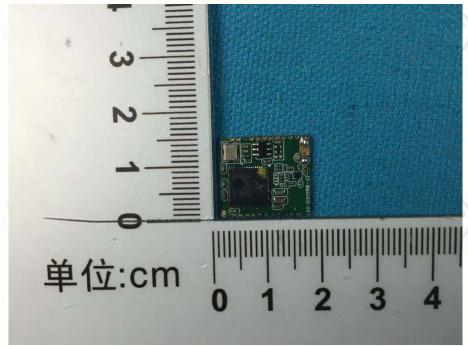

View of Product-15

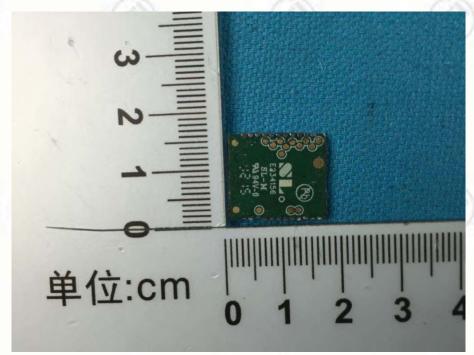

View of Product-16

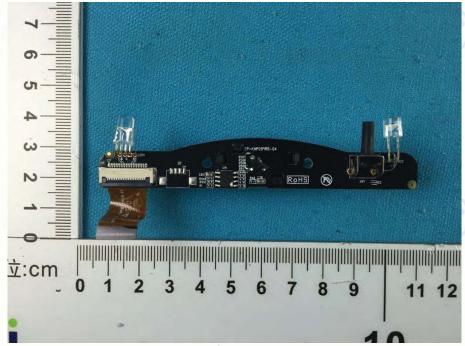
Report No.: EED32H00200503 Page 60 of 68

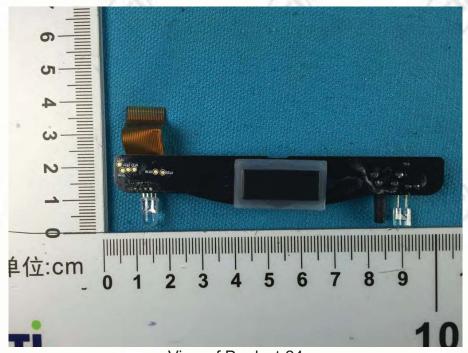

View of Product-17


View of Product-18


View of Product-19

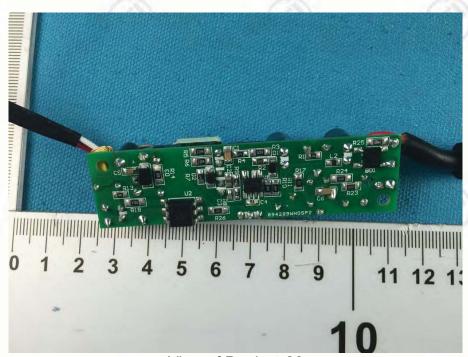

View of Product-20

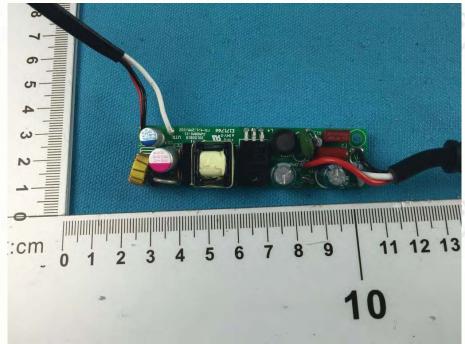

View of Product-21


View of Product-22

Page 63 of 68

View of Product-23


View of Product-24


View of Product-25

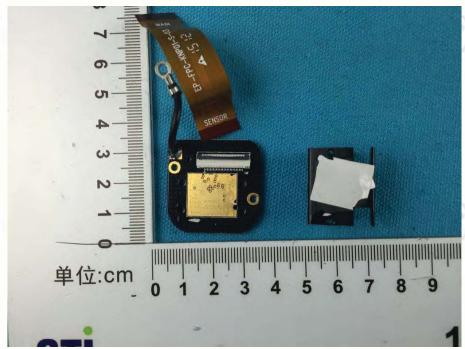
View of Product-26

View of Product-27

View of Product-28

View of Product-29

View of Product-30


View of Product-31

View of Product-32

View of Product-33

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

