

Report No.: SZEM150900577201

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594

Email: ee.shenzhen@sgs.com Page: 1 of 30

FCC REPORT

Application No.: SZEM1509005773CR

Applicant: Guangdong Cheerson Hobby Technology Co., Ltd **Manufacturer:** Guangdong Cheerson Hobby Technology Co., Ltd

Product Name: UFO
Model No.(EUT): CX-10C

Add Model No.: CX-10, CX-10A, CX-12, CX-11, CX-32, CX-32C, CX-32W, CX-32W-

TX, CX-32S, CX-10CHD, CX-33, CX-33C, CX-33W, CX-33S, CX-22,

CX-20, CX-30S, CX-34, CX-35, CX-36, D2,D3,D4

FCC ID: 2AD6LGC03241003

Standards: 47 CFR Part 15, Subpart C (2014)

Date of Receipt: 2015-09-16

Date of Test: 2015-09-18 to 2015-09-21

Date of Issue: 2015-09-28

Test Result: PASS *

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SZEM150900577201

: 2 of 30 Page

Version

Revision Record							
Version Chapter Date Modifier Remark							
00		2015-09-28		Original			

Authorized for issue by:		
Tested By	Guen Zhou	2015-09-21
	(Owen Zhou) /Project Engineer	Date
Prepared By	Joyce Shi (Joyce Shi) /Clerk	2015-09-28 Date
	(Joyce Sill) /Clerk	Date
Checked By	Eric Fu	2015-09-28
	(Eric Fu) /Reviewer	Date

Report No.: SZEM150900577201

Page : 3 of 30

3 Test Summary

Test Item	Test Requirement	Test method	Result	
Antenna	47 CFR Part 15, Subpart C Section	ANSI C63.10 (2009)	PASS	
Requirement	15.203	ANOI 000.10 (2009)	1 700	
Field Strength of the	47 CFR Part 15, Subpart C Section	ANSI C63.10 (2009)	PASS	
Fundamental Signal	15.249 (a)	ANSI C65.10 (2009)	FASS	
Spurious Emissions	47 CFR Part 15, Subpart C Section	ANSI C63.10 (2009)	PASS	
Spurious Ellissions	15.249 (a)/15.209	ANSI C65.10 (2009)	FAGG	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.249(a)/15.205	ANSI C63.10 (2009)	PASS	
20dB Occupied	47 CFR Part 15, Subpart C Section	ANSI C63.10 (2009)	PASS	
Bandwidth	15.215 (c)	ANSI 603.10 (2009)	PASS	

Remark:

Model No.: CX-10C, CX-10, CX-10A, CX-12, CX-11, CX-32, CX-32C, CX-32W, CX-32W-TX, CX-32S, CX-10CHD, CX-33, CX-33C, CX-33W, CX-33S, CX-22, CX-20, CX-30S, CX-34, CX-35, CX-36, D2,D3,D4

Only the model CX-10C was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being model name.

Report No.: SZEM150900577201

Page : 4 of 30

4 Contents

			Page
			1
2	٧	VERSION	2
3	Т	TEST SUMMARY	3
4	С	CONTENTS	4
5	G	GENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST LOCATION	7
	5.6	TEST FACILITY	8
	5.7	DEVIATION FROM STANDARDS	8
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	8
	5.9	· · · · · · · · · · · · · · · · · · ·	
	5.10		
	Err	ROR! OBJECTS CANNOT BE CREATED FROM EDITING FIELD CODES	9
6	Т	TEST RESULTS AND MEASUREMENT DATA	12
	6.1	Antenna Requirement	12
	6.2	RADIATED SPURIOUS EMISSIONS	
	6.3	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
	6.5	20dB Bandwidth	
7	P	PHOTOGRAPHS - EUT TEST SETUP	29
	7.1	RADIATED EMISSION	29
	7.2		
8	Р	PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	29

Report No.: SZEM150900577201

Page : 5 of 30

5 General Information

5.1 Client Information

Applicant:	Guangdong Cheerson Hobby Technology Co., Ltd
Address of Applicant:	FENGXIN NO.2 ROAD&LAIMEI ROAD FENGXIN INDUSTRIAL ZONE CHENGHAI SHANTOU GUANGDONG PROVINCE CHINA
Manufacturer:	Guangdong Cheerson Hobby Technology Co., Ltd
Address of Manufacturer:	FENGXIN NO.2 ROAD&LAIMEI ROAD FENGXIN INDUSTRIAL ZONE CHENGHAI SHANTOU GUANGDONG PROVINCE CHINA

5.2 General Description of EUT

Name:	UFO
Model No.:	CX-10C
Frequency Range:	2405 MHz -2475MHz
Modulation Type:	GFSK
Number of Channels:	71
Sample Type:	Portable production
Antenna Type:	Integral
Antenna Gain:	0dBi
Power Supply:	3.0V DC(1.5V*2 "AAA" Size Batteries)

Report No.: SZEM150900577201

Page : 6 of 30

					ı ugu		
Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2405MHz	21	2425MHz	41	2445MHz	61	2465MHz
2	2406MHz	22	2426MHz	42	2446MHz	62	2466MHz
3	2407MHz	23	2427MHz	43	2447MHz	63	2467MHz
4	2408MHz	24	2428MHz	44	2448MHz	64	2468MHz
5	2409MHz	25	2429MHz	45	2449MHz	65	2469MHz
6	2410MHz	26	2430MHz	46	2450MHz	66	2470MHz
7	2411MHz	27	2431MHz	47	2451MHz	67	2471MHz
8	2412MHz	28	2432MHz	48	2452MHz	68	2472MHz
9	2413MHz	29	2433MHz	49	2453MHz	69	2473MHz
10	2414MHz	30	2434MHz	50	2454MHz	70	2474MHz
11	2415MHz	31	2435MHz	51	2455MHz	71	2475MHz
12	2416MHz	32	2436MHz	52	2456MHz		
13	2417MHz	33	2437MHz	53	2457MHz		
14	2418MHz	34	2438MHz	54	2458MHz		
15	2419MHz	35	2439MHz	55	2459MHz		
16	2420MHz	36	2440MHz	56	2460MHz		
17	2421MHz	37	2441MHz	57	2461MHz		
18	2422MHz	38	2442MHz	58	2462MHz		
19	2423MHz	39	2443MHz	59	2463MHz		
20	2424MHz	40	2444MHz	60	2464MHz		

Using test software was control EUT work in continuous transmitter and receiver mode.and select test channel as below:

Channel	Frequency
The lowest channel (CH1)	2405MHz
The middle channel (CH41)	2445MHz
The highest channel (CH71)	2475MHz

Report No.: SZEM150900577201

Page : 7 of 30

5.3 Test Environment and Mode

Operating Environment:	Operating Environment:					
Temperature:	25.0 °C					
Humidity:	55 % RH					
Atmospheric Pressure:	1010 mbar					
Test mode:						
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind					
	of data rate.					

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM150900577201

Page : 8 of 30

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

• Industry Canada (IC)

The 3m Semi-anechoic chambers and the 10m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM150900577201

: 9 of 30 Page

5.10 Equipment List

	RE in Chamber							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)			
1	10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEL0303	2016-08-01			
2	EMI Test Receiver	Rohde & Schwarz	ESR	SEL0295	2016-05-13			
3	EMI Test software	AUDIX	E3	SEL0050	N/A			
4	Coaxial cable	SGS	N/A	SEL0288	2016-05-13			
5	Coaxial cable	SGS	N/A	SEL0275	2016-05-13			
6	Coaxial cable	SGS	N/A	SEL0274	2016-05-13			
7	BiConiLog Antenna (30M-1GHz)	Schwarzbeck	VULB9160	SEL0308	2016-06-14			
8	BiConiLog Antenna (30M-1GHz)	Schwarzbeck	VULB9160	SEL0309	2016-06-14			
9	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEL0311	2016-06-14			
10	Pre-amplifier	Sonoma Instrument Co	310N	SEL0298	2016-05-13			
11	Low Noise Amplifier	Black Diamond Series	BDLNA-011 8-352810	SEL0319	2015-10-24			
12	Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	2015-10-24			

Report No.: SZEM150900577201

Page : 10 of 30

	RE in Chamber							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)		
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2015-05-13	2016-05-13		
2	EMI Test Receiver	Agilent Technologies	N9038A	SEL0312	2014-09-16	2015-09-16		
3	EMI Test software	AUDIX	E3	SEL0050	N/A	N/A		
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2014-10-24	2015-10-24		
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2014-10-24	2015-10-24		
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2014-11-24	2015-11-24		
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2015-05-13	2016-05-13		
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2014-10-24	2015-10-24		
9	Coaxial cable	SGS	N/A	SEL0027	2015-05-13	2016-05-13		
10	Coaxial cable	SGS	N/A	SEL0189	2015-05-13	2016-05-13		
11	Coaxial cable	SGS	N/A	SEL0121	2015-05-13	2016-05-13		
12	Coaxial cable	SGS	N/A	SEL0178	2015-05-13	2016-05-13		
13	Band filter	Amindeon	82346	SEL0094	2015-05-13	2016-05-13		
14	Barometer	Chang Chun	DYM3	SEL0088	2015-05-13	2016-05-13		
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2014-10-24	2015-10-24		
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2014-10-24	2015-10-24		
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2015-05-13	2016-05-13		
18	Signal Generator	Rohde & Schwarz	SMY01	SEL0155	2014-10-24	2015-10-24		
19	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2015-05-13	2016-05-13		

Report No.: SZEM150900577201

Page : 11 of 30

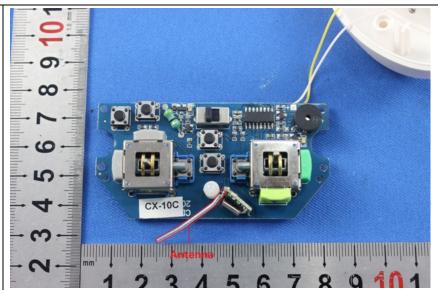
	RF connected test							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)		
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2014-10-24	2015-10-24		
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2014-10-24	2015-10-24		
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2014-10-24	2015-10-24		
4	Coaxial cable	SGS	N/A	SEL0178	2015-05-13	2016-05-13		
5	Coaxial cable	SGS	N/A	SEL0179	2015-05-13	2016-05-13		
6	Barometer	ChangChun	DYM3	SEL0088	2015-05-13	2016-05-13		
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2015-04-25	2016-04-25		
8	Band filter	amideon	82346	SEL0094	2015-05-13	2016-05-13		
9	POWER METER	R&S	NRVS	SEL0144	2014-10-24	2015-10-24		
10	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2015-04-25	2016-04-25		
11	Power Divider(splitter)	Agilent Technologies	11636B	SEL0130	2014-10-24	2015-10-24		

Note: The calibration interval is one year, all the instruments are valid.

Report No.: SZEM150900577201

Page : 12 of 30

Test results and Measurement Data


6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

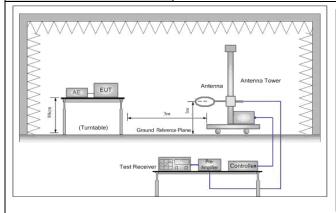
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: SZEM150900577201

Page : 13 of 30

6.2 Radiated Spurious Emissions


Test Requirement:	47 CFR Part 15C Section	on 15.249 and 15	.209				
Test Method:	ANSI C63.10: 2009						
Test Site:	Measurement Distance:	3m (Semi-Anec	hoic Chambe	er)			
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark		
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak		
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average		
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak		
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak		
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average		
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak		
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak		
	Above 1GHz	Peak	1MHz	3MHz	Peak		
	Above Tariz	Peak	1MHz	10Hz	Average		
Limit: (Spurious Emissions)	Frequency	Field strength (microvolt/mete)	r Limit (dBuV/m)	Remark	Measuremer distance (m		
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300		
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30		
	1.705MHz-30MHz	30	-	-	30		
	30MHz-88MHz	100	40.0	Quasi-peak	3		
	88MHz-216MHz	150	43.5	Quasi-peak	3		
	216MHz-960MHz	200	46.0	Quasi-peak	3		
	960MHz-1GHz	500	54.0	Quasi-peak	3		
	Above 1GHz	500	54.0	Average	3		
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.						
Limit:	Frequency	Limit (dBu	V/m @3m)	Rema	ark		
(Field strength of the	0400MU- 0400 FMU	94	4.0	Average	Value		
fundamental signal)	2400MHz-2483.5MH	11	4.0	Peak V	alue		

Report No.: SZEM150900577201

Page : 14 of 30

Test Setup:

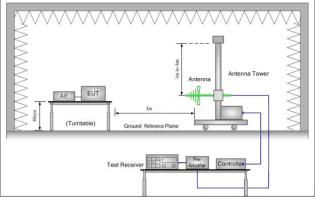


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

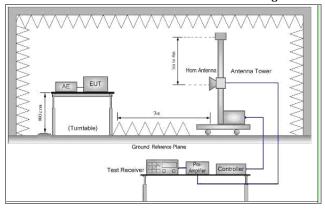


Figure 3. Above 1 GHz

Test Procedure:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have

Report No.: SZEM150900577201

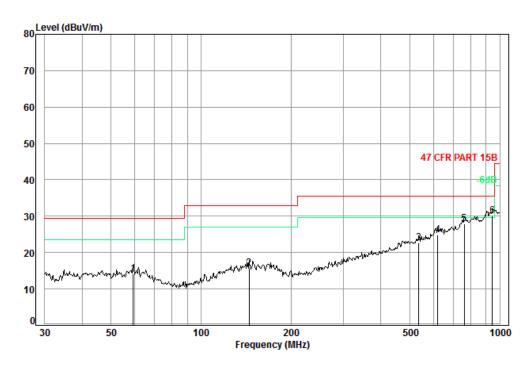
Page : 15 of 30

	10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel,the middle channel,the Highest channel
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
	i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode
	For below 1GHz, pretest the EUT at the lowest, middle and highest channel, found the lowest channel which it is worse case.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Measurement Data

6.2.1.1 Field Strength Of The Fundamental Signal

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)
2405	4.92	32.41	38.46	82.50	81.37	114.00	-32.63
2445	4.92	32.41	38.46	80.21	79.08	114.00	-34.92
2475	5.02	32.44	38.46	79.93	78.93	114.00	-35.07



Report No.: SZEM150900577201

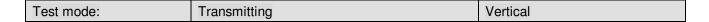
Page : 16 of 30

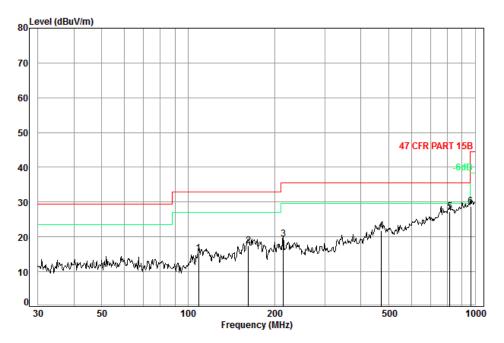
6.2.1.2 Spurious Emissions

30MHz~1GHz		
Test mode:	Transmitting	Horizontal

Condition: 47 CFR PART 15B 10m Horizontal

Job No. : 5772CR


Test Mode: a


	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	59.23	7.00	11.91	32.66	27.88	14.13	29.50	-15.37
2	144.84	7.43	12.90	32.62	28.09	15.80	33.00	-17.20
3	535.71	8.74	17.94	32.61	28.49	22.56	35.60	-13.04
4	620.71	8.95	19.62	32.62	28.95	24.90	35.60	-10.70
5	760.70	9.20	21.88	32.45	29.22	27.85	35.60	-7.75
6 pp	945.44	9.56	23.93	31.42	28.07	30.14	35.60	-5.46

Report No.: SZEM150900577201

Page : 17 of 30

Condition: 47 CFR PART 15B 10m Vertical

Job No. : 5772CR

Test Mode: a

	Freq			Preamp Factor				
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	108.65	7.25	10.23	32.64	30.46	15.30	33.00	-17.70
2	162.04	7.50	13.03	32.61	29.58	17.50	33.00	-15.50
3	214.51	7.67	10.16	32.58	34.04	19.29	35.60	-16.31
4	472.18	8.48	16.99	32.57	28.99	21.89	35.60	-13.71
5 pp	815.97	9.30	22.41	32.29	27.87	27.29	35.60	-8.31
6	965.54	9.60	24.03	31.22	26.39	28.80	44.40	-15.60

Report No.: SZEM150900577201

Page : 18 of 30

Above 1GHz	Z									
Test mode:	Tra	nsmitting	Test chai	nnel:	Lo	west	Remark:		Pea	ak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV		Level (dBuV/m)	Limit Line (dBuV/m)	Ove Lim (dE	it	Polarization
3754.236	6.82	33.12	38.85	46.26	6	47.35	74	-26.	65	Vertical
4810.000	6.43	34.71	39.24	51.42	2	53.32	74	-20.	68	Vertical
6016.949	8.08	36.28	39.18	46.56	;	51.74	74	-22.	26	Vertical
7215.000	8.93	35.62	39.07	45.69)	51.17	74	-22.	83	Vertical
9620.000	9.98	37.36	37.93	43.22	2	52.63	74	-21.	37	Vertical
12404.260	11.22	39.20	39.04	42.55	5	53.93	74	-20.	07	Vertical
3647.151	6.88	33.04	38.81	46.23	3	47.34	74	-26.	66	Horizontal
4810.000	6.43	34.71	39.24	51.65	5	53.55	74	-20.	45	Horizontal
5990.888	8.07	36.28	39.18	46.07	7	51.24	74	-22.	76	Horizontal
7215.000	8.93	35.62	39.07	45.52	2	51.00	74	-23.	00	Horizontal
9620.000	9.98	37.36	37.93	43.30)	52.71	74	-21.	29	Horizontal
12208.390	10.93	38.96	38.88	42.2		53.21	74	-20.	79	Horizontal

Test mode:	Tra	ansmitting	Test char	nnel:	Middle	Remark:		Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3647.151	6.88	33.04	38.81	45.89	47.00	74	-27.00	0 Vertical
4890.000	6.61	34.79	39.27	51.02	53.15	74	-20.8	5 Vertical
5999.562	8.08	36.30	39.18	46.28	51.48	74	-22.5	2 Vertical
7335.000	9.09	35.49	39.06	45.41	50.93	74	-23.0	7 Vertical
9780.000	9.89	37.86	37.83	42.88	52.80	74	-21.20	0 Vertical
12297.040	11.06	39.07	38.95	42.30	53.48	74	-20.5	2 Vertical
3700.306	6.85	33.08	38.83	45.35	46.45	74	-27.5	5 Horizontal
4890.000	6.61	34.79	39.27	50.98	53.11	74	-20.89	9 Horizontal
6113.481	8.05	36.17	39.17	46.09	51.14	74	-22.86	6 Horizontal
7335.000	9.09	35.49	39.06	45.48	51.00	74	-23.00	0 Horizontal
9780.000	9.89	37.86	37.83	43.81	53.73	74	-20.2	7 Horizontal
12173.120	10.87	38.92	38.85	41.93	52.87	74	-21.13	3 Horizontal

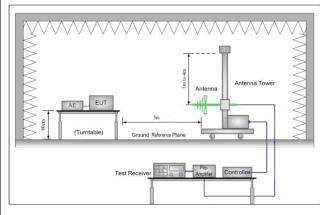
Report No.: SZEM150900577201

Page : 19 of 30

Test mode:	Trar	nsmitting	Test char	nnel:	Highest	Remark:	P	eak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV	(dRuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3626.104	6.90	33.02	38.80	46.67	47.79	74	-26.21	Vertical
4950.000	6.73	34.85	39.28	50.82	53.12	74	-20.88	Vertical
6122.333	8.05	36.16	39.17	46.79	51.83	74	-22.17	Vertical
7425.000	9.21	35.43	39.05	46.18	51.77	74	-22.23	Vertical
9900.000	9.82	38.21	37.76	43.01	53.28	74	-20.72	Vertical
12476.260	11.33	39.22	39.10	42.40	53.85	74	-20.15	Vertical
3647.151	6.88	33.04	38.81	46.63	47.74	74	-26.26	Horizontal
4950.000	6.73	34.85	39.28	51.50	53.80	74	-20.20	Horizontal
6051.874	8.07	36.24	39.18	46.47	51.60	74	-22.40	Horizontal
7405.000	9.19	35.42	39.05	46.13	51.69	74	-22.31	Horizontal
9900.000	9.82	38.21	37.76	42.87	53.14	74	-20.86	Horizontal
12548.680	11.15	39.24	39.16	42.08	53.31	74	-20.69	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



Report No.: SZEM150900577201

Page : 20 of 30

6.3 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2009	ANSI C63.10: 2009						
Test Site:	Measurement Distance: 3m	(Semi-Anechoic Chambe	er)					
Limit(band edge):	Emissions radiated outside	Emissions radiated outside of the specified frequency bands, except for						
	harmonics, shall be attenua	harmonics, shall be attenuated by at least 50 dB below the level of the						
	fundamental or to the general radiated emission limits in Section 15.209,							
	whichever is the lesser attenuation.							
	Frequency	Limit (dBuV/m @3m)	Remark					
	30MHz-88MHz	40.0	Quasi-peak Value					
	88MHz-216MHz	43.5	Quasi-peak Value					
	216MHz-960MHz	46.0	Quasi-peak Value					
	960MHz-1GHz	54.0	Quasi-peak Value					
	Above 1CUz	54.0	Average Value					
	Above 1GHz	74.0	Peak Value					
Test Setup:								

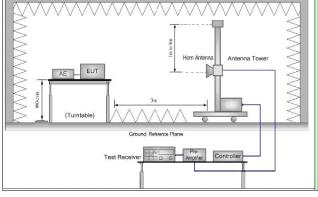


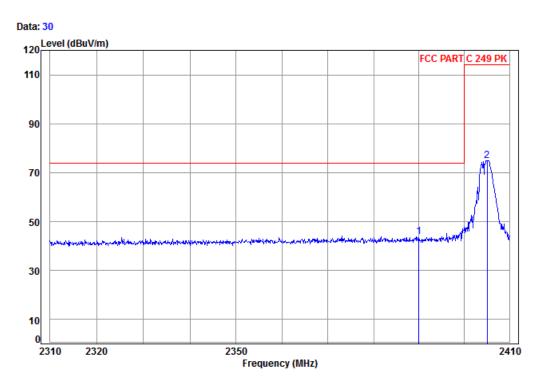
Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Report No.: SZEM150900577201

Page : 21 of 30

Test Procedure:	a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
	g. Test the EUT in the lowest channel, the Highest channel
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
	i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass



Report No.: SZEM150900577201

Page : 22 of 30

Test plot as follows:

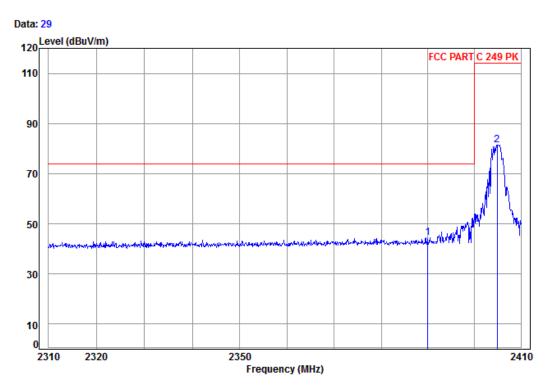
Test mode: Transmitting Test channel: Lowest Remark: Peak Vertical

Site : chamber

Condition: FCC PART C 249 PK 3m Vertical

Job No: : 5772CR

Mode: : 2405 Band edge


Cable Ant Preamp Read Limit 0ver Loss Factor Factor Level Level Line limit MHz dB dB/m dBuV dBuV/m dBuV/m 2390.00 4.90 32.35 38.46 44.89 43.68 74.00 -30.32 2405.10 4.92 32.41 38.46 76.14 75.01 114.00 -38.99

Report No.: SZEM150900577201

Page : 23 of 30

Test mode:	Transmitting	Test channel:	Lowest	Remark:	Peak	Horizonta I	
------------	--------------	---------------	--------	---------	------	----------------	--

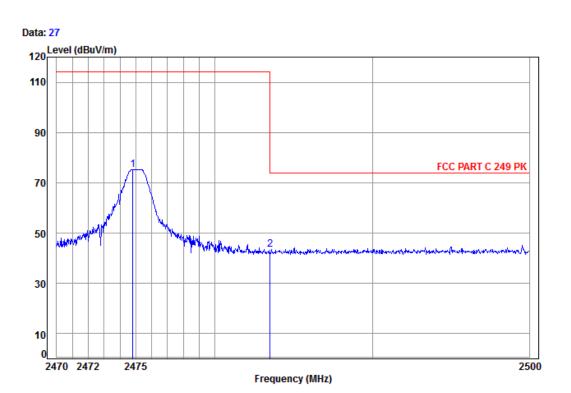
Site : chamber

Condition: FCC PART C 249 PK 3m Horizontal

Job No: : 5772CR

1 pp

Mode: : 2405 Band edge


Ant Preamp Cable Read Limit 0ver Loss Factor Factor Level Level Line Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m 2390.00 4.90 32.35 38.46 45.63 44.42 74.00 -29.58 4.92 32.41 38.46 82.50 81.37 114.00 -32.63

Report No.: SZEM150900577201

Page : 24 of 30

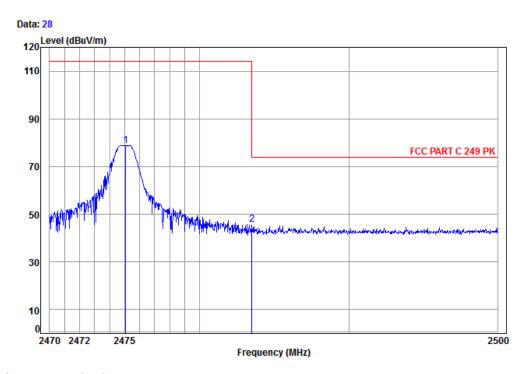
Test mode:	Transmitting	Test channel:	Highest	Remark:	Peak	Vertical	

Site : chamber

Condition: FCC PART C 249 PK 3m Vertical

Job No: : 5772CR

Mode: : 2475 Band edge


Cable Ant Preamp Read Limit 0ver Loss Factor Factor Level Level Line Limit Freq MHz dB/m dBuV dBuV/m dBuV/m dB dB 5.02 32.44 38.46 76.35 75.35 114.00 -38.65 2474.81 2483.50 5.03 32.44 38.47 44.51 43.51 74.00 -30.49

Report No.: SZEM150900577201

Page : 25 of 30

Test mode: Transmitting Test channel: Highest Remark: Peak Horizonta

Site : chamber

Condition: FCC PART C 249 PK 3m Horizontal

Job No: : 5772CR

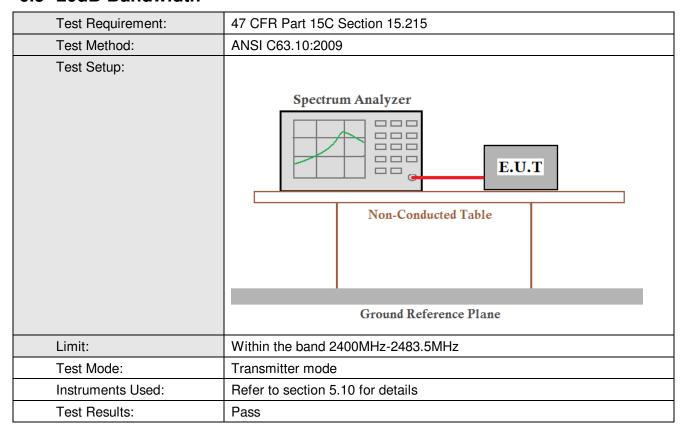
Mode: : 2475 Band edge

Cable Ant Preamp Read Limit 0ver Freq Loss Factor Factor Level Level Line Limit MHz dB/m dΒ dBuV dBuV/m dBuV/m 5.02 32.44 38.46 79.93 78.93 114.00 -35.07 1 2475.07 2 pp 2483.50 5.03 32.44 38.47 46.83 45.83 74.00 -28.17

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation

with a sample calculation is as follows:


Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: SZEM150900577201

Page : 26 of 30

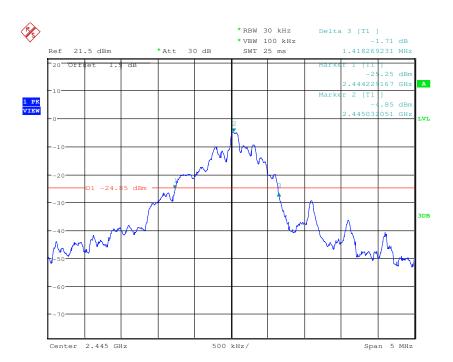
6.5 20dB Bandwidth

Measurement Data

Test Channel	20dB bandwidth (MHz)	Results
Lowest	1.731	Pass
Middle	1.418	Pass
Highest	1.122	Pass

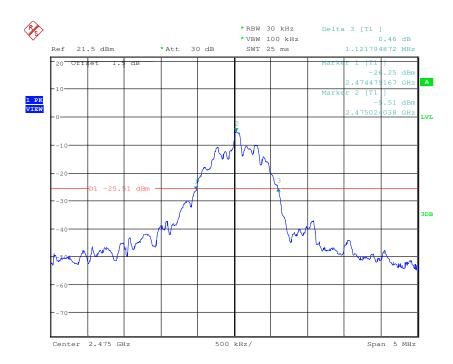


Report No.: SZEM150900577201


Page : 27 of 30

Test plot as follows:

Test channel: Lowest



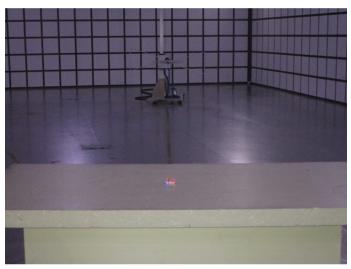
Report No.: SZEM150900577201

Page : 28 of 30

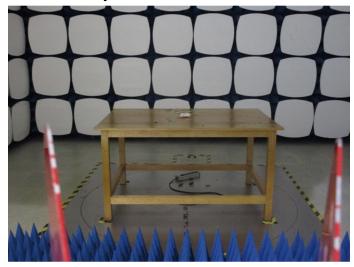
Test channel: Highest

Ltd. Shenzhen Branch

SGS-CSTC Standards Technical Services Co.,


Report No.: SZEM150900577201

Page : 29 of 30


Photographs - EUT Test Setup

Test model No.: CX-10C

7.1 Radiated Emission

7.2 Radiated Spurious Emission

Report No.: SZEM150900577201

Page : 30 of 30

8 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1509005772CR.