Shenzhen Most Technology Service Co., Ltd.
No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China.

RF Exposure Evaluation Rep ort

Report Reference No MTWG22040250-H

FCC ID 2AD6G-RP410-BU
Compiled by
(position+printed name+signature)..: File administrators Alisa Luo

Representative Laboratory Name .:	Shenzhen Most Technology Service Co., Ltd.
Address ..:	No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China.
Applicant's name..........................:	Rongta Technology (Xiamen) Group Co., Ltd.
Address ..:	No. 889 Xinmin Avenue,Tongan District,Xiamen,China
Test specification/ Standard:	47 CFR Part 1.1307
	47 CFR Part 2.1093
TRF Originator...............................:	Shenzhen Most Technology Service Co., Ltd.

Shenzhen Most Technology Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Most Technology Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Most Technology Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Equipment under Test	$:$	Label Printer
Model /Type	$:$	RP410
Listed Models	$:$	RP410Y,PT410,YP410,RP410YU,RP410U,RP410A,RP410B, $R P 410 C, R P 410 D, R P 410 E, R P 410 F, R P 410 G, R P 410 H, R P 410 Z, ~$ $R P 410 K, R P 410 L, R P 410 N, R P 410 S, R P 410 W ~$

Test Result:	PASS

The test report merely corresponds to the test sample.
It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

1. ReyisionHistory

Revision	Issue Date	Revisions	Revised By
00	2022.05 .16	Initial Issue	Alisa Luo

2. SAREvaluation

RF Exposure Compliance Requirement

Standard Requirement

According to KDB447498D01 General RF Exposure Guidance v06

4.3.1. Standalone SAR test exclusion considerations

Unless specifically required by the published RF exposure KDB procedures, standalone $1-\mathrm{g}$ head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied.

Limits

According to FCC Part1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in part1.1307(b)

Table 1-Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength $(\mathrm{V} / \mathrm{m})$	Magnetic field strength $(\mathrm{A} / \mathrm{m})$	Power density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging time $(\mathrm{minutes})$

(A) Limits for Occupational/Controlled Exposures

0.3-3.0 ...	614	1.63	*(100)	6
3.0-30	1842/f	4.89/f	*(900/²)	6
30-300	61.4	0.163	1.0	6
300-1500	f/300	6
1500-100,000			5	6

(B) Limits for General Population/Uncontrolled Exposure

0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ${ }^{2}$)	30
30-300	27.5	0.073	0.2	30
300-1500	f/1500	30
1500-100,000	1.0	30

$\mathrm{F}=$ Frequency in MHz
Friis Formula
Friis transmission formula: $\mathrm{Pd}=\left(\mathrm{Pout}^{*} \mathrm{G}\right) /\left(4^{*} \mathrm{Pi}{ }^{*} \mathrm{R} 2\right)$ Where
$\mathrm{Pd}=$ power density in $\mathrm{mW} / \mathrm{cm} 2$
Pout = output power to antenna in mW
G = gain of antenna in linear scale
$\mathrm{Pi}=3.1416$
$\mathrm{R}=$ distance between observation point and center of the radiator in cm
Pd id the limit of MPE, $1 \mathrm{~mW} / \mathrm{cm} 2$. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

EUT RF Exposure

BT classic

GFSK			
Test channel	Peak Output Power (dBm)	Tune up tolerance (dBm)	Maximum tune-up Power
		-2.920 ± 1	(dBm)
Lowest(2402MHz)	-2.920	2.530 ± 1	-1.920
Middle(2441MHz)	2.530	2.110 ± 1	3.530
Highest(2480MHz)	2.110	3.110	

$\pi / 4 \mathrm{DQPSK}$			
Test channel	Peak Output Power (dBm)	Tune up tolerance (dBm)	Maximum tune-up Power
		-2.381 ± 1	(dBm)
Lowest(2402MHz)	-2.381	2.114 ± 1	-1.381
Middle(2441MHz)	2.114	2.081 ± 1	3.114
Highest(2480MHz)	2.081	3.081	

8DPSK			
Test channel	Peak Output Power (dBm)	Tune up tolerance (dBm)	Maximum tune-up Power
		-2.563 ± 1	(dBm)
Lowest(2402MHz)	-2.563	2.591 ± 1	-1.563
Middle(2441MHz)	2.591	2.130 ± 1	3.591
Highest(2480MHz)	2.130	3.130	

Worst case: 8DPSK						
Channel	Maximum Peak Conducted Output Power (dBm)	Maximum Peak Conducted Output Power (MW)	Antenna Gain (dBi)	Density at R $=20$ cm $(\mathrm{~mW} / \mathrm{cm} 2)$	Limi t	Resul t
Highest(2441 MHz)	3.591	2.28	0	0.0004	1.0	Pass

Note: 1) Refer to report MTWG22040322-R1 for EUT test Max Conducted average Output Power value.
Note: 2) Pd = (Pout*G)/(4* Pi * R2)=(2.28*1)/(4*3.1416*202)=0.0004
Note: 3)EUT\'s Bluetooth module is more than 20 cm away from the human body.

BLE				
Test channel	Peak Output Power (dBm)	Tune up tolerance (dBm)	$(\mathrm{c}$	
		-2.979 ± 1	-1.979	$(\mathrm{~mW})$
Lowest(2402MHz)	-2.979	3.004 ± 1	4.004	0.63
Middle(2440MHz)	3.004	3.078 ± 1	4.078	2.51
Highest(2480MHz)	3.078	2.55		

Worst case: GFSK						
Channel	Maximum Peak Conducted Output Power (dBm)	Maximum Peak Conducted Output Power (MW)	Antenna Gain (dBi)	Power Density at $=20$ cm	Limi t $(\mathrm{mW} / \mathrm{cm} 2)$	Resul t
Highest(2480 $\mathrm{MHz})$	4.078	2.55	0	0.0005	1.0	Pass

Note: 1) Refer to report MTWG22040322-R2 for EUT test Max Conducted average Output Power value.
Note: 2) Pd = (Pout*G)/(4* Pi * R2) $=\left(2.55^{*} 1\right) /\left(4 * 3.1416^{*} 202\right)=0.0005$
Note: 3)EUT\'s Bluetooth module is more than 20 cm away from the human body.

