

mber: F690501/RF-RTL009157-1

TEST REPORT

of

FCC Part 15 Subpart C §15.247 FCC ID : 2AD5K-PWB100

Equipment Under Test	:	Croise.E Urban Band	
Model Name	:	PWB-100	
Applicant	:	PARTRON Co., Ltd.	
Manufacturer	:	elcomtec CO., LTD.	
Date of Test(s)	:	2015.09.21 ~ 2015.09.24	
Date of Issue	:	2015.10.01	

In the configuration tested, the EUT complied with the standards specified above.

Tested By:

Wonjun Sim

Date:

2015.10.01

Approved By:

Di	
Ch	
Hyunchae You	

Date:

2015.10.01

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <u>http://www.sgsgroup.kr</u>

RTT5041-20(2015.10.01)(3)

Tel. +82 31 428 5700 / Fax. +82 31 427 2370

INDEX

Table of Contents

_			
Ρ	a	a	е

1. General Information	3
2. Radiated Spurious Emissions and Conducted Spurious Emission	7
3. 6 dB Bandwidth	22
4. Maximum Conducted output power	25
5. Power Spectral Density	27
6. Transmitter AC Power Line Conducted Emission	30
7. Antenna Requirement	34

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test
report cannot be reproduced, except in full, without prior written permission of the Company.SGS Korea Co., Ltd. (Gunpo Laboratory)4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807http://www.sgsgroup.krRTT5041-20(2015.10.01)(3)Tel. +82 31 428 5700 / Fax. +82 31 427 2370A4(210 mm × 297 mm)

1. General Information

1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

-Wireless Div. 2FL, 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Phone No. : +82 31 688 0901

Fax No. : + 82 31 688 0921

1.2. Details of Applicant

Applicant:PARTRON Co., Ltd.Address:22, Samsung 1-ro 2-gil, Hwaseong-Si, Gyeonggi-Do, KoreaContact Person:LEE, Deuk HeePhone No.:+ 82 10 9867 9077

1.3. Description of EUT

Kind of Product	Croise.E Urban Band	
Model Name	PWB-100	
Power Supply	DC 3.7 V	
Frequency Range	2 402 MHz ~ 2 480 MHz (LE)	
Modulation Technique	GFSK	
Number of Channels	40 channels (LE)	
Operation Temperature	- 20°C ~ 60 °C	
Antenna Type	FPCB type	
Antenna Gain	0.02 dB i	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <u>http://www.sgsgroup.kr</u>

1.4. Test Equipment List

Equipment	Manufacturer	Model	S/N	Cal Date	Cal Interval	Cal Due.
Signal Generator	Agilent	E8257D	MY51501169	Jul. 13, 2015	Annual	Jul. 13, 2016
Spectrum Analyzer	Agilent	N9020A	MY53421758	Nov. 04, 2014	Annual	Nov. 04, 2015
Spectrum Analyzer	R&S	FSV30	103100	Jun. 22, 2015	Annual	Jun. 22, 2016
High Pass Filter	Wainwright	WHK3.0/18G-6SS	4	Jun. 23, 2015	Annual	Jun. 23, 2016
High Pass Filter	Wainwright	WHK7.5/26.5G-6SS	15	Jun. 23, 2015	Annual	Jun. 23, 2016
Low Pass Filter	Mini circuits	NLP-1200+	V 8979400903-2	Mar. 12, 2015	Annual	Mar. 12, 2016
Power Sensor	R&S	NRP-Z81	100748	Jun. 08, 2015	Annual	Jun. 08, 2016
DC Power Supply	Agilent	U8002A	MY50060028	Mar. 23, 2015	Annual	Mar. 23, 2016
Preamplifier	H.P.	8447F	2944A03909	Aug. 27, 2015	Annual	Aug. 27, 2016
Preamplifier	MITEQ Inc.	SCU-18	10117	Apr. 10, 2015	Annual	Apr. 10, 2016
Preamplifier	MITEQ Inc.	JS44-18004000-35-8P	1546891	May 07, 2015	Annual	May 07, 2016
Bilog Antenna	SCHWARZBECK MESSELEKTRONIK	VULB 9163	396	Jun. 18, 2015	Biennial	Jun. 18, 2017
Two-Line V-Network	R&S	ENV216	100190	Dec. 25, 2014	Annual	Dec. 25, 2015
Loop Antenna	R&S	HFH2-Z2	100118	Jun. 04, 2015	Biennial	Jun. 04, 2017
Horn Antenna	SCHWARZBECK MESSELEKTRONIK	HF906	100326	Dec. 10, 2013	Biennial	Dec. 10, 2015
Horn Antenna	SCHWARZBECK MESSELEKTRONIK	BBHA 9170	BBHA9170431	May 15, 2014	Biennial	May 15, 2016
Antenna Master	INN-CO	MM4000	N/A	N/A	N/A	N.C.R.
Turn Table	INN-CO	DS 1200 S	N/A	N/A	N/A	N.C.R.
Test Receiver	R&S	ESU26	100109	Mar. 03, 2015	Annual	Mar. 03, 2016
Test Receiver	R&S	ESCI 7	100911	Dec. 24, 2014	Annual	Dec. 24, 2015
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.6 m)	N/A	N/A	N/A	N.C.R.
Shield Room	SY Corporation	L × W × H (6.5 m × 3.5 m × 3.5 m)	N/A	N.C.R.	N/A	N.C.R.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

1.5. Summary of Test Results

The EUT has been tested according to the following specifications:

APPLIED STANDARD : FCC Part15 Subpart C					
Standard section Test Item(s) Result					
15.205 15.209 15.247(d)	Radiated Spurious Emissions and Conducted Spurious Emission Complied				
15.247(a)(2)	6 dB Bandwidth	Complied			
15.247(b)(3)	Maximum Conducted Output Power	Complied			
15.247(e)	Power Spectral Density	Complied			
15.207	Transmitter AC Power Line Conducted Emission	Complied			

1.6. Test Procedure(s)

The measurement procedures described in the American National Standard for Methods of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2009) and the guidance provided in KDB 558074 v03r03 were used in the measurement of the DUT.

1.7. Sample calculation

Where relevant, the following sample calculation is provided:

1.7.1. Conducted test

Offset value (dB) = Attenuator (dB) + Cable loss (dB)

1.7.2. Radiation test

Field strength level ($^{dB}\mu/m$) = Measured level ($^{dB}\mu/m$) + Antenna factor (dB) + Cable loss (dB) – amplifier (dB)

1.8. Test report revision

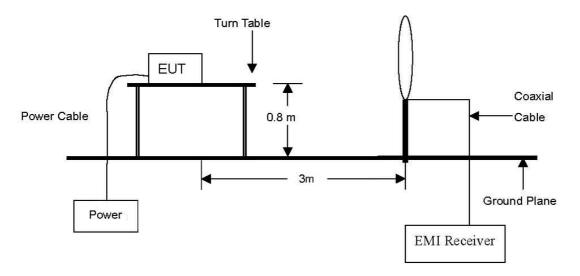
Revision	Report number	Date of Issue	Description
0	F690501/RF-RTL009157	2015.09.24	Initial
1	F690501/RF-RTL009157-1	2015.10.01	Add duty cycle

1.9. Duty cycle

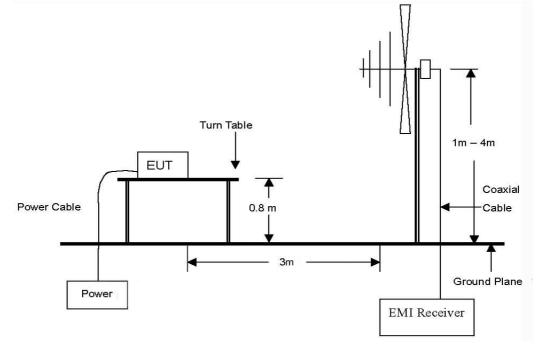
	vel 0.	.00 dBm		RBW							
Att TRG: VI			SWT 2 ms	∍ vbw	3 MHz						
1Pk Cl											
		RG 0.000) dBm				D3[11		D2	D305 di
-10 dBm			7 1			<u>n</u>		MI		4	62 5 .43 µ
10 0011							M1[11			-5.17 dBn
-20 dBm	-				_						1.25283 m
-30 dBm											
-SU UDII							Increase of	1		2000	N. N
40 dBm	-		hundryt			Mall I	d have a faith	J		ALM LAND	rphys
-50 dBm											
-30 abri											
-60 dBm											
-70 dBm											
						Í					
-80 dBm	-										
-90 dBm	_					L					
						Í					
CF 2.44	I GHz				691	pts					200.0 µs/
larker											
Туре	Ref		X-value		Y-value		Functio	on	Fund	ction Resul	t
M1 D2	M1	1	1.2528		-5.17 dB -0.29 (
D2	M1	1	390.6		-0.29 (
								Wait for Tr	igger 🔳		//
								actor II	9901		- /

Note) Duty factor = 10log(1/x), x = Duty cycle x=(Tx(on)/Tx(on+off))=(390.65/625.43)=0.624 6 10log(1/0.624 6)=2.04

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test
report cannot be reproduced, except in full, without prior written permission of the Company.SGS Korea Co., Ltd. (Gunpo Laboratory)4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807http://www.sgsgroup.krRTT5041-20(2015.10.01)(3)Tel. +82 31 428 5700 / Fax. +82 31 427 2370A4(210 mm × 297 mm)

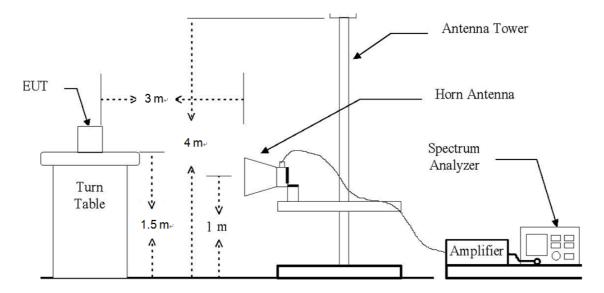

2. Radiated Spurious Emissions and Conducted

Spurious Emission


2.1. Test Setup

2.1.1. Radiated Spurious Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 $\,\rm klz$ to 30 $\,\rm Mz\,$ Emissions.


The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz Emissions.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

The diagram below shows the test setup that is utilized to make the measurements for emission. The spurious emissions were investigated form 1 GHz to the 10th harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This testreport cannot be reproduced, except in full, without prior written permission of the Company.SGS Korea Co., Ltd. (Gunpo Laboratory)4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807http://www.sgsgroup.kr

2.1.2. Conducted Spurious Emissions

EUT		Attenuator		Spectrum Analyzer
-----	--	------------	--	-------------------

2.2. Limit

According to §15.247(d), in any 100 klb bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 klb bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.205(c))

According to §15.209(a), Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (쌘)	Distance (Meters)	Field Strength (dBµV/m)	Field Strength (µN/m)
0.009 – 0.490	300	20 log (2 400/F(\lz))	2 400/F(kHz)
0.490 – 1.705	30	20 log (24 000/F(\lz))	24 000/F(kliz)
1.705 – 30.0	30	29.54	30
30 - 88	3	40.0	100
88 – 216	3	43.5	150
216 – 960	3	46.0	200
Above 960	3	54.0	500

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This testreport cannot be reproduced, except in full, without prior written permission of the Company.SGS Korea Co., Ltd. (Gunpo Laboratory)4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807http://www.sgsgroup.kr

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates in section 11.0 & 12.0 of KDB 558074 v03r03 and ANSI C63.4-2009.

Remark:

Testing for radiated emissions above 1GHz was performed with the EUT elevated at 1.5m instead of 0.8m. 1.5m is the required height in ANSI C63.10:2013 as referenced by RSS GEN issue 4. This test height has been permitted by FCC as discussed in FCC-TCB conference call in December 2014.

2.3.1. Test Procedures for emission below 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum Hold Mode.

2.3.2. Test Procedures for emission from above 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site below 1 GHz and 1.5 meters above the ground at a 3 meter anechoic chamber test site above 1 GHz. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 Ghz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 Ghz, the EUT was set 3 meter away from the interference-receiving antenna.
- 3. The antenna is a bi-log antenna, a horn antenna and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

1. Unwanted Emissions into Non-Restricted Frequency Bands

- The Reference Level Measurement refer to section 11.2

Set analyzer center frequency to DTS channel center frequency, SPAN ≥ 1.5 times the DTS channel bandwidth, the RBW = 100 kl/₂ and VBW ≥ 3 × RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold.

- Unwanted Emissions Level Measurement refer to section 11.3

Set the center frequency and span to encompass frequency range to be measured, the RBW = 100 km and VBW \ge 3 \times RBW, Detector = Peak, Ensure that the number of measurement points \ge span/RBW, Sweep time = Auto couple, Trace = Max hold.

2. Unwanted Emissions into Restricted Frequency Bands

- Peak Power measurement procedure refer to section 12.2.4 Set RBW = as specified in Table 1, VBW \ge 3 x RBW, SPAN \ge RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold.

Table 1- RBW as a func	tion of frequency
Frequency	RBW
9−150 kHz	200 – 300 Hz
0.15 – 30 Miz	9−10 kHz
30−1 000 MHz	100 – 120 kHz
> 1 000 MHz	1 MHz

Table 1- RBW as a function of frequency

- Average Power measurements procedure refer to section 12.2.5.2

Set RBW = 1 Mb, VBW \ge 3 x RBW, Detector = RMS, if span/(# of points in sweep) \le (RBW/2).

Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied then the detector mode shall be set to peak,

Averaging type = power(i.e., RMS). Sweep time = auto, Perform a trace average of at least 100 traces.

If duty cycle < 98 percent, a correction factor shell be added to the measurement results.

- Power averaging mode was used above the correction factor is $10 \log (1/x)$, where x is the duty cycle.

3. To get a maximum emission level from the EUT, the EUT is manipulated through three orthogonal planes. Worst orthogonal plan of EUT is <u>X – axis</u> during radiation test.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr

2.3.3. Test Procedures for Conducted Spurious Emissions

Per the guidance of KDB 558074 v03r03, section 11.1 & 11.2 & 11.3, the reference level for out of band emissions is established from the plots of this section since the band edge emissions are measured with a RBW of 100 kHz. This reference level is then used as the limit in subsequent plots for out of band spurious emissions shown in section 2.4.3. The limit for out of band spurious emission at the band edge is 20 dB or 30 dB below the fundamental emission level measured in a 100 kHz bandwidth.

- 1. Conducted Emissions at Band Edge
- The Measurement refer to section 11.2

Set the center frequency and span to encompass frequency range to be measured, the RBW = 100 kHz and VBW \ge 3 x RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold, Ensure that the number of measurement points \ge span/RBW, The trace was allowed to stabilize.

- 2. Conducted Spurious Emissions
- The Measurement refer to section 11.3

Start frequency was set to 9 kHz and stop frequency was set to 26.5 GHz (separated into two plots per channel), RBW = 100 kHz, VBW \ge 3 x RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold, The trace was allowed to stabilize.

3. Correction function

- For plots showing conducted spurious emissions from 9 kt to 26.5 Gt, all path loss of wide frequency range was investigated and compensated to spectrum analyzer as Correction function. So, the reading values shown in plots were final result.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This testreport cannot be reproduced, except in full, without prior written permission of the Company.SGS Korea Co., Ltd. (Gunpo Laboratory)4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807http://www.sgsgroup.kr

2.4. Test Results

Ambient temperature	:	(23	± 1) ℃
Relative humidity	:	47	% R.H.

2.4.1. Spurious Radiated Emission below 1 000 Mb

The frequency spectrum from 9 klz to 1 000 Mz was investigated. All reading values are peak values.

Radia	ated Emissio	ns	Ant	nt Correction Factors		Total	FCC L	imit
Frequency (畑)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP + CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
40.87	31.20	Peak	н	15.96	-26.73	20.43	40.00	19.57
742.38	33.40	Peak	V	22.35	-23.36	32.39	46.00	13.61
Above 800.00	Not detected	-	-	-	-	-	-	-

Remark:

- 1. Reported spurious emissions are in **<u>High channel</u>** as worst case among other channels.
- 2. Radiated spurious emission measurement as below.
- (Actual = Reading + Antenna Factor + Amp + CL)
- 3. According to §15.31(o), emission levels are not reported much lower than the limits by over 20 dB.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <u>http://www.sgsgroup.kr</u>

2.4.2. Spurious Radiated Emission above 1 000 Mb

The frequency spectrum above 1 000 Mb was investigated. All reading values are peak and average values. A. Low Channel (2 402 Mb)

Radi	ated Emissio	ons	Ant.	Ant. Correction Factors		Total	FCC Li	mit	
Frequency (M地)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Duty (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*2 310.00	14.27	Peak	Н	27.77	6.48	-	48.52	74.00	25.48
*2 310.00	3.46	Average	Н	27.77	6.48	2.04	39.75	54.00	14.25
*2 375.36	16.28	Peak	Н	28.16	6.55	-	50.99	74.00	23.01
*2 375.36	5.69	Average	Н	28.16	6.55	2.04	42.44	54.00	11.56
*2 390.00	15.09	Peak	Н	28.08	6.47	-	49.64	74.00	24.36
*2 390.00	5.34	Average	Н	28.08	6.47	2.04	41.93	54.00	12.07

Radi	ated Emissio	ons	Ant. Correction Factors		Total	FCC L	imit		
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+ CL (dB)	Duty (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

B. Middle Channel (2 440 Mtz)

Radi	Radiated Emissions		Ant.	Corre	Correction Factors		Total	FCC Li	imit
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+ CL (dB)	Duty (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

 SGS Korea Co., Ltd. (Gunpo Laboratory)
 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
 http://www.sgsgroup.kr

 RTT5041-20(2015.10.01)(3)
 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
 A4(210 mm × 297 mm)

Page: 15 of 34

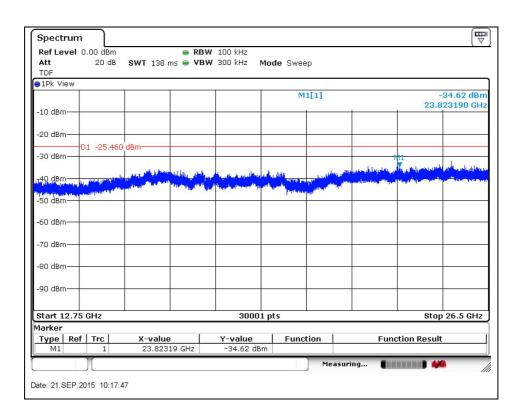
C. High Channel (2 480 Mbz)

Radi	ated Emissio	ons	Ant.	Ant. Correction Factors			Total	FCC Li	mit
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Duty (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*2 483.50	16.66	Peak	Н	28.17	6.65	-	51.48	74.00	22.52
*2 483.50	6.51	Average	Н	28.17	6.65	2.04	43.37	54.00	10.63
*2 483.58	16.86	Peak	н	28.17	6.65	-	51.68	74.00	22.32
*2 483.58	6.75	Average	Н	28.17	6.65	2.04	43.61	54.00	10.39
*2 500.00	13.73	Peak	н	28.31	6.88	-	48.92	74.00	25.08
*2 500.00	4.60	Average	Н	28.31	6.88	2.04	41.83	54.00	12.17

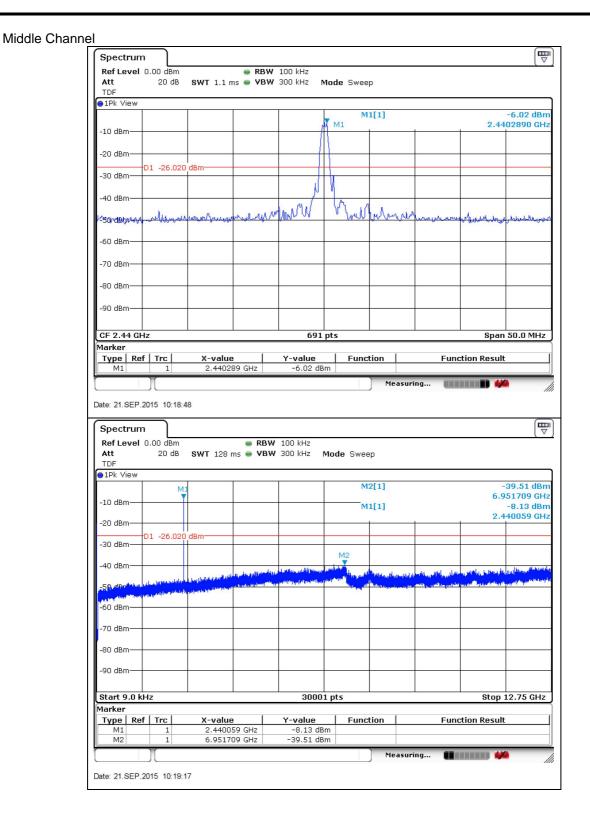
Radi	Radiated Emissions Ant		Ant.	Ant. Correction Factors		Total	FCC L	imit	
Frequency (畑)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+ CL (dB)	Duty (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

Remarks;

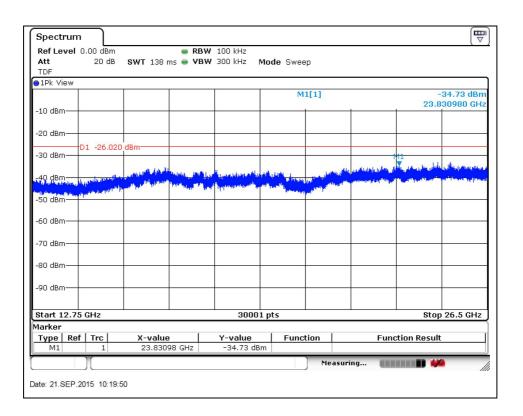
- 1. "*" means the restricted band.
- 2. Measuring frequencies from 1 Gth to the 10th harmonic of highest fundamental frequency.
- 3. Radiated emissions measured in frequency above 1 000 № were made with an instrument using peak/average detector mode.
- 4. Actual = Reading + AF + AMP + CL.
- 5. According to §15.31(o), emission levels are not reported much lower than the limits by over 20 dB.


2.4.3. Spurious RF Conducted Emissions: Plot of Spurious RF Conducted Emission

Low Channel


Spectrum					
Ref Level 0.00 dBm	e Ri	BW 100 kHz			(*
Att 20 dB TDF	SWT 1.1 ms 👄 VI	BW 300 kHz Mor	le Sweep		
1Pk View					
		T. N	M2[1]		-47.54 dBr
10 dBm			M1[1]		2.3897500 GH -5.46 dBr
20 dBm		/\`			2.4020500 GH
D1 -25.46	0 dBm				
30 dBm		NO N			
40 dBm	M2		M M .		
50 81Brhanner Allaner	- marken marked	W How Way	V July may	Madera-Adams	en have an an an an and the
60 dBm					
70 dBm					
B0 dBm					
90 dBm					
F 2.402 GHz arker		1001 pt	5		Span 50.0 MHz
Type Ref Trc	X-value	Y-value	Function	Functio	n Result
M1 1 M2 1	2.40205 GHz 2.38975 GHz	-5.46 dBm -47.54 dBm			
M3 1	2.399251 GHz	-42.22 dBm			
M4 1	2.4 GHz	-44.75 dBm			
Spectrum		BW 100 kHz	Measu	ıring Ener	(T
Spectrum Ref Level 0.00 dBm Att 20 dB		BW 100 kHz BW 300 kHz Mo	de Sweep	ıring Ö	
Spectrum Ref Level 0.00 dBm Att 20 dB TDF	● R		de Sweep	ıring E	(T
Spectrum Ref Level 0.00 dBm Att 20 dB TDF 1PK View	● R			ıring (
Spectrum Ref Level 0.00 dBm Att 20 dB TDF 1Pk View	● R SWT 128 ms ● V		de Sweep	ıring	-39.73 dBr 6.952559 GH -5.41 dBr
Spectrum Ref Level 0.00 dBm Att 20 dB TDF 1Pk View 10 dBm 20 dBm	SWT 128 ms - V		de Sweep M2[1]	ıring	-39.73 dBr 6.952559 GH
Spectrum Ref Level 0.00 dBm Att 20 dB IPF 10 dBm 20 dBm 10 -25.46	SWT 128 ms - V		de Sweep M2[1]	Iring	-39.73 dBr 6.952559 GH -5.41 dBr
Spectrum Ref Level 0.00 dBm TDF IPk View 10 dBm 20 dBm 20 dBm 20 dBm 20 dBm	SWT 128 ms - V		de Sweep M2[1]	Iring	-39.73 dBr 6.952559 GH -5.41 dBr
Spectrum Ref Level 0.00 dBm TDF IPk View 10 dBm 20 dBm 20 dBm 20 dBm 20 dBm	SWT 128 ms - V	'BW 300 kHz Mo	de Sweep M2[1] M1[1]	uring	-39.73 dBr 6.952559 GH -5.41 dBr
Spectrum Ref Level 0.00 dBm DF 20 dB 1Pk View 10 dBm 20 dBm 10 dBm	SWT 128 ms V	'BW 300 kHz Mo	de Sweep M2[1] M1[1]	rring المراجع المراجع مراجع المراجع الم	-39.73 dBr 6.952559 GH -5.41 dBr
Spectrum Ref Level 0.00 dBm Att 20 dB IDF 10 10 dBm 10 20 dBm 10 30 dBm 11 -25.46 30 dBm 11 -25.46 30 dBm 11 -25.46	SWT 128 ms • V	'BW 300 kHz Mo	de Sweep M2[1] M1[1]	rring	-39.73 dBr 6.952559 GH -5.41 dBr
Spectrum Ref Level 0.00 dBm DIF 20 dB 1Pk View 10 dBm 10 dBm 20 dBm 20 dBm 10 -25.46 30 dBm 20 dBm 40 dBm 50.451810 mm 50.451810 mm 10 mm 60 dBm 10 mm	SWT 128 ms V	'BW 300 kHz Mo	de Sweep M2[1] M1[1]		-39.73 dBr 6.952559 GH -5.41 dBr
Spectrum Ref Level 0.00 dBm TDF 20 dB 10 dBm 20 dBm 20 dBm 20 dBm 30 dBm D1 -25.46 30 dBm 50.45 Million 40 dBm 60 dBm	SWT 128 ms V	'BW 300 kHz Mo	de Sweep M2[1] M1[1]		-39.73 dBr 6.952559 GH -5.41 dBr
Spectrum Ref Level 0.00 dBm Att 20 dB TDF 10 km 10 dBm 10 dBm 20 dBm 10 dBm 30 dBm 10 -25,46 30 dBm 10 dBm 40 dBm 10 dBm 50 utble 10 dBm 70 dBm 10 dBm	SWT 128 ms V	'BW 300 kHz Mo	de Sweep M2[1] M1[1]	rring	-39.73 dBr 6.952559 GH -5.41 dBr
Spectrum Ref Level 0.00 dBm Att 20 dB JDF	SWT 128 ms V	'BW 300 kHz Mo	de Sweep M2[1] M1[1]		-39.73 dBr 6.952559 GH -5.41 dBr
Spectrum Ref Level 0.00 dBm Att 20 dB JDF	SWT 128 ms V	'BW 300 kHz Mo	de Sweep M2[1] M1[1]		-39.73 dBr 6.952559 GH -5.41 dBr
TDF 1Pk View 10 dBm 20 dBm D1 -25.46 30 dBm 40 dBm 50.45 March 10 M M M M	SWT 128 ms V	'BW 300 kHz Mo	de Sweep M2[1] M1[1] M2	rring	-39.73 dBr 6.952559 GH -5.41 dBr
Spectrum Ref Level 0.00 dBm Att 20 dB TDF 10 dBm 10 dBm 20 dBm 20 dBm 11 -25,46 30 dBm 20 dBm 40 dBm 20 dBm 50 dBm 20 dBm 40 dBm 20 dBm 50 dBm 20 dBm 90 dBm 20 dBm 90 dBm 20 dBm 90 dBm 20 dBm 91 dBm 20 dBm	SWT 128 ms	'BW 300 kHz Mo	de Sweep M2[1] M1[1] M2 M2 M2 M2 M2 M2 M2 M2 M2 M2		-39.73 dBr 6.952559 GH -5.41 dBr 2.402239 GH
Spectrum Ref Level 0.00 dBm Att 20 dB IPk View 1 10 dBm 1 20 dBm 1 30 dBm 1 40 dBm 1 50 dBm 1 60 dBm 1 70 dBm 1 90 dBm 1	SWT 128 ms	'BW 300 kHz Mo	de Sweep M2[1] M1[1] M2		-39.73 dBr 6.952559 GH -5.41 dBr 2.402239 GH
Spectrum Ref Level 0.00 dBm Att 20 dB TDF 10 dBm 10 dBm 20 dBm 20 dBm 11 -25,46 30 dBm 12 -25,4	SWT 128 ms	'BW 300 kHz Mo	de Sweep M2[1] M1[1] M2 M2 M2 M2 M2 M2 M2 M2 M2 M2		-39.73 dBr 6.952559 GH -5.41 dBr 2.402239 GH

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

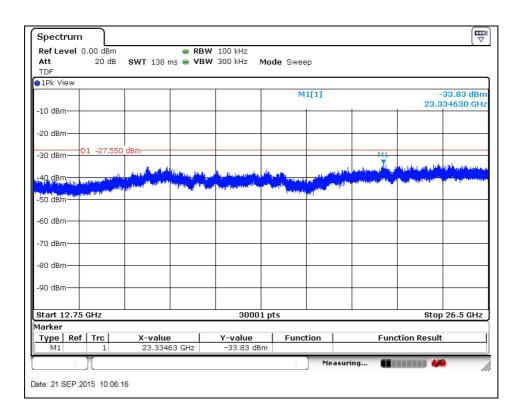


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <u>http://www.sgsgroup.kr</u>

RTT5041-20(2015.10.01)(3)

Tel. +82 31 428 5700 / Fax. +82 31 427 2370

High Channel


		00 dBm			3W 100 kHz	Mada Cu				('
Att TDF		20 dB	SWT 1.1	l ms 👄 VE	3W 300 kHz	Mode Swe	ер			
1Pk Vi	ew					1				
10 10-							43[1]		2	-45.71 dBm .4843420 GHz
-10 dBm						N	11[1]			-7.55 dBm
-20 dBm	ו—ר								2	.4800720 GHz
-30 dBm		1 -27.5	50 dBm	_					_	
					N	h h				
40 dBm	ר י			C 7	A.MAN	L M2M	3 University		522	
SU dell	minor	low	montell	montant	Jul	www	University	which which which	induction	moundate
-60 dBm										
-70 dBm	ר י									
-80 dBm	-+-		_							
90 dBm										
Jo ubli	Τ									
CF 2.4	8 GHz				691	pts			Sr	oan 50.0 MHz
larker										
Type M1	Ref	Trc 1	2 480	ue 0072 GHz	<u>Y-value</u> -7.55 d		ction	Fi	unction Res	sult
M2		1	2.4	4835 GHz	-46.78 d	Bm				
MЗ		1	2.484	4342 GHz	-45.71 d	Bm				
Spect Ref Le	rum	,00 dBm	1		BW 100 kHz			suring		
Specti Ref Le Att TDF	rum vel 0		1			Mode Swe				
Specti Ref Le Att TDF	rum vel 0	.00 dBm	SWT 12				eep	, , , , , , , , , , , , , , , , , , ,		(-
Spect Ref Le Att TDF 1Pk Vi	rum vel 0 ew	.00 dBm	1							-39.45 dBm
Spect Ref Le Att TDF 1Pk Vi	rum vel 0 ew	.00 dBm	SWT 12			N	eep			-39.45 dBm 6.978479 GHz -7.74 dBm
Specti Ref Le Att TDF 1Pk Vi	rum vel 0 ew	.00 dBm	SWT 12			N	2ep 42[1]			-39.45 dBm 6.978479 GHz -7.74 dBm
Specta Ref Le Att TDF) 1Pk Vi -10 dBm -20 dBm	rum vel 0 ew	.00 dBm	SWT 12			N	2ep 42[1]			-39.45 dBm 6.978479 GHz -7.74 dBm
Specti Ref Le Att TDF 1Pk Vi 1Pk Vi 20 dBm 30 dBm		.00 dBm 20 dE	SWT 12			N	2ep 42[1]			-39.45 dBm 6.978479 GHz -7.74 dBm
Specti Ref Le Att TDF 1Pk Vi 10 dBm 20 dBm		.00 dBm 20 dE	SWT 12			N	2ep 42[1]			-39.45 dBm 6.978479 GHz -7.74 dBm
Spect Ref Le Att TDF IPk Vi IPk Vi -10 dBm -20 dBm -30 dBm -40 dBm		.00 dBm 20 dE	SWT 12			N	2ep 42[1]			-39.45 dBm 6.978479 GHz -7.74 dBm
Specta Ref Le Att TDF 1Pk Vi -10 dBm -20 dBm -30 dBm -40 dBm -50 cPd		.00 dBm 20 dE	SWT 12			N	2ep 42[1]			-39.45 dBm 6.978479 GHz -7.74 dBm
Spect		.00 dBm 20 dE	SWT 12			N	2ep 42[1]	р. Цу Цеба (1 м) (1 м) , цу Цеба (1 м) , цу Цеб		-39.45 dBm 6.978479 GHz -7.74 dBm
Spectr Ref Le Att TDF 10 dBm 20 dBm 20 dBm 40 dBm 50 dBm 60 dBm		.00 dBm 20 dE	SWT 12			N	2ep 42[1]			-39.45 dBm 6.978479 GHz -7.74 dBm
Spectu Ref Le Att TDF 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 60 dBm 60 dBm		.00 dBm 20 dE	SWT 12			N	2ep 42[1]			-39.45 dBm 6.978479 GHz -7.74 dBm
Spectr Ref Le Att TDF 101Pk Vi -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -60 dBm -70 dBm -80 dBm		.00 dBm 20 dE	SWT 12			N	2ep 42[1]			-39.45 dBm 6.978479 GHz -7.74 dBm 2.480009 GHz
Spectr Ref Le Att TDF 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm 60 dBm 70 dBm 80 dBm		.00 dBm 20 dE	SWT 12			N	2ep 42[1]			-39.45 dBm 6.978479 GHz -7.74 dBm
Spectr Ref Le Att TDF 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 60 dBm 70 dBm 80 dBm 90 dBm		.00 dBm 20 dE	SWT 12		BW 300 kHz		2ep 42[1]			-39.45 dBm 6.978479 GHz -7.74 dBm 2.480009 GHz
Spectr Ref Le Att TDF 101Pk Vi -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm -80 dBm -90 dBm		.00 dBm 20 dE	SWT 12		BW 300 kHz	N	2ep 42[1]			-39.45 dBm 6.978479 GHz -7.74 dBm
Spectr Ref Le Att TDF 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 60 dBm 70 dBm 80 dBm 90 dBm	rum vel 0 ew	.00 dBm 20 dE 1 -27.5	SWT 12		BW 300 kHz	M2 mathematical and back	2ep 42[1]			-39.45 dBm 6.978479 GHz -7.74 dBm 2.480009 GHz
Spectr Ref Le Att TDF 10 dBr 20 dBr 30 dBr 40 dBr 50 dBr 50 dBr 60 dBr 80 dBr 80 dBr 80 dBr 90 dBr 3tart 9 Mata	rum vel 0 ew	.00 dBm 20 dE 1 -27.5	SWT 12	8 ms • V	BW 300 kHz	M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	Pep			-39.45 dBm 6.978479 GHz -7.74 dBm 2.480009 GHz
Spectu Ref Le Att TDF 1Pk Vi 10 dBr 20 dBr 30 dBr 40 dBr 40 dBr 50 dBd 60 dBr 70 dBr 80 dBr 90 dBr 90 dBr 90 dBr 91 dF 90 dBr	rum vel 0 ew	.00 dBm 20 dE 1 -27.5	SWT 12	8 ms • V	BW 300 kHz	M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	rep 12[1] 11[1] 1			-39.45 dBm 6.978479 GHz -7.74 dBm 2.480009 GHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This testreport cannot be reproduced, except in full, without prior written permission of the Company.SGS Korea Co., Ltd. (Gunpo Laboratory)4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807http://www.sgsgroup.kr

RTT5041-20(2015.10.01)(3)

Tel. +82 31 428 5700 / Fax. +82 31 427 2370

3.6 dB Bandwidth

3.1. Test Setup

3.2. Limit

According to 15.247(a)(2), systems using digital modulation techniques may operate in the 902 ~ 928 Mz, 2 400 ~ 2 483.5 Mz, and 5 725 ~ 5 825 Mz bands. The minimum of 6 dB Bandwidth shall be at least 500 kz

3.3. Test Procedure

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.

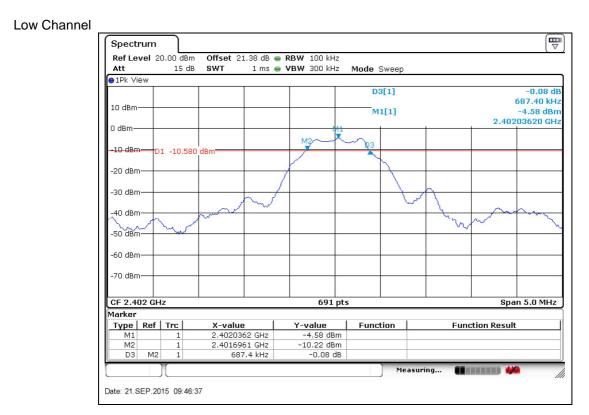
The test follows section 8.0 DTS bandwidth of FCC KDB Publication 558074 v03r03 Tests performed using section 8.1 Option 1.

- Option 1:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \ge 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

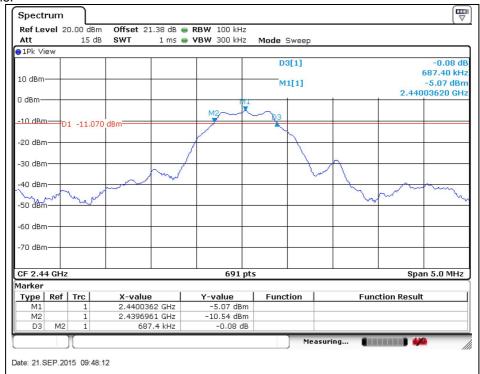
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test
report cannot be reproduced, except in full, without prior written permission of the Company.SGS Korea Co., Ltd. (Gunpo Laboratory)4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807http://www.sgsgroup.krRTT5041-20(2015.10.01)(3)Tel. +82 31 428 5700 / Fax. +82 31 427 2370A4(210 mm × 297 mm)

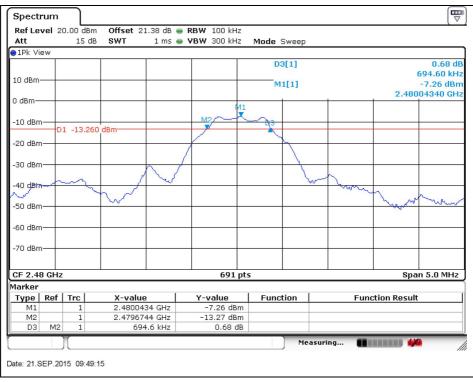


3.4. Test Results

Ambient temperature	:	(23	± 1) °C
Relative humidity	:	47	% R.H.

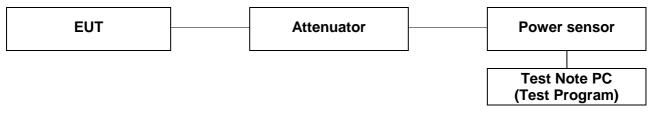
Operation Mode	Channel	Channel Frequency (쌘)	Data Rate (Mbps)	6 dB Bandwidth (朏)	Minimum Bandwidth (멦)
	Low	2 402	1	687.40	500
GFSK	Middle	2 440	1	687.40	500
	High	2 480	1	694.60	500


6 dB Bandwidth


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test
report cannot be reproduced, except in full, without prior written permission of the Company.SGS Korea Co., Ltd. (Gunpo Laboratory)4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807http://www.sgsgroup.krRTT5041-20(2015.10.01)(3)Tel. +82 31 428 5700 / Fax. +82 31 427 2370A4(210 mm × 297 mm)

Middle Channel

High Channel



The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

4. Maximum Conducted Output Power

4.1. Test Setup

Test program : (S/W name : R&S Power Viewer, Version : 3.2.0)

4.2. Limit

According to \$15.247(b)(3), for systems using digital modulation in the 902 ~ 928 Mb, 2 400 ~ 2 483.5 Mb, and 5 725 ~ 5 850 Mb band : 1 Watt. As an alternative to a peak power measurement, compliance with the one watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antenna elements. The average must not include any intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to \$15.247(b)(4), the conducted output power limit specified in paragraph(b) of this section is based on the use of antenna with directional gains that do not exceed 6 dBi. Except as shown in paragraph(c) of this section, if transmitting antenna of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraph (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.3. Test Procedure

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.

The test follows section 9.1.2 of FCC KDB Publication 558074 v03r03

- Peak power meter method

- -The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.
- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the broadband power meter and power sensor. The power sensor employs a VBW = 30 Mb which is greater than the DTS bandwidth.
- 3. Measure peak power each channel.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

4.4. Test Results

Ambient temperature	:	(23	± 1) ℃
Relative humidity	:	47	% R.H.

Mode	Channel	Channel Frequency (쌘)	Attenuator + Cable offset (dB)	Peak Power Result (dB m)	Peak Power Limit (ⓓ m)
	Low	2 402 Młz	20.15	-2.78	30.00
GFSK	Middle	2 440 MHz	20.33	-3.18	30.00
	High	2 480 Młz	20.39	<u>-2.71</u>	30.00

Remark;


Attenuator and Cable offset compensated in test program (R&S Power Viewer) before measuring.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test
report cannot be reproduced, except in full, without prior written permission of the Company.SGS Korea Co., Ltd. (Gunpo Laboratory)4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807http://www.sgsgroup.krRTT5041-20(2015.10.01)(3)Tel. +82 31 428 5700 / Fax. +82 31 427 2370A4(210 mm × 297 mm)

5. Power Spectral Density

5.1. Test Setup

5.2. Limit

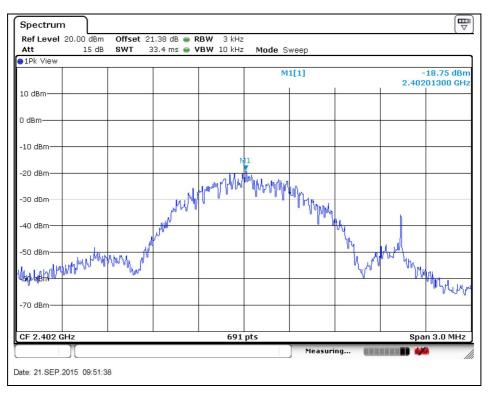
§15.247(e) For digitally modulated system, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dB m in any 3 kHz band any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

5.3. Test Procedure

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.

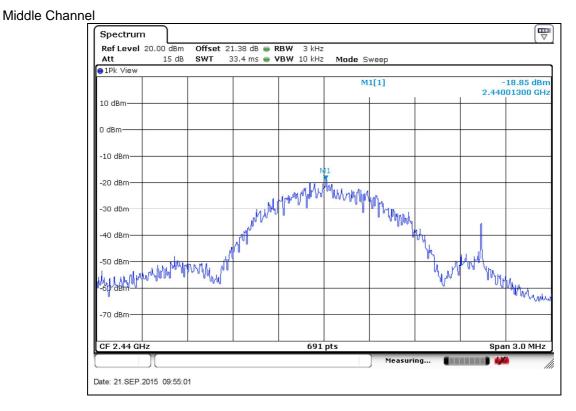
The measurement is recorded using the PKPSD measurement procedure in 10.2 of KDB 558074 v03r03.

- This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.
- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to at least 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to : 3 kHz \leq RBW \leq 100 kHz
- 4. Set the VBW \geq 3 x RBW
- 5. Detector = Peak
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 $\,\mathrm{klz}$) and repeat.

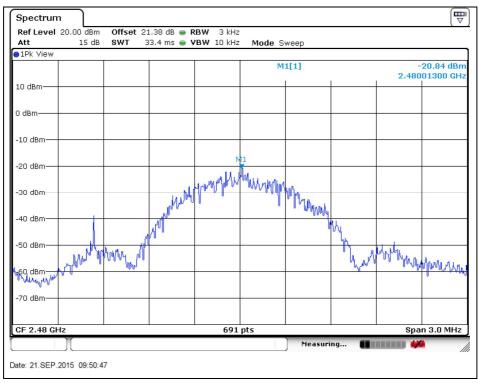

5.4. Test Results

Ambient temperature	:	(23	± 1) °C
Relative humidity	:	47	% R.H.

Mode	Channel	Frequency	Data Rate (Mbps)	Measured PSD (dB m)	Maximum Limit (dB m)
	Low	2 402 M ¹ ⁄₂	1	-18.75	8
GFSK	Middle	2 440 MHz	1	-18.85	8
	High	2 480 MHz	1	-20.84	8

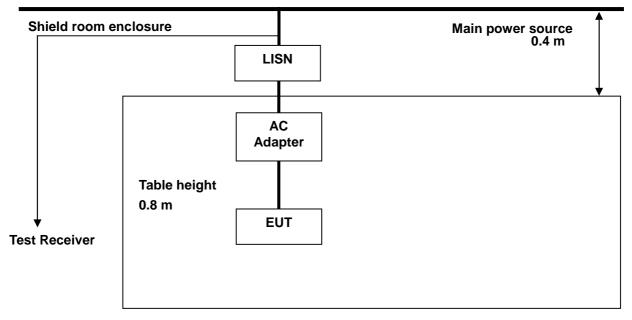

Power spectral density measurement

Low Channel



The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

High Channel



The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

6. Transmitter AC Power Line Conducted Emission

6.1. Test Setup

6.2. Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H /50 ohm line impedance stabilization network(LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Frequency of Emission (JML)	Conducted limit (dBµN)			
Frequency of Emission (毗)	Quasi-peak	Average		
0.15 – 0.50	66 - 56*	56 - 46*		
0.50 - 5.00	56	46		
5.00 - 30.0	60	50		

* Decreases with the logarithm of the frequency.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

6.3. Test Procedures

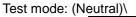
AC conducted emissions from the EUT were measured according to the dictates of ANSI C63.4:2009

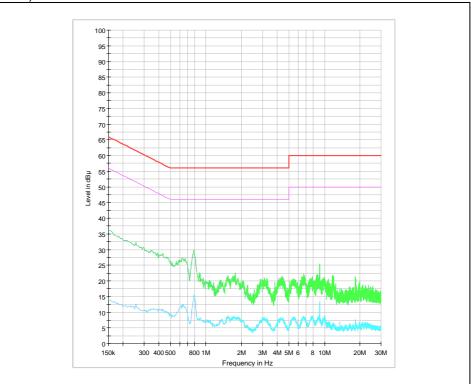
- 1. The test procedure is performed in a 6.5 m × 3.6 m× 3.6 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W)× 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test
report cannot be reproduced, except in full, without prior written permission of the Company.SGS Korea Co., Ltd. (Gunpo Laboratory)4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807http://www.sgsgroup.krRTT5041-20(2015.10.01)(3)Tel. +82 31 428 5700 / Fax. +82 31 427 2370A4(210 mm × 297 mm)

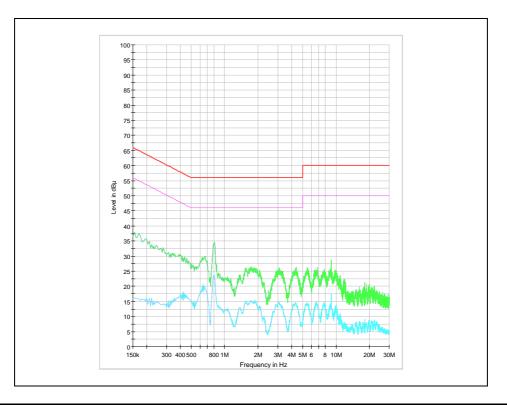
6.4. Test Results

The following table shows the highest levels of conducted emissions on both phase of Hot and Neutral line.


Ambient temperature	:	(23 ± 1) ℃
Relative humidity	:	47 % R.H.
Frequency range	:	0.15 MHz -30 MHz
Measured Bandwidth	:	9 kHz


FREQ.	LEVEL	.(dB,#V)	LINE	LIMIT(dBµN)		MARGIN(dB)	
(MHz)	Q-Peak	Average		Q-Peak	Average	Q-Peak	Average
0.81	28.30	21.60	N	56.00	46.00	27.70	24.40
1.57	20.00	14.00	N	56.00	46.00	36.00	32.00
3.07	20.20	13.40	N	56.00	46.00	35.80	32.60
5.47	20.00	13.70	N	60.00	50.00	40.00	36.30
8.96	19.90	13.40	Ν	60.00	50.00	40.10	36.60
0.79	23.00	14.70	Н	56.00	46.00	33.00	31.30
1.76	12.30	7.90	н	56.00	46.00	43.70	38.10
3.17	12.90	7.00	Н	56.00	46.00	43.10	39.00
6.64	14.00	8.10	Н	60.00	50.00	46.00	41.90
9.11	13.70	8.00	Н	60.00	50.00	46.30	42.00
11.90	12.40	6.10	Н	60.00	50.00	47.60	43.90

Note;


- 1. Line (H): Hot, Line (N): Neutral
- 2. All modes of operation were investigated and the worst-case emissions are reported using High Channel
- 3. The limit for Class B device(s) from 150 k to 30 M are specified in Section of the Title 47 CFR.
- 4. Traces shown in plot mad using a peak detector and average detector.
- 5. Deviations to the Specifications: None.

Test mode: (Hot)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

7. Antenna Requirement

7.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section \$15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section \$15.247 (b) if transmitting antennas of directional gain greater than 6 dB i are used, the power shall be reduced by the amount in dB that the gain of the antenna exceeds 6 dB i.

7.2. Antenna Connected Construction

Antenna used in this product is FPCB antenna and peak max gain of antenna as below.

Band	2 402 ₩z – 2 480 ₩z (ISM)
Mode	LE
Gain	0.02 dB i

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This testreport cannot be reproduced, except in full, without prior written permission of the Company.SGS Korea Co., Ltd. (Gunpo Laboratory)4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807http://www.sgsgroup.kr