

RF Exposure evaluation

Exposure category: General population/uncontrolled environment

EUT Type: Production Unit

Device Type: Mobile Device

Refer Standard: KDB 447498 D01 General RF Exposure Guidance v06

FCC Part 2 §2.1091

FCC ID: 2AD4XPROFX10GO

1. Reference

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1091 RF exposure is calculated.

KDB447498 D01: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies

2. Limit

Limits for Maximum Permissible Exposure (MPE)/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time				
Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm ²)	(minute)				
Limits for Occupational/Controlled Exposure								
0.3 - 3.0	614	1.63	(100) *	6				
3.0 - 30	1842/f	4.89/f	$(900/f^2)^*$	6				
30 - 300	61.4	0.163	1.0	6				
300 - 1500		1	f/300	6				
1500 - 100,000		20/00	5	6				
	C.C.	2000	3					

Limits for Maximum Permissible Exposure (MPE)/Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time				
Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm ²)	(minute)				
Limits for Occupational/Controlled Exposure								
0.3 - 3.0	614	1.63	(100) *	30				
3.0 - 30	824/f	2.19/f	$(180/f^2)^*$	30				
30-300	27.5	0.073	0.2	30				
300 - 1500	1	/	f/1500	30				
1500 - 100,000	/	/	1.0	30				

F=frequency in MHz

*=Plane-wave equivalent power density

3. MPE Calculation Method

Predication of MPE limit at a given distance Equation from page 18 of OET Bulletin 65, Edition 97-01

$S=PG/4\pi R^2$

Where: S=power density

P=power input to antenna

G=power gain of the antenna in the direction of interest relative to an isotropic radiator R=distance to the center of radiation of the antenna

4. Result

As declared by the Applicant, the EUT is a wireless device used in a fix application, at least 20 cm from any body part of the user or nearby persons; from the maximum EUT RF output power, the minimum separation distance, r = 20cm, as well as the gain of the used BT antenna is 2dBi, the RF power density can be obtained.

EDR									
eq. Hz)	Output Power (dBm)	Target power W/ tolerance (dBm)	Max tune up power tolerance (dBm)	Output power to antenna (mW)	Ant Gain (dBi)	Power Density at R=20cm (mW/cm2)	Limit (mW/c m2)	Result	
GFSK									
402	2.572	3±1.0	4	2.512	2	0.00079	5	Pass	
41	3.457	3±1.0	4	2.512	2	0.00079		Pass	
180	4.684	5±1.0	6	3.981	2	0.00126	- 1	Pass	
π/4DQPSK									
102	4.780	5±1.0	6	3.981	2	0.00126	1	Pass	
41 🤇	5.659	6±1.0	7	5.012	2	0.00158	1	Pass	
180	6.861	7±1.0	8	6.310	2	0.00199	21	Pass	
	Hz) 02 41 80 02 41	eq. Hz Power (dBm) 02 2.572 41 3.457 80 4.684 02 4.780 41 5.659	eq. Hz)Power (dBm)W/ tolerance (dBm) 02 2.572 3 ± 1.0 41 3.457 3 ± 1.0 80 4.684 5 ± 1.0 02 4.780 5 ± 1.0 41 5.659 6 ± 1.0	eq. Hz) Output Power (dBm) Target power W/ tolerance (dBm) Max tune up power tolerance (dBm) 02 2.572 3 ± 1.0 4 41 3.457 3 ± 1.0 4 80 4.684 5 ± 1.0 6 $\pi/.$ 02 4.780 5 ± 1.0 6 41 5.659 6 ± 1.0 7	eq. Hz)Output Power (dBm)Target power W/ tolerance (dBm)Max tune up power tolerance (dBm)Output power to antenna (mW)022.572 3 ± 1.0 42.512413.457 3 ± 1.0 42.512804.684 5 ± 1.0 6 3.981 $\pi/4DQPSK$ 024.780 5 ± 1.0 6 3.981	eq. Hz)Output Power (dBm)Target power W/ tolerance (dBm)Max tune up power tolerance (dBm)Output power to antenna (mW)Ant Gain (dBi)022.572 3 ± 1.0 42.512241 3.457 3 ± 1.0 4 2.512 280 4.684 5 ± 1.0 6 3.981 2 $\pi/4DQPSK$ 02 4.780 5 ± 1.0 6 3.981 2 2	eq. Hz)Output Power (dBm)Target power W/ tolerance (dBm)Max tune up power tolerance (dBm)Output power to antenna (mW)Ant Gain (dBi)Power Density at $R=20cm$ (mW/cm2)022.572 3 ± 1.0 42.51220.0007941 3.457 3 ± 1.0 4 2.512 20.0007980 4.684 5 ± 1.0 6 3.981 20.00126 $\pi/4DQPSK$ 02 4.780 5 ± 1.0 6 3.981 20.00126 4.780 5 ± 1.0 6 3.981 20.0012641 5.659 6 ± 1.0 7 5.012 20.00158	eq. Hz)Output Power (dBm)Target power W/ tolerance (dBm)Max tune up power tolerance (dBm)Output power to antenna (mW)Ant Gain (dBi)Power Density at $R=20 cm$ (mW/cm2)Limit (mW/c m2)022.572 3 ± 1.0 42.5122 0.00079 141 3.457 3 ± 1.0 4 2.512 2 0.00079 180 4.684 5 ± 1.0 6 3.981 2 0.00126 1m/dDQPSK02 4.780 5 ± 1.0 6 3.981 2 0.00126 141 5.659 6 ± 1.0 7 5.012 2 0.00158 1	

Note: The estimation distance is 20cm

5. Conclusion

The measurement results comply with the FCC Limit per 47 CFR 2.1091 for the uncontrolled RF Exposure of mobile device.