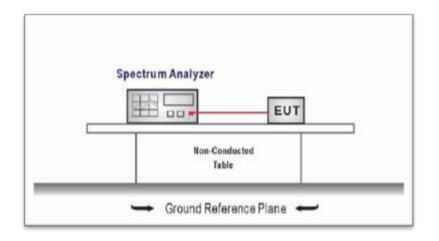
# 3.5. Carrier Frequencies Separation


### <u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25kHz or the 2/3\*20dB bandwidth of the hopping channel, whichever is greater.

| Test Item          | Limit                                                               | Frequency Range(MHz) |
|--------------------|---------------------------------------------------------------------|----------------------|
| Channel Separation | >25KHz or >two-thirds of the 20 dB<br>bandwidth<br>Which is greater | 2400~2483.5          |

### Test Configuration



### Test Procedure

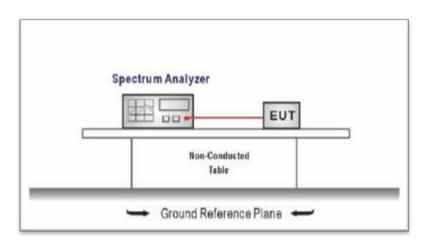

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:
  - (1) Set RBW = 100 kHz.
  - (2) Set the video bandwidth (VBW)  $\ge$  3 RBW.
  - (3) Detector = Peak.
  - (4) Trace mode = Max hold.
  - (5) Sweep = Auto couple.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

#### Test Mode

Please refer to the clause 2.3.

#### Test Results




# 3.6. Number of Hopping Channel

<u>Limit</u>

| Section | Test Item                 | Limit |  |  |
|---------|---------------------------|-------|--|--|
| 15.247  | Number of Hopping Channel | >15   |  |  |

### **Test Configuration**



#### Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

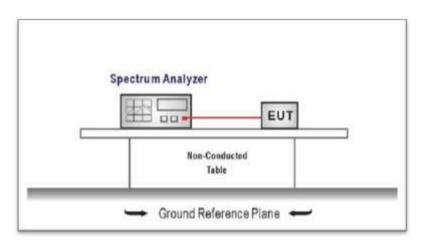
2. Spectrum Setting:

(1)Peak Detector: RBW=100 kHz, VBW≥RBW, Sweep time= Auto.

#### Test Mode

Please refer to the clause 2.3.

#### <u>Test Result</u>


| Test Mode:                                                                            | ode: FHSS Hopping Mode                                                       |           |                                |                   |      |      |  |        |       |     |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------|--------------------------------|-------------------|------|------|--|--------|-------|-----|
| Frequency Range                                                                       |                                                                              | Test Mo   | Quantity of Hopping<br>Channel |                   |      |      |  |        | Limit |     |
| 2402MHz~2483.5M                                                                       | 1Hz                                                                          | Нор       |                                | 79                |      |      |  |        |       | >15 |
|                                                                                       |                                                                              |           | FHSS                           | 5 Нор             | ping | Mode |  |        |       |     |
| R<br>A<br>→ A<br>→ A<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→ | k View<br>JBm<br>JBm<br>JBm<br>JBm<br>JBm<br>JBm<br>JBm<br>JBm<br>JBm<br>JBm | 40 dB SWT | 8.23 dB • F                    | <b>/BW</b> 300 kH |      |      |  | Stop 2 |       |     |

# 3.7. Dwell Time

<u>Limit</u>

| Section      | Test Item                    | Limit   |  |  |
|--------------|------------------------------|---------|--|--|
| 15.247(a)(1) | Average Time of<br>Occupancy | 0.4 sec |  |  |

### Test Configuration



#### Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:
  - (1) Spectrum Setting: RBW=1MHz, VBW≥RBW.
  - (2) Use video trigger with the trigger level set to enable triggering only on full pulses.
  - (3) Sweep Time is more than once pulse time.
  - (4) Set the center frequency on any frequency would be measure and set the frequency span to zero.
  - (5) Measure the maximum time duration of one single pulse.
  - (6) Set the EUT for packet transmitting.

#### Test Mode

Please refer to the clause 2.3

#### <u>Test Result</u>

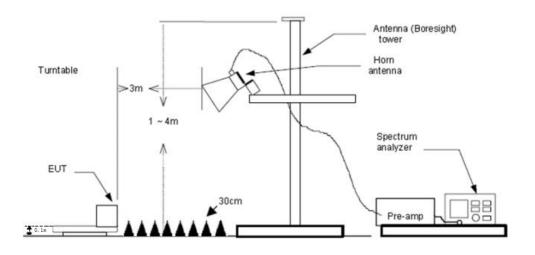
Note:

1.We have tested all mode at high, middle and low channel, and recoreded worst case at high channel.

2.Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second for DH5, 2-DH5, 3-DH5


| Test Mod      | e:                     | FHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SS Hopping N                                                                                        | lode  |               |        |    |                  |   |            |        |  |  |
|---------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------|---------------|--------|----|------------------|---|------------|--------|--|--|
| Test<br>Mode  | Chann<br>(MHz          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pulse Time<br>(ms)                                                                                  | To    | tal of<br>(ms |        | Pe | riod Time<br>(s) |   | mit<br>ns) | Result |  |  |
| 1DH5          | 2480                   | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.98                                                                                                |       | 317.8         | 37     |    | 31.60            | 4 | 00         | PASS   |  |  |
| 1DH5 Total of | f Dwell= F             | Pulse t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ime (ms) × (1600                                                                                    | ÷6÷79 | 9) ×31.6      | Second |    |                  |   |            |        |  |  |
|               | FHSS Hopping Mode 1DH5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                     |       |               |        |    |                  |   |            |        |  |  |
|               | 2480MHz                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                     |       |               |        |    |                  |   |            |        |  |  |
|               |                        | ● Att<br>SGL TR CI<br>20 dBm-<br>10 dBm-<br>-10 dBm<br>-20 dBm-<br>-20 dBm- | 2000 30.00 dBm<br>40 dB SWT<br>G-VID<br>TW<br>TRG -16.500 dBm<br>TRG -16.500 dBm<br>TRG -16.500 dBm |       |               |        |    |                  |   |            |        |  |  |

# 3.8. Band Edge Emissions (Radiated)

### <u>Limit</u>

| Restricted Frequency Band                                                      | (dBuV/m)(at 3m) |         |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------|-----------------|---------|--|--|--|--|--|--|--|
| (MHz)                                                                          | Peak            | Average |  |  |  |  |  |  |  |
| 2310 ~2390                                                                     | 74              | 54      |  |  |  |  |  |  |  |
| 2483.5 ~2500                                                                   | 74              | 54      |  |  |  |  |  |  |  |
| Note: All restriction bands have been tested, only the worst case is reported. |                 |         |  |  |  |  |  |  |  |

#### **Test Configuration**

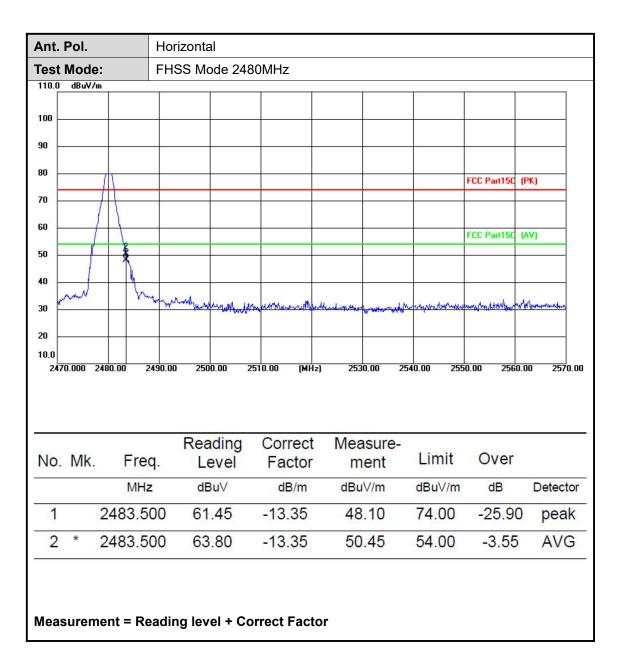


#### Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 0.1 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=10Hz with Average Detector for Average Value.

#### Test Mode

Please refer to the clause 2.3.


#### Test Results

Note:

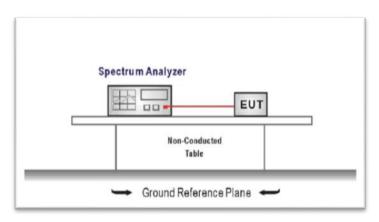
Measurement = Reading level + Correct Factor

Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor

| Ant        | . Pol.             |             | Verti  | cal    |        |         |                     |          |       |        |         |         |           |         |          |      |         |      |
|------------|--------------------|-------------|--------|--------|--------|---------|---------------------|----------|-------|--------|---------|---------|-----------|---------|----------|------|---------|------|
|            | t Mod              |             | FHS    | S Moo  | de 240 | 02 MH   | lz                  |          |       |        |         |         |           |         |          |      |         |      |
| 110.0      | dBuVa              | /m          |        |        |        | Ĩ       |                     |          |       |        |         |         |           |         |          |      |         | 1    |
| 100 -      |                    |             |        |        |        |         |                     |          |       |        | e       |         |           |         |          |      |         |      |
| 90         |                    |             | _      |        |        |         |                     |          |       |        |         |         |           |         |          |      |         |      |
| 80         |                    |             |        |        |        |         |                     | -        |       |        |         |         |           | FCC Pa  | art15Q   | (PK  | r       |      |
| 70         |                    |             |        |        |        | -       |                     |          |       |        |         |         |           |         | -        | F    |         |      |
| 60         |                    |             |        |        |        |         |                     |          |       |        |         |         |           | FCC Pa  | art15C   | (AV  | )       |      |
| 50         |                    |             |        |        |        |         |                     |          |       |        |         |         |           |         |          | +    |         |      |
| 40         |                    |             |        |        |        |         |                     |          |       |        |         |         |           |         | THE REAL | +    |         |      |
| 30 🎦       | sprinkering        | warderstand | Manner | mynny  | whenny | my      | month               | Manualty | menty | July m | hallman | Munique | nyll<br>X | mayness | May      | h    | Winnyth | 6    |
| 20         |                    |             | _      | _      |        |         |                     | -        |       |        |         |         |           |         |          |      |         |      |
| 10.0<br>23 | 12.000             | 2322.00 2   | 332.00 | 2342.  | 00 2   | 2352.00 | (MH                 | z)       | 237   | 2.00   | 238     | 2.00    | 239       | 2.00    | 240      | 2.00 | 24      | 2.00 |
|            |                    |             |        | Rea    | dina   | Co      | rrec                | t        | Me    | asure  | 2_      |         |           |         |          |      |         |      |
| No         | . <mark>M</mark> k | . Fre       |        |        | vel    |         | acto                |          |       | nent   |         | Lin     | nit       | 0       | ver      | •    |         |      |
|            |                    | MH          | z      | dB     | uV     | C       | dB/m                |          | dB    | uV/m   |         | dBu     | √/m       |         | dB       |      | Dete    | ctor |
| 1          |                    | 2390.0      | 00     | 44.    | 54     | -13     | 3.49                | )        | 31    | 1.05   |         | 74.     | 00        | -4      | 12.9     | 5    | pe      | ak   |
| 2          | 2                  | 2390.0      | 00     | 41.    | 26     | -13     | 3. <mark>4</mark> 9 |          | 27    | 7.77   |         | 54.0    | 00        | -2      | 26.2     | 3    | A۱      | /G   |
| 3          | 3                  | 2400.0      | 00     | 53.    | 53     | -13     | 3.48                |          | 40    | 0.05   |         | 74.     | 00        | -3      | 33.9     | 5    | pe      | ak   |
| 4          | *                  | 2400.0      | 00     | 50.    | 42     | -13     | 3. <mark>4</mark> 8 |          | 36    | 5.94   |         | 54.0    | 00        | -1      | 7.0      | 6    | A۱      | /G   |
| Меа        | asurer             | ment = Re   | eading | g leve | l + Co | orrect  | Fac                 | tor      |       |        |         |         |           |         |          |      |         |      |



| Ant. Pol.        | Vertical            |              |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                 |                  |
|------------------|---------------------|--------------|---------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------|------------------|
| Test Mode:       | FHSS M              | ode 248      | 0 MHz         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                 |                  |
| 110.0 dBuV/m     |                     | 1            | 1             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                    |                 |                  |
| 100              | _                   |              |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                 |                  |
| 90               |                     |              |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                 |                  |
|                  |                     |              |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                 |                  |
| 80               |                     |              |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | FCC Part150     | (PK)             |
| 70               |                     | -            |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 2               |                  |
| 60               |                     |              |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                 |                  |
| 50               |                     |              |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | FCC Part150     |                  |
| 30               |                     |              |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                 |                  |
| 40               |                     |              |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                 |                  |
| 30 MM M          | heldownway Ano      | moneramental | Marina Marina | antipetholyth | an with the stand wit | Malither Johnson     | mathematication | white where when |
| 20               |                     |              |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                 |                  |
| 10.0             |                     |              |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                 |                  |
| 2470.000 2480.00 | 2490.00 25          | 00.00 25     | 10.00 (MH     | lz) 25        | 30.00 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40.00 255            | 0.00 256        | 0.00 2570.00     |
|                  |                     |              |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                 |                  |
|                  | Re                  | ading        | Correc        | t Me          | easure-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                 |                  |
| No. Mk. Fre      |                     | evel         | Facto         | r I           | ment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limit                | Over            | 3 I              |
| MF               | lz d                | Bu∨          | dB/m          | dE            | 8uV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <mark>d</mark> Bu∀/m | dB              | Detector         |
| 1 2483.          | 5 <mark>00</mark> 5 | 6.42         | -13.35        | 4             | 3.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.00                | -30.9           | 3 peak           |
| 2 * 2483.        | 500 5               | 2.19         | -13.35        | 3             | 8.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54.00                | -15.1           | 6 AVG            |
|                  |                     |              |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                 |                  |
| Measurement = R  | eading lev          | vel + Co     | rrect Fac     | tor           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                 |                  |
|                  | -                   |              |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                 |                  |


# 3.9. Band Edge and Spurious Emission (conducted)

#### <u>LIMIT</u>

#### FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

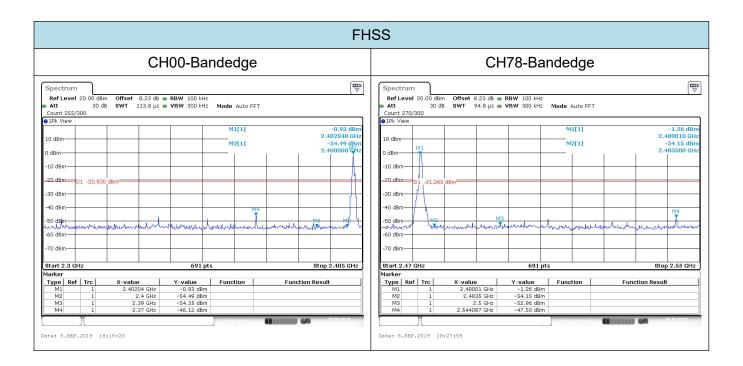
#### **TEST CONFIGURATION**

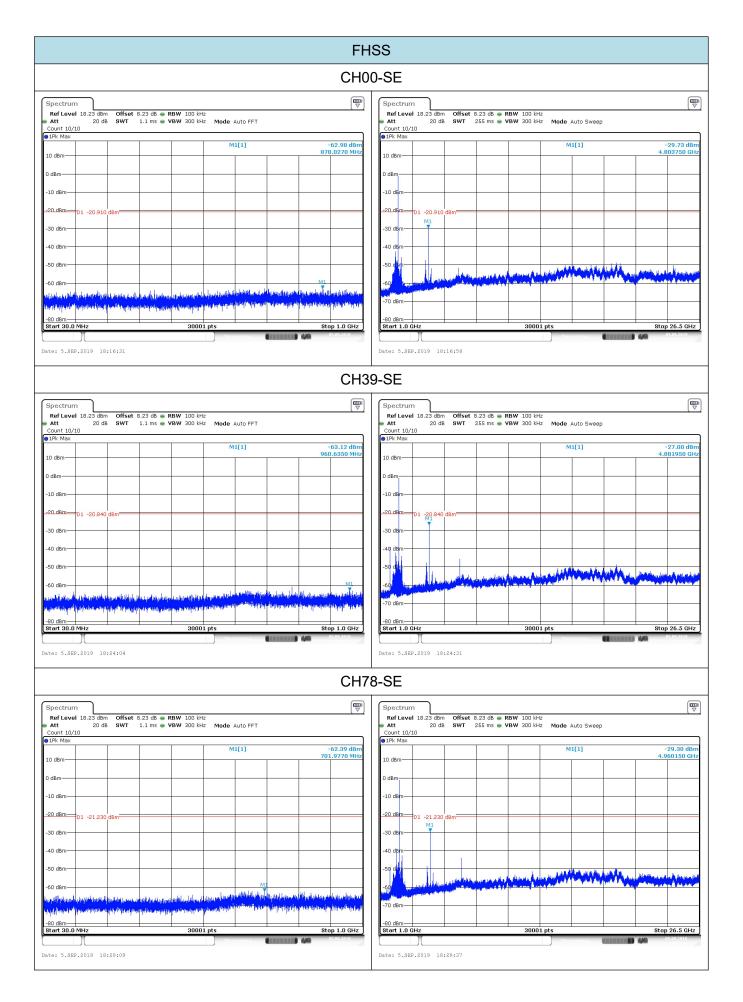


#### TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the pathloss was compensated to the results for each measurement.
- 2.Set to the maximum power setting and enable the EUT transmit continuously
- 3.Use the following spectrum analyzer settings:

RBW= 100 KHz, VBW≥RBW


Sweep = auto, Detector function = peak, Trace = max hold


4.Measure and record the results in the test report.

#### TEST MODE:

Please refer to the clause 2.3.

#### TEST RESULTS





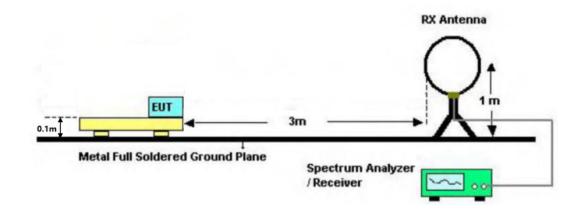
#### Zhejiang Kezheng Electronic Product Inspection

# 3.10. Radiated Spurious Emissions

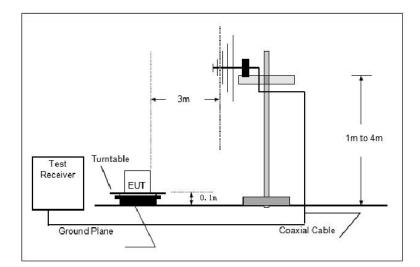
### <u>Limit</u>

| Radiated | Emission | Limits (9 | kHz~1000 | MHz) |
|----------|----------|-----------|----------|------|
|----------|----------|-----------|----------|------|

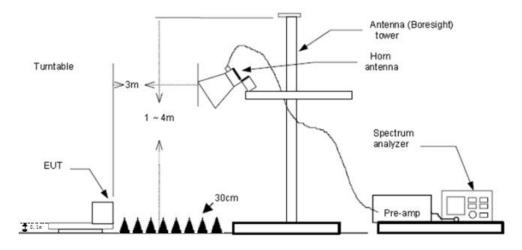
| Frequency<br>(MHz) | Field Strength<br>(microvolt/meter) | Measurement Distance<br>(meters) |  |  |
|--------------------|-------------------------------------|----------------------------------|--|--|
| 0.009~0.490        | 2400/F(KHz)                         | 300                              |  |  |
| 0.490~1.705        | 24000/F(KHz)                        | 30                               |  |  |
| 1.705~30.0         | 30                                  | 30                               |  |  |
| 30~88              | 100                                 | 3                                |  |  |
| 88~216             | 150                                 | 3                                |  |  |
| 216~960            | 200                                 | 3                                |  |  |
| Above 960          | 500                                 | 3                                |  |  |


#### Radiated Emission Limit (Above 1000MHz)

| Frequency  | Distance Mete | rs(at 3m) |
|------------|---------------|-----------|
| (MHz)      | Peak          | Average   |
| Above 1000 | 74            | 54        |


#### Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m).


## **Test Configuration**



Below 30MHz Test Setup



Below 1000MHz Test Setup



Above 1GHz Test Setup

#### Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.1 meter above ground for below 1 GHz, and 0.1m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
  - (1) Span shall wide enough to fully capture the emission being measured;
  - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10<sup>th</sup> harmonic:

RBW=1MHz, VBW=1MHz Peak detector for Peak value.

RBW=1MHz, VBW=10Hz RMS detector for Average value.

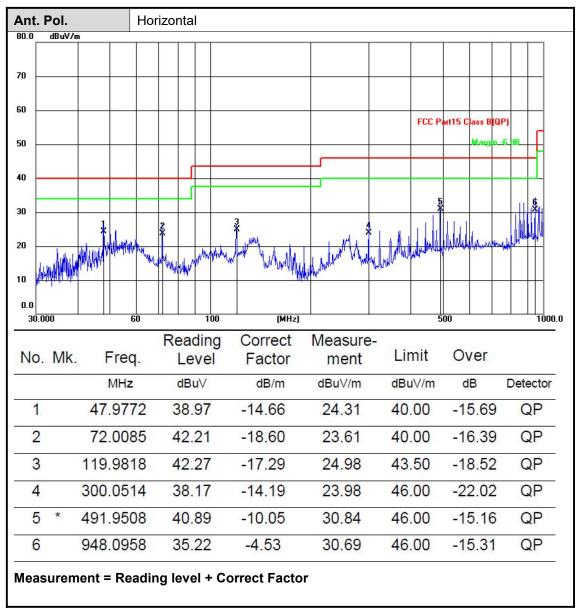
#### <u>Test Mode</u>

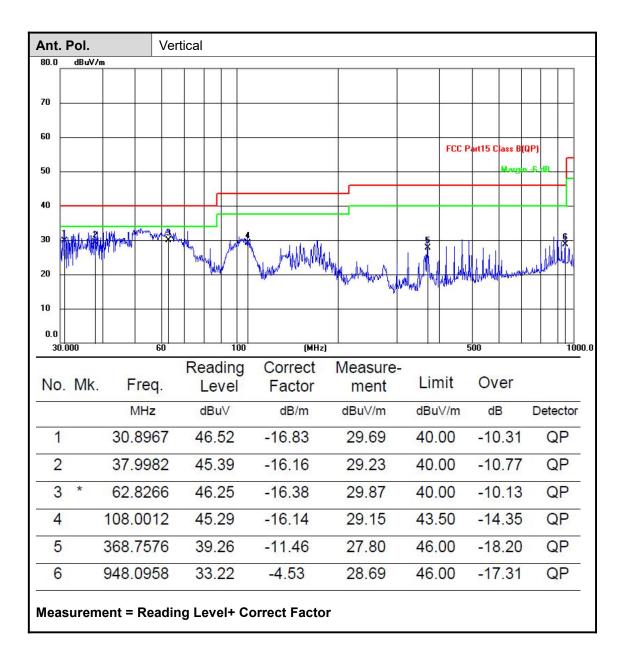
Please refer to the clause 2.3.

#### <u>Test Result</u>

#### 9 KHz~30 MHz and 18GHz~25GHz

From 9 KHz~30 MHz and 18GHz~25GHz: Conclusion: PASS

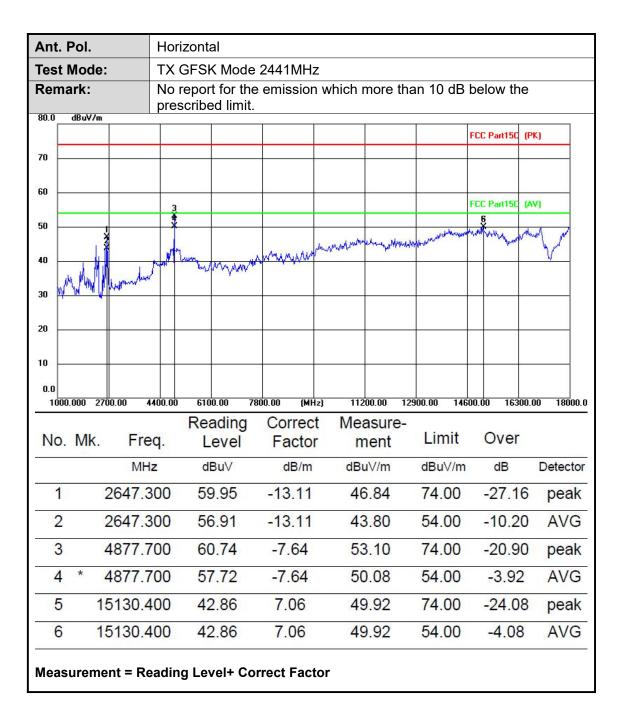

Note:


1) Measurement = Reading level + Correct Factor

Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor

- 2) The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3) The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4) The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

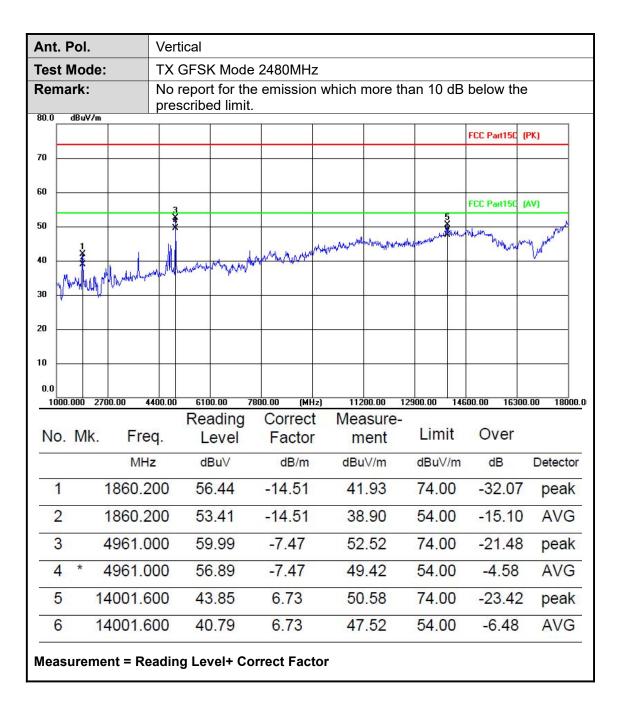
#### 30MHz-1GHz






## Above 1GHz

| Ant  | . Pol.    |          | Но      | rizontal                       |                   |                        |            |               |             |
|------|-----------|----------|---------|--------------------------------|-------------------|------------------------|------------|---------------|-------------|
| Tes  | t Mod     | e:       | ΤХ      | GFSK Mode                      | e 2402MHz         |                        |            |               |             |
|      | nark:     |          |         | report for th<br>scribed limit |                   | which more tha         | an 10 dB   | below the     |             |
| 80.0 | dBu¥      | /m       |         |                                |                   |                        |            |               | 1000        |
|      |           |          |         |                                | _                 |                        | -          | FCC Part15C ( | PK)         |
| 70   |           |          |         |                                |                   |                        |            |               |             |
| 60   |           |          |         |                                |                   |                        |            | FCC Part15C ( | AV)         |
| 50   |           | -        | X       |                                |                   |                        | 5          |               | ALL C       |
|      |           | X        |         |                                | the second the    | who was many maker the | hopen      | howwelling    | In from     |
| 40   | . M.      | Munut    | Waterow | human                          | WWW. WOWN         |                        |            |               |             |
| 30   | Mun A. Mu | ry www   |         |                                |                   |                        |            |               |             |
| 20   |           |          |         |                                | _                 |                        |            |               |             |
| 10   |           |          |         |                                |                   |                        |            |               |             |
| 0.0  |           |          |         |                                |                   |                        |            |               |             |
| 1(   | 000.000   | 2700.00  | 4400.0  |                                | 7800.00 (MHz)     |                        | 900.00 146 | 00.00 16300   | .00 18000.0 |
| No   | . Mk      | . Fre    | q.      | Reading<br>Level               | Correct<br>Factor | Measure-<br>ment       | Limit      | Over          |             |
|      |           | MH       | z       | dBu∨                           | dB/m              | dBuV/m                 | dBuV/m     | dB            | Detector    |
| 1    |           | 2635.4   | 00      | 59.43                          | -13.13            | 46.30                  | 74.00      | -27.70        | peak        |
| 2    |           | 2635.4   | 00      | 56.41                          | -13.13            | 43.28                  | 54.00      | -10.72        | AVG         |
| 3    | }         | 4804.6   | 00      | 60.02                          | -7.78             | 52.24                  | 74.00      | -21.76        | peak        |
| 4    | *         | 4804.6   | 600     | 57.08                          | -7.78             | 49.30                  | 54.00      | -4.70         | AVG         |
| 5    | ;         | 13814.6  | 00      | 42.48                          | 6.28              | 48.76                  | 74.00      | -25.24        | peak        |
| 6    | ;         | 13814.6  | 600     | 39.48                          | 6.28              | 45.76                  | 54.00      | -8.24         | AVG         |
| Mea  | surer     | nent = R | eadiı   | ng Level+ Co                   | orrect Facto      | r                      |            |               |             |


| An   | t. P   | ol.    |          | Ve                   | rtical                                                                       |                    |                      |         |                    |             |             |               |  |  |  |
|------|--------|--------|----------|----------------------|------------------------------------------------------------------------------|--------------------|----------------------|---------|--------------------|-------------|-------------|---------------|--|--|--|
| Tes  | st N   | lode   | :        | TX GFSK Mode 2402MHz |                                                                              |                    |                      |         |                    |             |             |               |  |  |  |
| Rei  |        |        |          |                      | No report for the emission which more than 10 dB below the prescribed limit. |                    |                      |         |                    |             |             |               |  |  |  |
| 80.0 | d      | lBu¥/m |          | T                    |                                                                              |                    |                      |         | 1                  |             |             |               |  |  |  |
|      | _      |        |          | -                    |                                                                              |                    | -                    |         |                    |             | FCC Part150 | (PK)          |  |  |  |
| 70   |        |        |          |                      |                                                                              | j.                 |                      |         |                    |             |             |               |  |  |  |
| 60   |        |        |          |                      |                                                                              |                    |                      |         |                    |             | FCC Part150 |               |  |  |  |
| 50   |        |        |          |                      |                                                                              |                    |                      |         |                    |             |             |               |  |  |  |
| 50   |        |        | 3        | X                    |                                                                              |                    |                      | a mound | www.warener        | www.www.    | havenus     | The set       |  |  |  |
| 40   |        | *      | X        | Ť                    | 1 NW                                                                         | MANNA              | warman and           | Mana    |                    |             |             | Muka          |  |  |  |
| 30   | ym     | "huld  | which    | Ym                   | "hund"                                                                       |                    |                      |         |                    |             |             |               |  |  |  |
| 20   |        |        |          | +                    |                                                                              |                    |                      |         |                    |             | -           |               |  |  |  |
| 10   |        |        |          |                      |                                                                              |                    |                      |         |                    |             |             |               |  |  |  |
| 0.0  | 000.0  | 00 27  | 00.00 4  | 400.00               | C10                                                                          | 0.00 7             | /800.00 (M           | Hz) 11  | 200.00             | 12900.00 14 | 600.00 163  | 00.00 18000.0 |  |  |  |
|      | JUU. U | 100 27 | 00.00 4  | 400.00               |                                                                              | ading              | Correc               |         | asure-             | 12300.00 14 | 600.00 163  | 0.00 1000.0   |  |  |  |
| N    | 0.     | Mk.    | Fre      | q.                   |                                                                              | evel               | Facto                |         | nent               | Limit       | Over        |               |  |  |  |
|      |        |        | MH       | z                    | dE                                                                           | B <mark>u</mark> ∨ | dB/m                 | dBu     | uV/m               | dBuV/m      | dB          | Detector      |  |  |  |
|      | 1      |        | 1861.9   | 00                   | 56                                                                           | .10                | -14.51               | 41      | .59                | 74.00       | -32.41      | peak          |  |  |  |
|      | 2      |        | 1861.9   | 00                   | 53                                                                           | .10                | <mark>-14</mark> .51 | 38      | 8.59               | 54.00       | -15.41      | AVG           |  |  |  |
| 5    | 3      |        | 2609.9   | 00                   | 55                                                                           | .64                | -13.16               | 42      | 2.48               | 74.00       | -31.52      | peak          |  |  |  |
|      | 4      |        | 2609.9   | 00                   | 51                                                                           | .63                | -13.16               | 38      | 3.47               | 54.00       | -15.53      | AVG           |  |  |  |
|      | 5      |        | 4804.6   | 00                   | 54                                                                           | .98                | -7.78                | 47      | .20                | 74.00       | -26.80      | peak          |  |  |  |
| )    | 6      | *      | 4804.6   | 00                   | 50                                                                           | .86                | -7.78                | 43      | 8. <mark>08</mark> | 54.00       | -10.92      | AVG           |  |  |  |
| Me   | asu    | irem   | ent = Re | adir                 | ng Lev                                                                       | vel+ Co            | orrect Fac           | tor     |                    |             |             |               |  |  |  |



| Ant.  | Pol.       |           | Horiz   | zonta | al        |          |               |      |       |       |     |        |     |                       |        |      |       |       |
|-------|------------|-----------|---------|-------|-----------|----------|---------------|------|-------|-------|-----|--------|-----|-----------------------|--------|------|-------|-------|
|       | Mode       |           | FHS     | S Mo  | ode 24    | 02M      | Hz            |      |       |       |     |        |     |                       |        |      |       |       |
| 110.0 | dBu∀/r     | n         |         |       |           |          |               |      |       |       |     |        |     |                       |        |      |       | 1     |
| 100 - |            |           |         |       |           | _        |               |      |       |       |     |        |     |                       |        | -    |       | -     |
| 90 -  |            |           |         |       |           |          |               |      |       | 3     |     |        |     |                       |        | š    |       | _     |
| 80    |            |           |         |       |           |          |               |      |       |       |     |        |     |                       |        | 1    |       |       |
|       |            |           |         |       |           |          |               |      |       |       |     |        |     | FCC Pa                | art150 | (PK  | )     |       |
| 70 -  |            |           |         |       |           | +        |               |      |       |       |     |        |     |                       |        |      |       |       |
| 60 -  |            |           |         |       |           | +        |               |      |       |       |     |        |     | FCC Pa                | art15C | idv  | )     | -     |
| 50 -  |            |           |         |       |           | -        |               |      |       |       |     |        |     |                       |        | 1    |       |       |
| 40    |            |           | _       |       |           | _        |               |      |       |       |     |        |     |                       |        |      |       |       |
| 30 🚧  | Margarahan |           | mandala | man   | annelling | HUL HING | 1) deside the |      | mMA   | while | WAR | marken | 1   | unum                  |        |      | hormo |       |
|       |            | N         |         |       |           |          | ×             |      |       |       |     |        | Î   |                       |        |      |       |       |
| 20 -  |            |           |         |       |           |          |               |      |       |       |     |        |     |                       |        | 9    |       |       |
|       | 2.000 2    | 322.00 2  | 332.00  | 234   | 2.00      | 2352.0   | 0 (M          | Hz)  | 237   | 2.00  | 238 | 2.00   | 239 | 2.00                  | 240    | 2.00 | 241   | 12.00 |
|       |            |           |         |       |           |          |               |      |       |       |     |        |     |                       |        |      |       |       |
|       |            | -         | atosu   |       | ading     |          | orrea         |      |       | asure | e-  |        |     | 0                     |        |      |       |       |
| No.   | Mk.        | Fre       | q.      | L     | evel      | F        | Facto         | or   | n     | nent  |     | Lim    | lit | C                     | ve     |      |       |       |
|       |            | MH        | z       | d     | BuV       |          | dB/m          | ۱    | dBu   | uV/m  |     | dBu\   | //m | j is                  | dB     |      | Dete  | ctor  |
| 1     | 1 2390.0   |           | 00      | 45    | 5.56      | -        | -13.49        |      | 32.07 |       |     | 74.00  |     | -41.93                |        | 93   | pe    | ak    |
| 2     |            | 2390.000  |         | 42.56 |           | -        | -13.49        |      | 29.07 |       |     | 54.00  |     | - <mark>24</mark> .93 |        | 93   | AV    | /G    |
| 3     |            | 2400.0    | 00      | 56    | 5.07      | -        | 13.48         | 3    | 42    | 2.59  |     | 74.0   | 00  | -3                    | 31.4   | 1    | pe    | ak    |
| 4     | *          | 2400.0    | 00      | 53    | 8.26      | -        | 13.48         | 3    | 39    | 9.78  |     | 54.0   | 00  | -1                    | 14.2   | 22   | AV    | /G    |
| Meas  | surem      | ient = Re | eadin   | g lev | rel + C   | orre     | ct Fac        | ctor | ,     |       |     |        |     |                       |        |      |       |       |

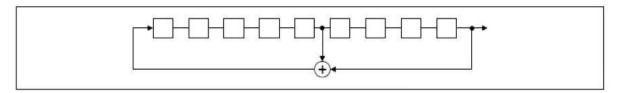
| Ant  | t. Pol   |               | Vertica                                                                      | al                |                                                                                                                |             |                   |                               |              |  |  |  |  |
|------|----------|---------------|------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------|-------------|-------------------|-------------------------------|--------------|--|--|--|--|
| Tes  | st Mo    | de:           | TX GFSK Mode 2441MHz                                                         |                   |                                                                                                                |             |                   |                               |              |  |  |  |  |
| -    | mark     |               | No report for the emission which more than 10 dB below the prescribed limit. |                   |                                                                                                                |             |                   |                               |              |  |  |  |  |
| 80.0 | dBu\     | //m           | 1                                                                            | 1                 | T T                                                                                                            |             | T                 |                               |              |  |  |  |  |
| 13   |          |               |                                                                              |                   |                                                                                                                |             |                   | FCC Part15C (                 | PK)          |  |  |  |  |
| 70   | <u> </u> |               |                                                                              |                   |                                                                                                                |             |                   |                               |              |  |  |  |  |
|      |          |               |                                                                              |                   |                                                                                                                |             |                   |                               |              |  |  |  |  |
| 60   |          |               | -                                                                            |                   |                                                                                                                |             |                   | FCC Part15C                   | AVI          |  |  |  |  |
|      |          |               | 33                                                                           |                   |                                                                                                                |             |                   | A second second second second |              |  |  |  |  |
| 50   |          | 1             |                                                                              |                   |                                                                                                                |             | a Marth Survey of | and the second of the         | my /         |  |  |  |  |
| 40   | _        |               |                                                                              |                   | a portin monther town                                                                                          | www.while   | Market C          | WWW                           | hugh         |  |  |  |  |
| 70   | 1        | 1 Munton Map  | andand                                                                       | Holey My with and | and a second |             |                   |                               |              |  |  |  |  |
| 30   | M.M.W    | A Mandana and |                                                                              |                   |                                                                                                                |             |                   |                               |              |  |  |  |  |
|      |          |               |                                                                              |                   |                                                                                                                |             |                   |                               |              |  |  |  |  |
| 20   |          |               |                                                                              |                   |                                                                                                                |             |                   |                               |              |  |  |  |  |
|      |          |               |                                                                              |                   |                                                                                                                |             |                   |                               |              |  |  |  |  |
| 10   | <u> </u> |               |                                                                              |                   |                                                                                                                |             | -                 |                               |              |  |  |  |  |
| 0.0  |          |               |                                                                              |                   |                                                                                                                |             |                   |                               |              |  |  |  |  |
| 1(   | 000.000  | 2700.00 4     | 400.00                                                                       | 6100.00 78        | 00.00 (MHz)                                                                                                    | 11200.00 12 | 900.00 146        | 00.00 16300                   | ).00 18000.0 |  |  |  |  |
|      |          |               |                                                                              | Reading           | Correct                                                                                                        | Measure-    |                   |                               |              |  |  |  |  |
| N    | o. M     | k. Fre        | q.                                                                           | Level             | Factor                                                                                                         | ment        | Limit             | Over                          |              |  |  |  |  |
|      |          | MH            | z                                                                            | dBu∨              | dB/m                                                                                                           | dBuV/m      | dBuV/m            | dB                            | Detector     |  |  |  |  |
|      | 1        | 2647.3        | 00                                                                           | 58.40             | -13.11                                                                                                         | 45.29       | 74.00             | -28.71                        | peak         |  |  |  |  |
| 2    | 2        | 2647.3        | 00                                                                           | 56.38             | -13.11                                                                                                         | 43.27       | 54.00             | -10.73                        | AVG          |  |  |  |  |
|      | 3        | 4877.7        | 00                                                                           | 61.16             | -7.64                                                                                                          | 53.52       | 74.00             | -20.48                        | peak         |  |  |  |  |
| 2    | 4 *      | 4877.7        | 00                                                                           | 58.22             | -7.64                                                                                                          | 50.58       | 54.00             | -3.42                         | AVG          |  |  |  |  |
|      | 5        | 14679.9       | 00                                                                           | 42.70             | 6.56                                                                                                           | 49.26       | 74.00             | -24.74                        | peak         |  |  |  |  |
| (    | 6        | 14679.9       | 00                                                                           | 39.70             | 6.56                                                                                                           | 46.26       | 54.00             | -7.74                         | AVG          |  |  |  |  |
| Меа  | asure    | ment = Re     | ading                                                                        | Level+ Co         | rrect Facto                                                                                                    | or          |                   |                               |              |  |  |  |  |

| Ant        | . Po   | I.    |                      | H       | orizor                                                                       | ntal                |     |         |                  |         |                     |       |                 |        |           |       |              |        |
|------------|--------|-------|----------------------|---------|------------------------------------------------------------------------------|---------------------|-----|---------|------------------|---------|---------------------|-------|-----------------|--------|-----------|-------|--------------|--------|
| Test Mode: |        |       |                      |         | TX GFSK Mode 2480MHz                                                         |                     |     |         |                  |         |                     |       |                 |        |           |       |              |        |
| Remark:    |        |       |                      |         | No report for the emission which more than 10 dB below the prescribed limit. |                     |     |         |                  |         |                     |       |                 |        |           |       |              |        |
| 80.0       | dBu    | ı¥/m  |                      | Ť       |                                                                              | 1                   |     | 1       |                  |         |                     |       |                 |        |           |       |              | ٦      |
|            |        |       |                      |         |                                                                              | _                   |     |         | _                |         |                     | _     |                 | _      | FCC Part1 | 5C (F | РК)          |        |
| 70         |        |       |                      | -       |                                                                              |                     |     | -       | -                |         |                     | _     | -               |        |           |       |              | -      |
|            |        |       |                      |         |                                                                              |                     |     |         |                  |         |                     |       |                 |        |           |       |              |        |
| 60         |        |       |                      | +       |                                                                              |                     |     |         |                  |         |                     |       |                 |        | FCC Part1 | 50 14 | (V)          | 1      |
| 50         |        |       |                      |         | 3                                                                            |                     |     |         |                  |         |                     |       | ŧ               | 5      |           |       |              |        |
| 50         |        | 1     |                      | 1       | AX                                                                           |                     |     |         |                  | ALL MA  | annan m             | minha | mar all         | manylo | Munty Man | A     | JAN          | w.     |
| 40         |        |       |                      |         | <u> </u>                                                                     | . AND IL            | h   | whythe  | man              | Area A. |                     |       | - 2014 (ha<br>- |        |           |       | Constructory | _      |
|            | MA     | WM    | hormake              | guelens | / Waynord AV                                                                 | annah a ahla        | WW  |         |                  |         |                     |       |                 |        |           |       |              |        |
| 30         | W V    | N₿.   | my-witt              | +       | -                                                                            |                     |     |         | -                |         |                     | _     |                 |        | -         | +     |              | -      |
| 20         |        |       |                      |         |                                                                              |                     |     |         |                  |         |                     |       |                 |        |           |       |              |        |
| 20         |        |       |                      |         |                                                                              |                     |     |         |                  |         |                     |       |                 |        |           |       |              | 1      |
| 10         |        | _     |                      |         |                                                                              |                     |     |         |                  |         |                     |       |                 |        |           |       |              |        |
|            |        |       |                      |         |                                                                              |                     |     |         |                  |         |                     |       |                 |        |           |       |              |        |
| 0.0<br>1(  | 00.000 | ) 270 | 0.00                 | 4400.   | .00 E                                                                        | 5100.00             | 78  | DO. 00  | (MHz)            | 112     | 200.00              | 129   | 00.00           | 146    | 00.00 1   | 6300. | 00 18        | 3000.0 |
|            |        |       |                      |         | R                                                                            | eadin               | a   | Corre   | ect              | Mea     | asure               | )-    |                 |        |           |       |              |        |
| No         | ). M   | lk.   | Fre                  | eq.     |                                                                              | Leve                | -   | Fac     |                  |         | nent                |       | Lim             | nit    | Ove       | r     |              |        |
|            |        |       | MH                   | lz      |                                                                              | dBu∨                |     | dB      | / <mark>m</mark> | dBu     | IV/m                |       | dBu\            | //m    | dB        |       | Dete         | ctor   |
|            | 1      | 2     | 2324.3               | 300     | ) {                                                                          | 57.90               |     | -13.5   | 8                | 44      | .32                 |       | 74.0            | 00     | -29.      | 68    | pe           | ak     |
| 2          | 2      | 2     | 2324.3               | 300     | ) 5                                                                          | 5 <mark>3.80</mark> |     | -13.5   | 58               | 40      | ).22                |       | 54.0            | 00     | -13.      | 78    | A۱           | /G     |
| 3          | 3      | 4     | 1961.0               | 000     | ) 5                                                                          | 56.88               |     | -7.4    | 7                | 49      | ) <mark>.4</mark> 1 |       | 74.0            | 00     | -24.      | 59    | pe           | ak     |
| 4          | 1      | 4     | 1961.0               | 000     | ) 5                                                                          | 52.86               | 1   | -7.4    | 7                | 45      | 5.39                |       | 54.0            | 00     | -8.6      | 51    | A۱           | /G     |
| Ę          | 5      | 13    | 8882.6               | 600     | ) 2                                                                          | 12.23               |     | 6.44    | 4                | 48      | 8. <mark>67</mark>  | 1     | 74.0            | 00     | -25.      | 33    | pe           | ak     |
| 6          | ð *    | 13    | 3 <mark>882.6</mark> | 600     | ) (                                                                          | 39.21               |     | 6.44    | 1                | 45      | 6. <mark>6</mark> 5 |       | 54.0            | 00     | -8.3      | 35    | A٧           | /G     |
| Меа        | sure   | eme   | nt = Re              | ead     | ing L                                                                        | evel+               | Cor | rect Fa | actor            | ,       |                     |       |                 |        |           |       |              |        |



# 3.11. Pseudorandom Frequency Hopping Sequence

#### <u>LIMIT</u>


FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

#### TEST RESULTS

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose  $5^{\text{th}}$  and  $9^{\text{th}}$  stage outputs are added in a modulo-two addition stage.And the result is fed back to the input of the friststage.The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)



Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

| 0 | 2 | 4 | 6 | 62 64 | 78 | 1 | 73 75 77 |
|---|---|---|---|-------|----|---|----------|
|   |   |   |   |       |    |   |          |
|   |   |   |   |       |    |   |          |
|   |   |   |   |       |    |   |          |

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

# **4.EUT TEST PHOTOS**

Reference to the document No.: Test Photos.

# **5.PHOTOGRAPHS OF EUT CONSTRUCTIONAL**

Reference to the document No.: External Photos and Internal Photos.