

Report No.: SHEM190401199901

Page: 1 of 26

TEST REPORT

Application No.: SHEM1904011999CR

FCC ID 2ACZU-G1SG

Applicant: Wuhan Linptech Co., Ltd.

Address of Applicant: 13 floor, Huagong High-Tech Building, No.876, Luoyu Road, Hongshan

District, Wuhan. Hubei, China

Manufacturer: Wuhan Linptech Co., Ltd.

Address of Manufacturer: 13 floor, Huagong High-Tech Building, No.876, Luoyu Road, Hongshan

District, Wuhan. Hubei, China

Factory: Wuhan Linptech Co., Ltd.

Address of Factory: 2nd Floor, Building A, Innovation Court, ChangZui Technology Park,

JiuFeng Street NO.18, GuangGu Avenue, JiangXia District, Wuhan, Hubei,

China

Equipment Under Test (EUT):

EUT Name: Self-powered Wireless Switch

Model No.: G1SG-FCC-TW, G1SG-FCC-TS, G1SG-FCC-TS

Trade mark: linptech

Please refer to section 2 of this report which indicates which model was

actually tested and which were electrically identical.

Standard(s): 47 CFR Part 15, Subpart C 15.249

Date of Receipt: 2019-04-01

Date of Test: 2019-04-01 to 2019-04-10

Date of Issue: 2019-05-28

Test Result: Pass*

parlan 2han

Parlam Zhan E&E Section Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

多(上海 海路检测专用章 Inspection & Testing Services SGS-CSTO Massage Jechnical Services and April Co., Ltd

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, resemble (SM Doceane).

NO.588 West Jindu Road,Songjiang District,Shanghai,China 201612 t(86-21) 61915666 f(86-21) 61915678 www.sgsgroup.com.cn 中国・上海・松江区金都西路588号 邮编: 201612 t(86-21) 61915666 f(86-21) 61915678 e sgs.china@sgs.com

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SHEM190401199901

Page: 2 of 26

Revision Record							
Version Description Date Remark							
00	Original	2019-05-28	/				

Authorized for issue by:		
	Bril Wu	
	Bill Wu / Project Engineer	
	Parlam zhan	
	Parlam Zhan / Reviewer	

Report No.: SHEM190401199901

Page: 3 of 26

2 Test Summary

Radio Spectrum Technical Requirement						
Item Standard Method Requirement Resu						
Antenna Requirement	47 CFR Part 15, Subpart C 15.249	N/A	47 CFR Part 15, Subpart C 15.203	Pass		

Radio Spectrum Matter Part							
Item	Standard	Method	Requirement	Result			
20dB Bandwidth	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.9	47 CFR Part 15, Subpart C 15.215	Pass			
Field Strength of the Fundamental Signal (15.249(a))	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.5&6.6	47 CFR Part 15, Subpart C 15.249(a)	Pass			
Restricted Band Around Fundamental Frequency	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.4&6.5&6.6	47 CFR Part 15, Subpart C 15.205 & 15.249(d) & 15.209	Pass			
Radiated Emissions	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.4&6.5&6.6	47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)	Pass			

Note: Declaration of EUT Family Grouping:

There are series models mentioned in this report and they are the similar in electrical and electronic characters. Only the model G1SG-FCC-TW was tested. The three models are just different in surface color ,'TW' is white, 'TG' is gold,'TS' is silver.

Report No.: SHEM190401199901

Page: 4 of 26

3 Contents

			Page
1	CO	VER PAGE	1
2	TES	ST SUMMARY	3
3		NTENTS	
4		NERAL INFORMATION	
4	GE		
	4.1	DETAILS OF E.U.T	
	4.2	DESCRIPTION OF SUPPORT UNITS	_
	4.3	MEASUREMENT UNCERTAINTY	
	4.4	TEST LOCATION	
	4.5	TEST FACILITY	
	4.6	DEVIATION FROM STANDARDS	
	4.7	ABNORMALITIES FROM STANDARD CONDITIONS	
5	EQ	UIPMENT LIST	8
6	RA	DIO SPECTRUM TECHNICAL REQUIREMENT	9
	6.1	ANTENNA REQUIREMENT	g
7	RA	DIO SPECTRUM MATTER TEST RESULTS	10
	7.1	20dB Bandwidth	10
	7.2	FIELD STRENGTH OF THE FUNDAMENTAL SIGNAL (15.249(A))	12
	7.3	RESTRICTED BAND AROUND FUNDAMENTAL FREQUENCY	
	7.4	RADIATED EMISSIONS	
8	EQ	UIPMENT UNDER TEST PICTURES	26
9		T CONCEDUCTIONAL DETAILS	200
IJ	EU	T CONSTRUCTIONAL DETAILS	∠6

Report No.: SHEM190401199901

Page: 5 of 26

4 General Information

4.1 Details of E.U.T.

Power supply: Self generation, needless of additional power supply

Test voltage: DC 3V

Channel List 2425MHz,2450MHz

Modulation Type GFSK

Number of Channels 2

Operation Frequency 2423MHz-2452MHz

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.	
battery packs	LINPTECH	/	/	

Report No.: SHEM190401199901

Page: 6 of 26

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	±8.4 x 10-8
2	Timeout	±2s
3	Duty cycle	±0.37%
4	Occupied Bandwidth	±3%
5	RF conducted power	±0.6dB
6	RF power density	±2.84dB
7	Conducted Spurious emissions	±0.75dB
8	DE Dadicted newer	±4.6dB (Below 1GHz)
0	RF Radiated power	±4.1dB (Above 1GHz)
		±4.2dB (Below 30MHz)
9	Redicted Spurious emission test	±4.4dB (30MHz-1GHz)
9	Radiated Spurious emission test	±4.8dB (1GHz-18GHz)
		±5.2dB (Above 18GHz)
10	Temperature test	±1°C
11	Humidity test	±3%
12	Supply voltages	±1.5%
13	Time	±3%

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: SHEM190401199901

Page: 7 of 26

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd. Shanghai Branch 588 West Jindu Road, Xinqiao, Songjiang, 201612 Shanghai, China

Tel: +86 21 6191 5666 Fax: +86 21 6191 5678

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L0599)

CNAS has accredited SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• NVLAP (Certificate No. 201034-0)

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. is accredited by the National Voluntary Laboratory Accreditation Program(NVLAP). Certificate No. 201034-0.

• FCC -Designation Number: CN5033

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been recognized as an accredited testing laboratory.

Designation Number: CN5033. Test Firm Registration Number: 479755.

• Innovation, Science and Economic Development Canada

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

IC Registration No.: 8617A-1. CAB identifier: CN0020.

VCCI (Member No.: 3061)

The 3m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-13868, C-14336, T-12221, G-10830 respectively.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SHEM190401199901

Page: 8 of 26

5 Equipment List

Equipment Manufacturer Model No Inventory No Cal Date Cal Due Date						
Conducted Emission at AC		Wodel NO	inventory No	Cai Date	Cai Due Date	
EMI test receiver	R&S	ESR7	SHEM162-1	2018-12-20	2019-12-19	
LISN	Schwarzbeck	NSLK8127	SHEM061-1	2018-12-20	2019-12-19	
LISN	EMCO		SHEM019-1	2018-12-20	2019-12-19	
	R&S	3816/2 ESH3-Z2			 	
Pulse limiter	/ K&S		SHEM029-1	2018-12-20	2019-12-19	
CE test Cable	/	CE01	/	2018-12-26	2019-12-25	
Conducted Test	Dec	ECD 20	CUEMOOD 4	2040 42 20	2040 40 40	
Spectrum Analyzer	R&S	FSP-30	SHEM002-1	2018-12-20	2019-12-19	
Spectrum Analyzer	Agilent	N9020A	SHEM181-1	2018-08-13	2019-08-12	
Signal Generator	R&S	SMR20	SHEM006-1	2018-08-13	2019-08-12	
Signal Generator	Agilent	N5182A	SHEM182-1	2018-08-13	2019-08-12	
Communication Tester	R&S	CMW270	SHEM183-1	2018-08-13	2019-08-12	
Switcher	Tonscend	JS0806	SHEM184-1	2018-08-13	2019-08-12	
Power Sensor	Keysight	U2021XA * 4	SHEM184-1	2018-08-13	2019-08-12	
Splitter	Anritsu	MA1612A	SHEM185-1	/	/	
Coupler	e-meca	803-S-1	SHEM186-1	/	/	
High-low Temp Cabinet	Suzhou Zhihe	TL-40	SHEM087-1	2017-09-25	2020-09-24	
AC Power Stabilizer	WOCEN	6100	SHEM045-1	2018-12-26	2019-12-25	
DC Power Supply	MCN	MCH-303A	SHEM210-1	2018-12-26	2019-12-25	
Conducted test Cable	/	RF01~RF04	/	2018-12-26	2019-12-25	
Radiated Test	T	<u> </u>	Ī			
EMI test Receiver	R&S	ESU40	SHEM051-1	2018-12-20	2019-12-19	
Spectrum Analyzer	R&S	FSP-30	SHEM002-1	2018-12-20	2019-12-19	
Loop Antenna (9kHz-30MHz)	Schwarzbeck	FMZB1519	SHEM135-1	2017-04-10	2020-04-09	
Antenna (25MHz-2GHz)	Schwarzbeck	VULB9168	SHEM048-1	2017-02-28	2020-02-27	
Antenna (25MHz-3GHz)	Schwarzbeck	HL562	SHEM010-1	2017-02-28	2020-02-27	
Horn Antenna (1-8GHz)	Schwarzbeck	HF906	SHEM009-1	2017-10-24	2020-10-23	
Horn Antenna (1-18GHz)	Schwarzbeck	BBHA9120D	SHEM050-1	2017-01-14	2020-01-13	
Horn Antenna (14-40GHz)	Schwarzbeck	BBHA 9170	SHEM049-1	2017-12-03	2020-12-02	
Pre-amplifier (9KHz-2GHz)	CLAVIIO	BDLNA-0001	SHEM164-1	2018-08-13	2019-08-12	
Pre-amplifier (1-18GHz)	CLAVIIO	BDLNA-0118	SHEM050-2	2018-08-13	2019-08-12	
High-amplifier (14-40GHz)	Schwarzbeck	10001	SHEM049-2	2018-12-20	2019-12-19	
Signal Generator	R&S	SMR40	SHEM058-1	2018-08-13	2019-08-12	
Band Filter	LORCH	9BRX-875/X150	SHEM156-1	/	/	
Band Filter	LORCH	13BRX-1950/X500	SHEM083-2	/	/	
Band Filter	LORCH	5BRX-2400/X200	SHEM155-1	/	/	
Band Filter	LORCH	5BRX-5500/X1000	SHEM157-2	/	/	
High pass Filter	Wainwright	WHK3.0/18G	SHEM157-1	/	/	
High pass Filter	Wainwright	WHKS1700	SHEM157-3	/	/	
Semi/Fully Anechoic	ST	11*6*6M	SHEM078-2	2017-07-22	2020-07-21	
RE test Cable	/	RE01, RE02, RE06	/	2018-12-26	2019-12-25	

Report No.: SHEM190401199901

Page: 9 of 26

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

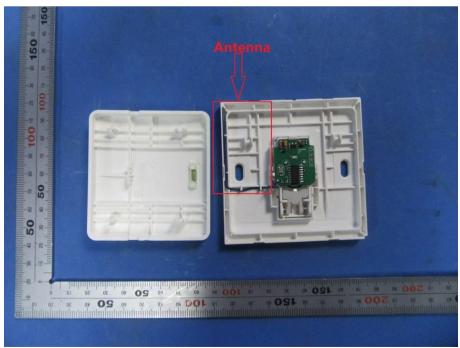
6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 Limit:

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

6.1.2 Conclusion


Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently

attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is Integral and no consideration of replacement. The best case gain of the antenna is 0 dBi.

Report No.: SHEM190401199901

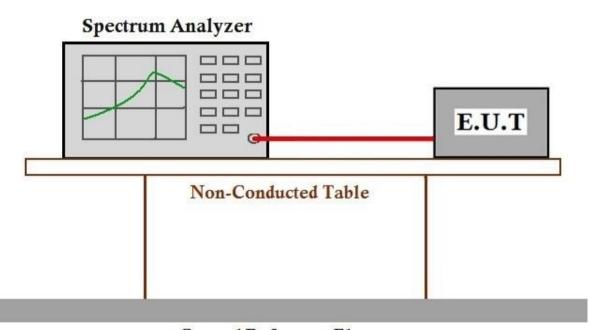
Page: 10 of 26

7 Radio Spectrum Matter Test Results

7.1 20dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.215 Test Method: ANSI C63.10 (2013) Section 6.9

Limit: N/A


7.1.1 E.U.T. Operation

Operating Environment:

Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar

Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

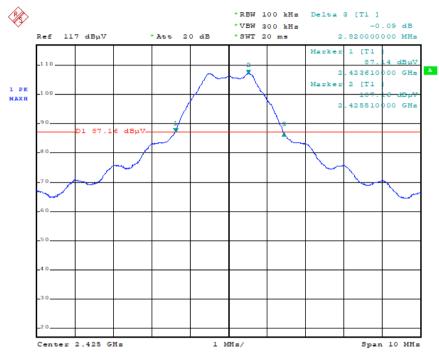
7.1.2 Test Setup Diagram

Ground Reference Plane

7.1.3 Measurement Procedure and Data

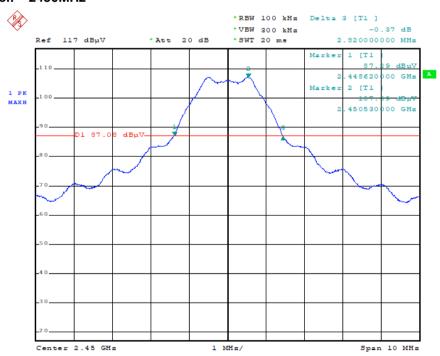
- 1. Place the EUT on the table and set it in Engineering mode.
- Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = approximately 1 % to 5 % of the OBW (set 100 kHz), VBW =3* RBW, Span=10MHz, Sweep=auto
- 4. Mark the peak frequency and -20dB (upper and lower) frequency.
- 5. Repeat above procedures until all frequency measured was complete.

Frequency (MHz)	Bandwidth (MHz)	Result
2425	2.82	PASS
2450	2.82	PASS



Report No.: SHEM190401199901

Page: 11 of 26


Test plot as follows:

Channel: 2425MHz

Date: 10.APR.2019 11:05:25

Channel: 2450MHz

Date: 10.APR.2019 11:09:27

Report No.: SHEM190401199901

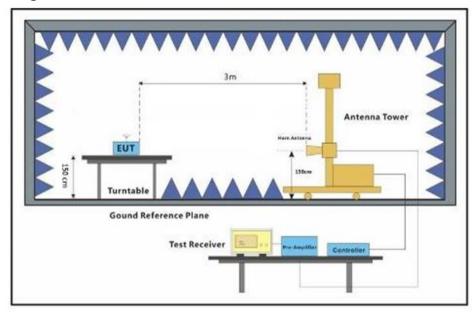
Page: 12 of 26

7.2 Field Strength of the Fundamental Signal (15.249(a))

Test Requirement 47 CFR Part 15, Subpart C 15.249(a)
Test Method: ANSI C63.10 (2013) Section 6.5&6.6

Limit:

Frequency	Limit (dBuV/m @3m)	Remark	
2400MU- 2492 FMU-	94.0	Average Value	
2400MHz-2483.5MHz	114.0	Peak Value	


7.2.1 E.U.T. Operation

Operating Environment:

Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar

Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

7.2.2 Test Setup Diagram

NO.588 West Jindu Road,Songjiang District,Shanghai,China 201612 中国・上海・松江区金都西路588号 邮編: 201612

SGS

SGS-CSTC Standards Technical Services Co., Ltd. Shanghai Branch

Report No.: SHEM190401199901

Page: 13 of 26

7.2.3 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Report No.: SHEM190401199901

Page: 14 of 26

Measurement Data

Peak value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Detector	Polarization
	106.53	-3.94	102.59	114	-11.41	Peak	Horizontal
2425	94.20	-3.94	90.26	94	-3.74	Average	Horizontal
	92.56	-3.94	88.62	94	-5.38	Peak	Vertical

Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Detector	Polarization
	106.26	-3.97	102.29	114	-11.71	Peak	Horizontal
2450	95.25	-3.97	91.28	94	-2.72	Average	Horizontal
	93.23	-3.97	89.26	94	-4.74	Peak	Vertical

Remark:

1) The basic equation with a sample calculation is as follows: Level = Read Level + Factor.

(The Factor is calculated by adding the Antenna Factor, Cable Loss and Preamp Factor)

2) If the Peak value below the Quasi-Peak Limit, the Quasi-Peak test doesn't perform for this submission.

Report No.: SHEM190401199901

Page: 15 of 26

7.3 Restricted Band Around Fundamental Frequency

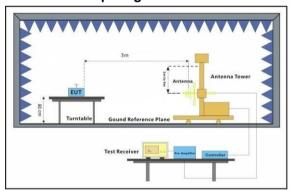
Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.249(d) & 15.209

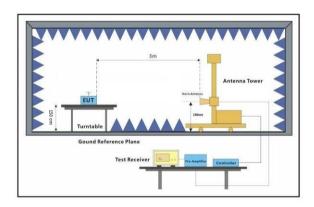
Test Method: ANSI C63.10 (2013) Section 6.4&6.5&6.6

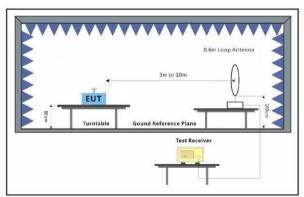
Limit:

Frequency	Limit (dBuV/m @3m)	Remark
30MHz-88MHz	40.0	Quasi-peak Value
88MHz-216MHz	43.5	Quasi-peak Value
216MHz-960MHz	46.0	Quasi-peak Value
960MHz-1GHz	54.0	Quasi-peak Value
Above 1GHz	54.0	Average Value
Above 1GHz	74.0	Peak Value

Emission radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.


7.3.1 E.U.T. Operation


Operating Environment:


Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar

Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

7.3.2 Test Setup Diagram

NO.588 West Jindu Road,Songjiang District,Shanghai,China 201612 中国・上海・松江区金都西路588号 邮編: 201612

SGS

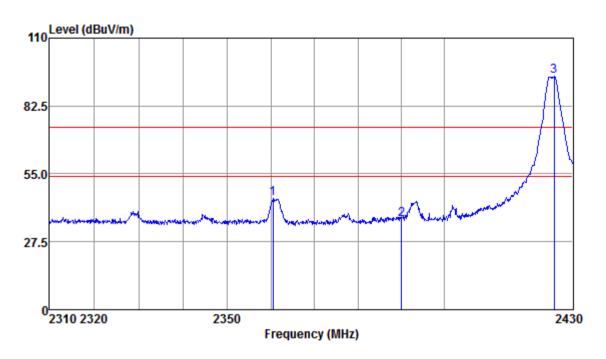
SGS-CSTC Standards Technical Services Co., Ltd. Shanghai Branch

Report No.: SHEM190401199901

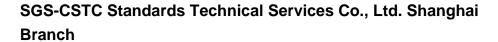
Page: 16 of 26

7.3.3 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete.

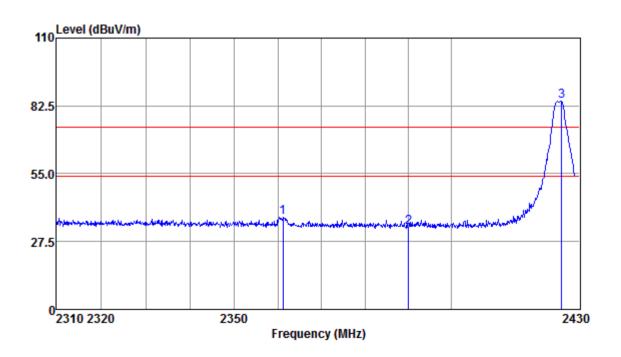

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Report No.: SHEM190401199901


Page: 17 of 26

2425MHz

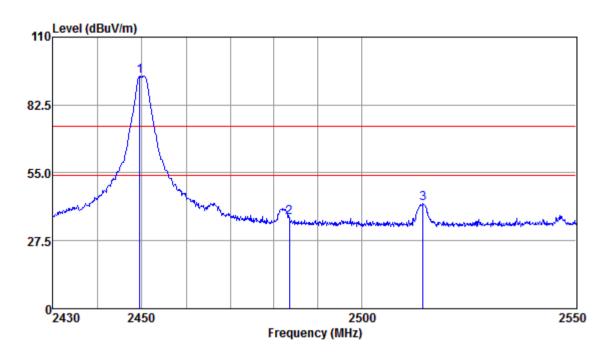
Antenna Polarity : HORIZONTAL


	Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2360.50	53.10	25.99	3.15	37.38	44.86	74.00	-29.14	Peak
2390.00	44.66	26.03	3.15	37.40	36.44	74.00	-37.56	Peak
2425.57	102.70	26.10	3.12	37.47	94.45	74.00	20.45	Peak

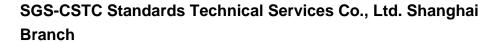
Report No.: SHEM190401199901

Page: 18 of 26

Antenna Polarity : VERTICAL

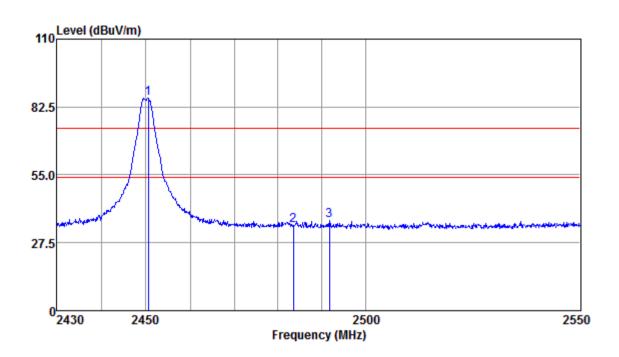

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2361.21	45.41	25.99	3.15	37.38	37.17	74.00	-36.83	Peak
2390.00	41.48	26.03	3.15	37.40	33.26	74.00	-40.74	Peak
2425.73	92.81	26.10	3.12	37.47	84.56	74.00	10.56	Peak

Report No.: SHEM190401199901


Page: 19 of 26

2450MHz

Antenna Polarity : HORIZONTAL


Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2449.52	102.58	26.13	3.13	37.50	94.34	74.00	20.34	Peak
2483.50	45.00	26.18	3.14	37.57	36.75	74.00	-37.25	Peak
2514.24	50.69	26.24	3.15	37.61	42.47	74.00	-31.53	Peak

Report No.: SHEM190401199901

Page: 20 of 26

Antenna Polarity : VERTICAL

	Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2450.47	94.16	26.13	3.13	37.50	85.92	74.00	11.92	Peak
2483.50	42.60	26.18	3.14	37.57	34.35	74.00	-39.65	Peak
2491.80	44.66	26.19	3.15	37.60	36.40	74.00	-37.60	Peak

Report No.: SHEM190401199901

Page: 21 of 26

7.4 Radiated Emissions

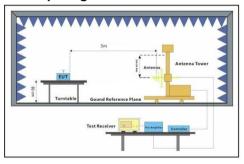
Test Requirement 47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)

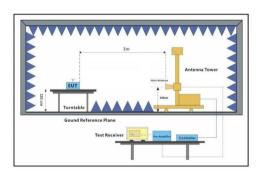
Test Frequency range 9KHz to 25GHz

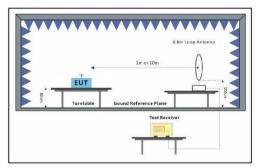
Test Method: ANSI C63.10 (2013) Section 6.4&6.5&6.6

Limit:

Frequency(MHz)	Field strength (microvolts/meter)	Limit (dBuV/m)	Detector	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	-	-	300
0.490-1.705	24000/F(kHz)	-	-	30
1.705-30	30	-	-	30
30-88	100	40.0	QP	3
88-216	150	43.5	QP	3
216-960	200	46.0	QP	3
960-1000	500	54.0	QP	3
Above 1000	500	54.0	AV	3


7.4.1 E.U.T. Operation


Operating Environment:


Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar

Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

7.4.2 Test Setup Diagram

NO.588 West Jindu Road,Songjiang District,Shanghai,China 201612 中国・上海・松江区金都西路588号 邮编: 201612

Report No.: SHEM190401199901

Page: 22 of 26

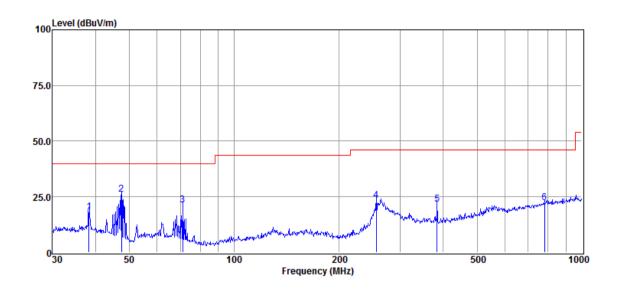
7.4.3 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete.

Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

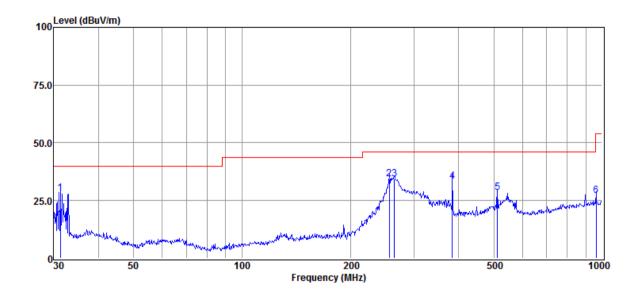
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor


- 3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown

Report No.: SHEM190401199901

Page: 23 of 26

30MHz-1GHz: Vertical:


Item	Freq.	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector
(Mar k)	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
1	38.212	44.07	16.15	42.34	0.46	18.34	40.00	-21.66	QP
2	47.492	56.19	11.88	42.33	0.44	26.18	40.00	-13.82	QP
3	71.080	51.70	11.05	42.26	0.65	21.14	40.00	-18.86	QP
4	256.521	51.37	11.73	42.10	2.21	23.21	46.00	-22.79	QP
5	383.932	45.74	14.85	41.93	3.08	21.74	46.00	-24.26	QP
6	782.345	38.54	21.61	41.99	4.32	22.48	46.00	-23.52	QP

Report No.: SHEM190401199901

Page: 24 of 26

Horizontal:

Item	Freq.	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector
(Mark)	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
1	31.289	54.93	15.45	42.37	0.28	28.29	40.00	-11.71	QP
2	256.521	62.68	11.73	42.10	2.21	34.52	46.00	-11.48	QP
3	264.746	62.33	12.03	42.11	2.21	34.46	46.00	-11.54	QP
4	383.932	57.45	14.85	41.93	3.08	33.45	46.00	-12.55	QP
5	511.835	49.07	17.48	41.69	3.58	28.44	46.00	-17.56	QP
6	962.162	40.20	23.40	41.27	4.71	27.04	54.00	-26.96	QP

Report No.: SHEM190401199901

Page: 25 of 26

Above 1GHz:

Mode:a; Horizontal; Lowest

Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4850	38.53	6.18	44.71	54	-9.29	peak
7275	36.33	10.63	46.96	54	-7.04	peak
9700	35.48	14.38	49.86	54	-4.14	peak

Mode:a; Horizontal; Highest

Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4900	39.79	7.49	47.28	54	-6.72	peak
7350	37.15	11.65	48.8	54	-5.2	peak
9800	34.33	14.4	48.73	54	-5.27	peak

Mode:a; Vertical; Lowest

Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4850	39.75	6.18	45.93	54	-8.07	peak
7275	37.74	10.63	48.37	54	-5.63	peak
9700	34.31	14.38	48.69	54	-5.31	peak

Mode:a; Vertical; Highest

	•						
Free	quency	RX_R	Factor	Emission	Limit	Over Limit	Detector
N	ЛHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4	900	38.85	7.49	46.34	54	-7.66	peak
7	350	37	11.65	48.65	54	-5.35	peak
9	800	34.85	14.4	49.25	54	-4.75	peak

Remark: 1) Emission = Receiver Reading + Factor

- 2) Factor = Antenna Factor + Cable Loss -Pre-amplifier Factor.
- 3) If the Peak value below the AV Limit, the AV test doesn't perform for this submission.

Report No.: SHEM190401199901

Page: 26 of 26

8 Equipment Under Test Pictures

Refer to the < Test Setup Photos-FCC >

9 EUT Constructional Details

Refer to the < External Photos > & < Internal Photos >.

- End of the Report -