

CFR 47 FCC PART 15 SUBPART C

TEST REPORT

For

Wireless module

MODEL NUMBER: AZ832-G

REPORT NUMBER: 4790969113-1-RF-2

ISSUE DATE: September 20, 2023

FCC ID: 2ACYT-AZ832-G

Prepared for

SHENZHEN Hitevision Technology Co., Ltd. Honghe Mansion No. 1 Building A, 1 Danzi North Road, Shatian, Kengzi Street, Pingshan District,Shenzhen,China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	September 20, 2023	Initial Issue	

Summary of Test Results

Test Item Clause		Limit/Requirement	Result
Antenna Requirement	N/A	FCC 15.203	Pass
Requirement AC Power Line Conducted Emission	ANSI C63.10-2013 Clause 6.2	FCC Part 15.207	Pass
Conducted Output Power	ANSI C63.10-2013 Clause 7.8.5	FCC 15.247 (b) (1)	Pass
20 dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013 Clause 6.9.2	FCC 15.247 (a) (1)	Pass
Carrier Hopping Channel Separation	ANSI C63.10-2013 Clause 7.8.2	FCC 15.247 (a) (1)	Pass
Number of Hopping Frequency	ANSI C63.10-2013 Clause 7.8.3	15.247 (a) (1) III	Pass
Time of Occupancy (Dwell Time)	ANSI C63.10-2013 Clause 7.8.4	15.247 (a) (1) III	Pass
Conducted Bandedge and Spurious Emission	ANSI C63.10-2013 Clause 6.10.4 & Clause 7.8.8	FCC 15.247 (d)	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013 Clause 6.3 & 6.5 & 6.6	FCC 15.247 (d) FCC 15.209 FCC 15.205	Pass
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C > when <Simple Acceptance> decision rule is applied.

CONTENTS

1.	ATTES	TATION OF TEST RESULTS	. 6
2.	TEST N	METHODOLOGY	.7
3.	FACILI	TIES AND ACCREDITATION	.7
4.	CALIBI	RATION AND UNCERTAINTY	. 8
4	ŀ.1.	MEASURING INSTRUMENT CALIBRATION	.8
4	4.2.	MEASUREMENT UNCERTAINTY	.8
5.	EQUIP	MENT UNDER TEST	.9
5	5.1.	DESCRIPTION OF EUT	.9
5	5.2.	CHANNEL LIST	.9
5	5.3.	MAXIMUM POWER	.9
5	5.4.	TEST CHANNEL CONFIGURATION	10
5	5.5.	THE WORSE CASE POWER SETTING PARAMETER	10
5	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	11
5	5.7.	SUPPORT UNITS FOR SYSTEM TEST	12
6.	MEASU	JRING EQUIPMENT AND SOFTWARE USED	13
7.	ANTEN	INA PORT TEST RESULTS	16
7	7.1.	CONDUCTED OUTPUT POWER	16
7	7.2.	20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH	17
7	7.3.	CARRIER HOPPING CHANNEL SEPARATION	19
7	7.4.	NUMBER OF HOPPING FREQUENCY	21
7	7.5.	TIME OF OCCUPANCY (DWELL TIME)	23
7	7.6.	CONDUCTED BANDEDGE AND SPURIOUS EMISSION	25
7	7.7.	DUTY CYCLE	27
8.	RADIA	TED TEST RESULTS	28
8	8.1.	RESTRICTED BANDEDGE	35
8	8.2.	SPURIOUS EMISSIONS(1 GHZ~3 GHZ)	41
8	8.3.	SPURIOUS EMISSIONS(3 GHZ~18 GHZ)	47
8	8.4.	SPURIOUS EMISSIONS(9 KHZ~30 MHZ)	59
8	8.5.	SPURIOUS EMISSIONS(18 GHZ~26 GHZ)	62
8	8.6.	SPURIOUS EMISSIONS(30 MHZ~1 GHZ)	64
9.	ANTEN	INA REQUIREMENT	66
10.		AC POWER LINE CONDUCTED EMISSION	67
11.		TEST DATA	71

<i>11.1.</i> 11.1.1. 11.1.2.	APPENDIX A: 20DB EMISSION BANDWIDTH Test Result Test Graphs	71
<i>11.2.</i> 11.2.1. 11.2.2.	APPENDIX B: OCCUPIED CHANNEL BANDWIDTH Test Result Test Graphs	74
<i>11.3.</i> 11.3.1.	APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER Test Result	
<i>11.4.</i> 11.4.1. 11.4.2.	APPENDIX D: CARRIER FREQUENCY SEPARATION Test Result Test Graphs	78
<i>11.5</i> . 11.5.1. 11.5.2.	APPENDIX E: TIME OF OCCUPANCY Test Result Test Graphs	80
<i>11.6.</i> 11.6.1. 11.6.2.	APPENDIX F: NUMBER OF HOPPING CHANNELS Test Result Test Graphs	83
<i>11.7.</i> 11.7.1. 11.7.2.	APPENDIX G: BAND EDGE MEASUREMENTS Test Result Test Graphs	85
<i>11.8.</i> 11.8.1. 11.8.2.	APPENDIX H: CONDUCTED SPURIOUS EMISSION Test Result Test Graphs	89
<i>11.9.</i> 11.9.1. 11.9.2.	APPENDIX I: DUTY CYCLE Test Result Test Graphs	96

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	SHENZHEN Hitevision Technology Co., Ltd.
Address:	Honghe Mansion No. 1 Building A, 1 Danzi North Road, Shatian, Kengzi Street, Pingshan District,Shenzhen,China

Manufacturer Information

Company Name:	SHENZHEN Hitevision Technology Co., Ltd.
Address:	Honghe Mansion No. 1 Building A, 1 Danzi North Road, Shatian,
	Kengzi Street, Pingshan District,Shenzhen,China

EUT Information

EUT Name:	Wireless module
Model:	AZ832-G
Brand:	GSD
Sample Received Date:	August 16, 2023
Sample Status:	Normal
Sample ID:	6365168
Date of Tested:	August 30, 2023 to September 20, 2023

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

CFR 47 FCC PART 15 SUBPART C

Pass

Prepared By:

Tammy Huang

Checked By: Sucur Donny

Denny Huang Senior Project Engineer

Fanny Huang Engineer Project Associate

Approved By:

Stephentino

Stephen Guo Operations Manager

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C, KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2 and ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)				
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.				
	has been assessed and proved to be in compliance with A2LA.				
	FCC (FCC Designation No.: CN1187)				
	•				
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.				
	Has been recognized to perform compliance testing on equipment subject				
	to the Commission's Declaration of Conformity (DoC) and Certification				
	rules				
	ISED (Company No.: 21320)				
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.				
Certificate	has been registered and fully described in a report filed with ISED.				
	The Company Number is 21320 and the test lab Conformity Assessment				
	Body Identifier (CABID) is CN0046.				
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)				
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.				
	has been assessed and proved to be in compliance with VCCI, the				
	Membership No. is 3793.				
	Facility Name:				
	Chamber D, the VCCI registration No. is G-20019 and R-20004				
	Shielding Room B , the VCCI registration No. is C-20012 and T-20011				

Note 1:

All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China.

Note 2:

The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3:

For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62 dB		
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB		
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB		
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)		
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)		
Duty Cycle	±0.028%		
20dB Emission Bandwidth and 99% Occupied Bandwidth	±0.0196%		
Carrier Frequency Separation	±1.9%		
Maximum Conducted Output Power	±0.743 dB		
Number of Hopping Channel	±1.9%		
Time of Occupancy	±0.028%		
Conducted Band-edge Compliance	±1.328 dB		
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)		
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Wireless module
Model	AZ832-G

Frequency Range:	2402 MHz to 2480 MHz	
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	
Type of Modulation:	GFSK, 11/4DQPSK, 8DPSK	
Normal Test Voltage:	DC 12 V	
Wireless module	RTL8852BU	

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	/	/

5.3. MAXIMUM POWER

Test Mode	Frequency (MHz)	Channel Number	Maximum Peak Output Power (dBm)
GFSK	2402 ~ 2480	0-78[79]	5.54
8DPSK	2402 ~ 2480	0-78[79]	7.93

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency			
GFSK-DH5	CH 00(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz			
8DPSK-3DH5	CH 00(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz			
GFSK-DH5	Hopping				
8DPSK-3DH5	Hopping				

PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting (Packet Length)		
	DH1	27		
GFSK	DH3	183		
	DH5	339		
	2-DH1	54		
∏/4-DQPSK	2-DH3	367		
	2-DH5	679		
	3-DH1	83		
8DPSK	3-DH3	552		
	3-DH5	1021		

5.5. THE WORSE CASE POWER SETTING PARAMETER

WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BR	FHSS	GFSK	1Mbit/s
EDR	FHSS	8DPSK	3Mbit/s

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band						
Test Se	oftware	RTLBTAPP				
Modulation Type		Test Software setting value				
	Number	CH 00	CH 39	CH 78		
GFSK	2	default	default	default		
8DPSK	2	default default default				

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)	
2	2402-2480	External antenna	0.67	

Test Mode	Transmit and Receive Mode	Description				
GFSK	⊠1TX, 1RX	Antenna 2 can be used as transmitting/receiving antenna.				
8DPSK	⊠1TX, 1RX	Antenna 2 can be used as transmitting/receiving antenna.				
Note: 1.BT&WLAN 2.4G, BT & WLAN 5G, WLAN 2.4G & WLAN 5G can't transmit simultaneously. (declared by client)						

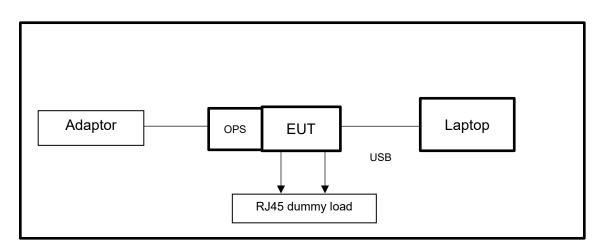
5.7. SUPPORT UNITS FOR SYSTEM TEST

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remark
1	PC	Lenovo	E42-80	/
2	AC Adaptor	Lenovo	MACS-1201001202	Input: 100-240 V~50/60 Hz, 0.35 A Output: DC 12V1A
3	OPS board	/	/	/
4	RJ45 dummy load	/	/	/

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	Туре-С	/	1.0	1


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
/	/	/	/	1

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

6. MEASURING EQUIPMENT AND SOFTWARE USED

R&S TS 8997 Test System									
Equipment Manufacturer			Model	No.	Serial No.	Last C	Cal.	Due. Date	
Power sensor, Power N	leter	R&S	5	OSP1	20	100921	Mar.31,	2023	Mar.30,2024
Vector Signal Genera	tor	R&S	6	SMBV1	00A	261637	Oct.17,	2022	Oct.16, 2023
Signal Generator		R&S	6	SMB10)0A	178553	Oct.17,	2022	Oct.16, 2023
Signal Analyzer		R&S	6	FSV4	10	101118	Oct.17,	2022	Oct.16, 2023
				Softwar	е				
Description		Ν	Manut	facturer		Nam	e		Version
For R&S TS 8997 Test	Syste	em Ro	hde 8	Schwar	Z	EMC	32		10.60.10
Tonsend RF Test System									
Equipment	Man	ufacturer	Мо	del No.	S	Serial No.	Last (Cal.	Due. Date
Wideband Radio Communication Tester		R&S	CN	1W500		155523 Oct.17,		2022	Oct.16, 2023
Wireless Connectivity Tester		R&S	CN	1W270	120	1.0002N75- 102	Sep.28,	2022	Sep.27, 2023
PXA Signal Analyzer	Ke	eysight	NS	9030A	M۲	′55410512	Oct.17,	2022	Oct.16, 2023
MXG Vector Signal Generator	Ke	eysight	N5	5182B	MΥ	⁄56200284	Oct.17,	2022	Oct.16, 2023
MXG Vector Signal Generator	Ke	eysight	N5	5172B	MΥ	⁄56200301	Oct.17,	2022	Oct.16, 2023
DC power supply	Ke	eysight	E3	8642A	MΥ	′55159130	Oct.17,	2022	Oct.16, 2023
Temperature & Humidity Chamber	SAN	ANMOOD SG-8		30-CC-2		2088	Oct.17,	2022	Oct.16, 2023
Attenuator	A	glient 8495E		495B	28	14a12853	Oct.18,	2022	Oct.17, 2023
RF Control Unit	То	nscend JS0806-2			238	380620666	April 18	,2023	April 17,2024
				Softwar	е				
Description		Manufact	urer			Name			Version
Tonsend SRD Test Syst	tem	Tonser	nd	JS1 ²	120-3	3 RF Test S	ystem		V3.2.22

Conducted Emissions							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date		
EMI Test Receiver	R&S	ESR3	101961	Oct.17, 2022	Oct.16, 2023		
Two-Line V- Network	R&S ENV216		101983	Oct.17, 2022	Oct.16, 2023		
Artificial Mains Networks	Schwarzbeck	NSLK 8126	8126465	Oct.17, 2022	Oct.16, 2023		
	Software						
	Description		Manufacturer	Name	Version		
Test Software	for Conducted	Emissions	Farad	EZ-EMC	Ver. UL-3A1		

		Radiated	Emissions		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.17, 2022	Oct.16, 2023
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024
Preamplifier	HP	8447D	2944A09099	Oct.17, 2022	Oct.16, 2023
EMI Measurement Receiver	R&S	ESR26	101377	Oct.17, 2022	Oct.16, 2023
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.17, 2022	Oct.16, 2023
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.17, 2022	Oct.16, 2023
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.17, 2022	Oct.16, 2023
Loop antenna	Schwarzbeck	1519B	00008	Dec.14, 2021	Dec.13, 2024
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.17, 2022	Oct.16, 2023
Preamplifier	Mini-Circuits	ZX60-83LN- S+	SUP01202035	Oct.17, 2022	Oct.16, 2023
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Dec.01,2022	Nov.30,2023
Highpass Filter	Wainwright	WHKX10- 5850-6500- 1800-40SS	4	Dec.01,2022	Nov.30,2023
Band Reject Filter	Wainwright	WRCJV12- 5695-5725- 5850-5880- 40SS	4	Dec.01,2022	Nov.30,2023
Band Reject Filter	Wainwright	WRCJV20- 5120-5150-	2	Dec.01,2022	Nov.30,2023

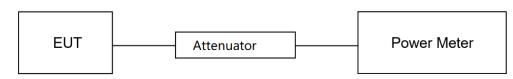
		5350-5380- 60SS			
Band Reject Filter	Wainwright	WRCJV20- 5440-5470- 5725-5755- 60SS	1	Dec.01,2022	Nov.30,2023
Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS	4	Dec.01,2022	Nov.30,2023
Band Reject Filter	Wainwright	WRCD5- 1879- 1879.85- 1880.15- 1881-40SS	1	Dec.01,2022	Nov.30,2023
Notch Filter	Wainwright	WHJ10-882- 980-7000- 40SS	1	Dec.01,2022	Nov.30,2023
Software					
[Description			Name	Version
Test Software	for Radiated E	Emissions	Farad	EZ-EMC	Ver. UL-3A1

Other Instrument					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Temperature humidity probe	OMEGA	ITHX-SD-5	18470007	Oct.22, 2022	Oct.21, 2023
Barometer	Yiyi	Baro	N/A	Oct.24, 2022	Oct.23, 2023
Attenuator	Agilent	8495B	2814a12853	Oct.18, 2022	Oct.17, 2023

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

LIMITS


CFR 47 FCC Part15 (15.247), Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (b) (1)	Peak Conducted Output Power	Hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel: 1 watt or 30 dBm; Hopping channel carrier frequencies that are separated by 25 kHz or two- thirds of the 20 dB bandwidth of the hopping channel: 125 mW or 21 dBm	2400-2483.5

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.7 ℃	Relative Humidity	62.7%
Atmosphere Pressure	101kPa	Test Voltage	DC 12 V

TEST DATE / ENGINEER

Test Date August 30, 2023 Test By Johnson Liu

TEST RESULTS

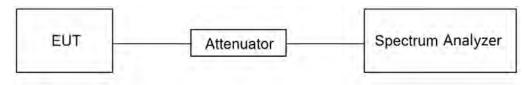
Please refer to section "Test Data" - Appendix C

7.2. 20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (a) (1)	20 dB Bandwidth	None; for reporting purposes only.	2400-2483.5
ISED RSS-Gen Clause 6.7	99 % Occupied Bandwidth	None; for reporting purposes only.	2400-2483.5

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 6.9.2.

Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	For 20 dB Bandwidth: 1 % to 5 % of the 20 dB bandwidth For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
VBW	For 20 dB Bandwidth: approximately 3×RBW For 99 % Occupied Bandwidth: ≥ 3×RBW
Span	Approximately 2 to 3 times the 20dB bandwidth
Trace	Max hold
Sweep	Auto couple

a) Use the occupied bandwidth function of the instrument, allow the trace to stabilize and report the measured 99 % occupied bandwidth and 20 dB Bandwidth.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.7 ℃	Relative Humidity	62.7%
Atmosphere Pressure	101kPa	Test Voltage	DC 12 V

TEST DATE / ENGINEER

Test Date August 30, 2023	Test By	Johnson Liu
---------------------------	---------	-------------

TEST RESULTS

Please refer to section "Test Data" - Appendix A&B

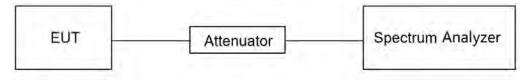
7.3. CARRIER HOPPING CHANNEL SEPARATION

LIMITS

CFR 47 FCC Part15 (15.247),			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (a) (1)	Carrier Frequency Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.2.


Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Span	wide enough to capture the peaks of two adjacent channels
Detector	Peak
	Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.
VBW	≥RBW
Trace	Max hold
Sweep time	Auto couple

Allow the trace to stabilize and use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.7 ℃	Relative Humidity	62.7%
Atmosphere Pressure	101kPa	Test Voltage	DC 12 V

TEST DATE / ENGINEER

Test Date	August 30, 2023	Test By	Johnson Liu
-----------	-----------------	---------	-------------

TEST RESULTS

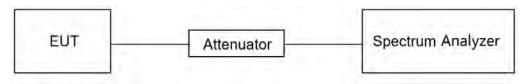
Please refer to section "Test Data" - Appendix D

7.4. NUMBER OF HOPPING FREQUENCY

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C			
Section Test Item Limit			
CFR 47 15.247 (a) (1) III	Number of Hopping Frequency	at least 15 hopping channels	

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 7.8.3.

Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak
RBW	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
VBW	≥RBW
Span	The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
Trace	Max hold
Sweep time	Auto couple

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer, count the quantity of peaks to get the number of hopping channels.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.7 ℃	Relative Humidity	62.7%
Atmosphere Pressure	101kPa	Test Voltage	DC 12 V

TEST DATE / ENGINEER

Test Date	August 30, 2023	Test By	Johnson Liu
-----------	-----------------	---------	-------------

TEST RESULTS

Please refer to section "Test Data" - Appendix F

7.5. TIME OF OCCUPANCY (DWELL TIME)

LIMITS

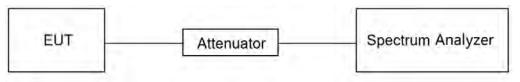
CFR 47 FCC Part15 (15.247), Subpart C		
Section	Test Item	Limit
CFR 47 15.247 (a) (1) III	Time of Occupancy (Dwell Time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.4.

Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1 MHz
VBW	≥RBW
Span	Zero span, centered on a hopping channel
Trace	Max hold
Sweep time	As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel


Use the marker-delta function to determine the transmit time per hop (Burst Width). If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

For FHSS Mode (79 Channel):

DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 31.6 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 31.6 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 31.6 / (channel number)

For AFHSS Mode (20 Channel): DH1/3DH1 Dwell Time: Burst Width * (800/2) * 8 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (800/4) * 8 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (800/6) * 8 / (channel number)

TEST SETUP

TEST ENVIRONMENT

Temperature	24.7 ℃	Relative Humidity	62.7%
Atmosphere Pressure	101kPa	Test Voltage	DC 12 V

TEST DATE / ENGINEER

Test Date August 30, 2023 Test By Johnson Liu				
	Test Date	August 30. 2023	Test By	Johnson Liu

TEST RESULTS

Please refer to section "Test Data" - Appendix E

7.6. CONDUCTED BANDEDGE AND SPURIOUS EMISSION

LIMITS

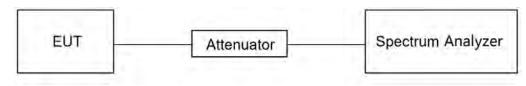
CFR 47 FCC Part15 (15.247), Subpart C		
Section	Test Item	Limit
CFR 47 FCC §15.247 (d)	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.6 and 7.8.8.

Connect the EUT to the spectrum analyzer and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.


Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

ISnan	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum

TEST SETUP

TEST ENVIRONMENT

Temperature	24.7 ℃	Relative Humidity	62.7%
Atmosphere Pressure	101kPa	Test Voltage	DC 12 V

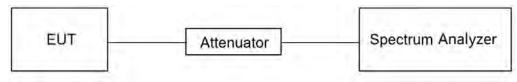
TEST DATE / ENGINEER

Test Date August 30, 2023 Test By Johnson	ı Liu
---	-------

TEST RESULTS

Please refer to section "Test Data" - Appendix G&H

7.7. DUTY CYCLE


LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.7 ℃	Relative Humidity	62.7%
Atmosphere Pressure	101kPa	Test Voltage	DC 12 V

TEST DATE / ENGINEER

Test Date	August 30, 2023	Test By	Johnson Liu
-----------	-----------------	---------	-------------

TEST RESULTS

Please refer to section "Test Data" - Appendix I

8. RADIATED TEST RESULTS

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range	Field Strength Limit Field Strength Limit		ngth Limit
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m
(Quasi-	Peak
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
		74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz			
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)			
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyzer

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyzer

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

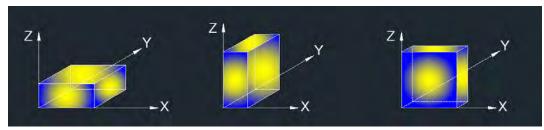
5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz

The setting of the spectrum analyzer

RBW	1 MHz
NRW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.


2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.7. ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

For Restricted Bandedge: Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. PK=Peak: Peak detector.

4. AV=Average: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.7.

6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

7. Both horizontal and vertical have been tested, only the worst data was recorded in the report.

8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (9 kHz ~ 30 MHz): Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

4. All modes have been tested, but only the worst data was recorded in the report.

5. dBuA/m= dBuV/m- 20Log10[120π] = dBuV/m- 51.5

For Radiate Spurious Emission (30 MHz ~ 1 GHz): Note:

1. Result Level = Read Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (1 GHz ~ 3 GHz):

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed

to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.7.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (3 GHz ~ 18 GHz): Note:

1. Peak Result = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

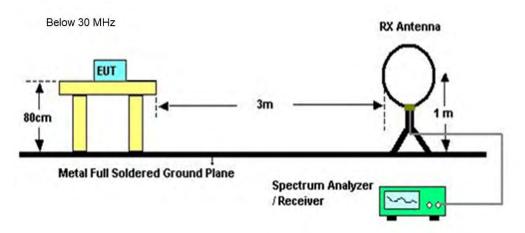
5. For the transmitting duration, please refer to clause 7.7.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

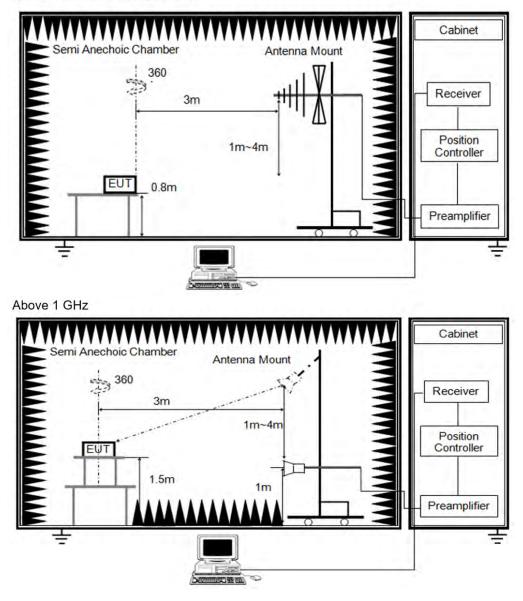
8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (18 GHz ~ 26 GHz): Note:


1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.


4. All modes have been tested, but only the worst data was recorded in the report.

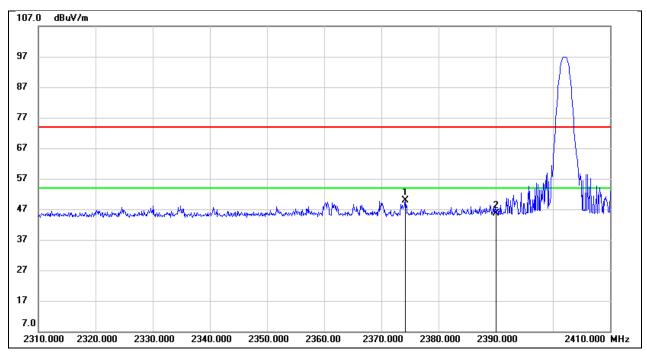
TEST SETUP

Below 1 GHz and above 30 MHz

TEST ENVIRONMENT

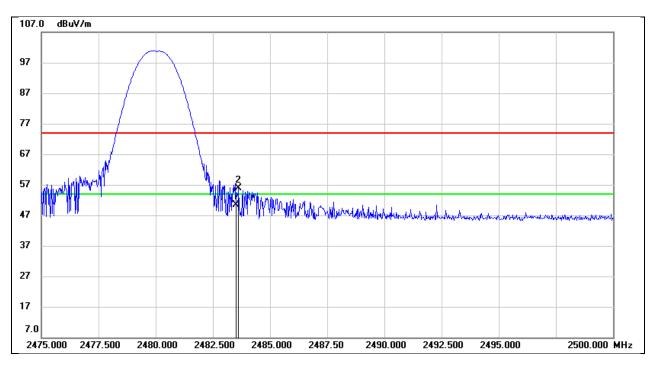
Temperature	25.3 ℃	Relative Humidity	62%
Atmosphere Pressure	101kPa	Test Voltage	

TEST DATE / ENGINEER


Test Date September 12, 2023	Test By	Rex Huang
------------------------------	---------	-----------

TEST RESULTS

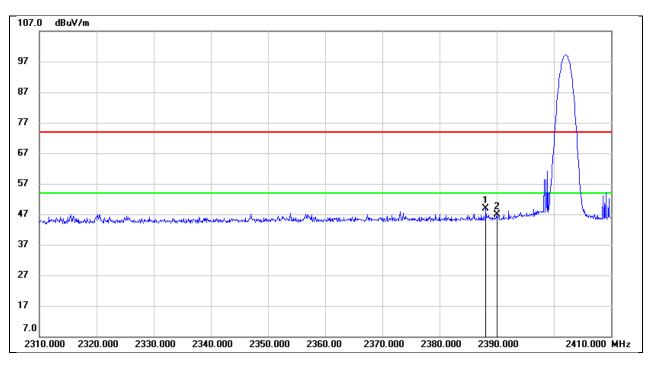
8.1. RESTRICTED BANDEDGE


Test Mode:	GFSK PK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 12 V

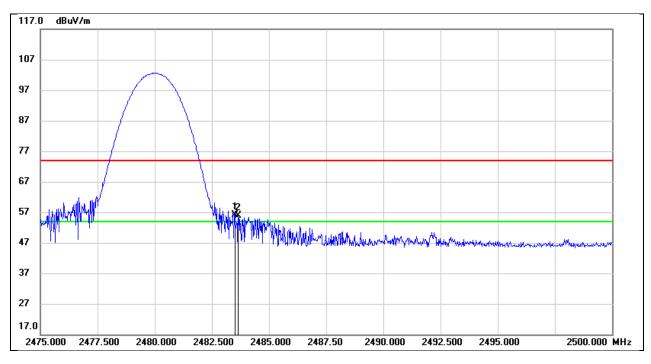
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2374.200	17.65	32.11	49.76	74.00	-24.24	peak
2	2390.000	13.45	32.16	45.61	74.00	-28.39	peak

Test Mode:	GFSK PK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	DC 12 V

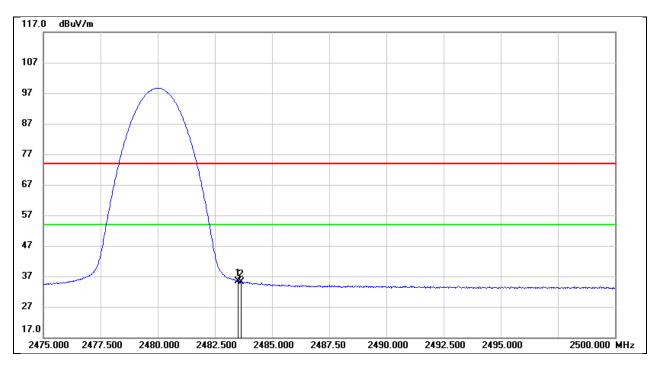
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	17.97	32.44	50.41	74.00	-23.59	peak
2	2483.625	23.33	32.44	55.77	74.00	-18.23	peak


Test Mode:	GFSK AV	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	DC 12 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	2.75	32.44	35.19	54.00	-18.81	AVG
2	2483.625	2.37	32.44	34.81	54.00	-19.19	AVG

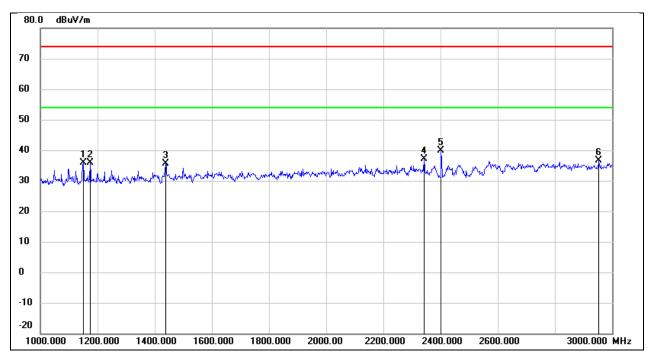

Test Mode:	8DPSK PK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 12 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2388.100	16.76	32.16	48.92	74.00	-25.08	peak
2	2390.000	14.69	32.16	46.85	74.00	-27.15	peak


Test Mode:	8DPSK PK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	DC 12 V

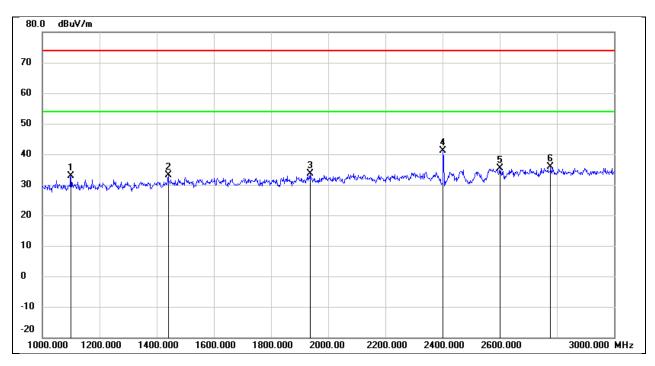
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	23.68	32.44	56.12	74.00	-17.88	peak
2	2483.650	23.35	32.44	55.79	74.00	-18.21	peak

Test Mode:	8DPSK AV	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	DC 12 V

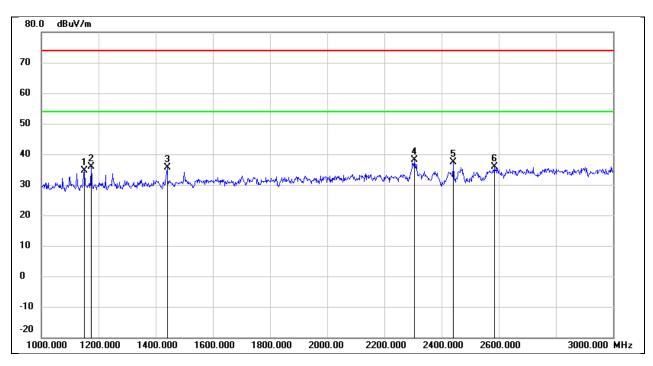


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	3.04	32.44	35.48	54.00	-18.52	AVG
2	2483.650	2.80	32.44	35.24	54.00	-18.76	AVG

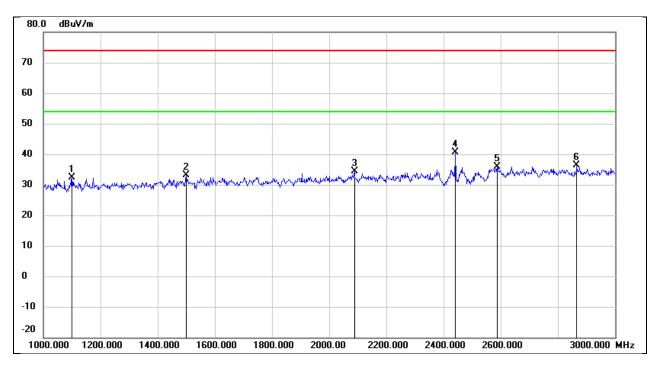
8.2. SPURIOUS EMISSIONS(1 GHZ~3 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 12 V

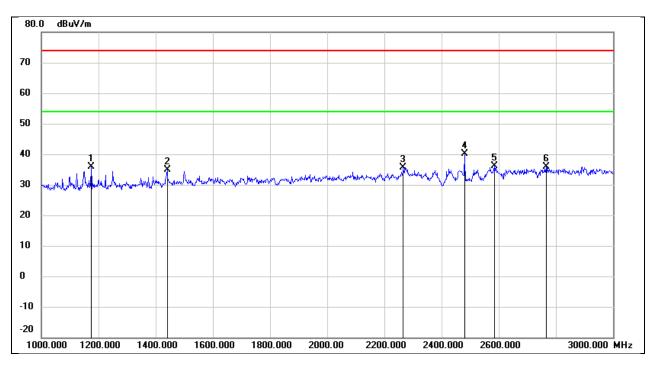
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1150.000	50.11	-14.33	35.78	74.00	-38.22	peak
2	1174.000	50.05	-14.22	35.83	74.00	-38.17	peak
3	1438.000	48.51	-13.00	35.51	74.00	-38.49	peak
4	2342.000	46.39	-9.30	37.09	74.00	-36.91	peak
5	2402.000	48.81	-8.99	39.82	1	/	fundamental
6	2954.000	43.73	-7.11	36.62	74.00	-37.38	peak


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 12 V

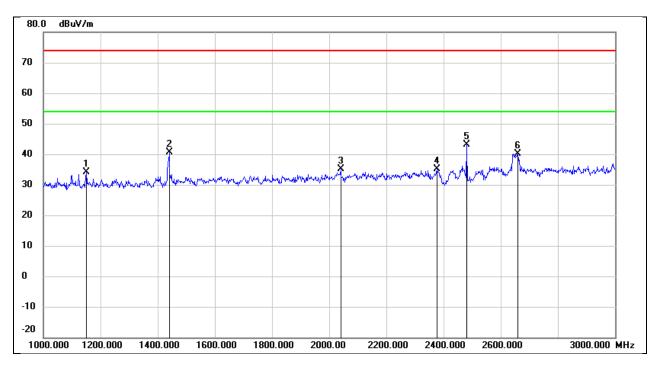
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1100.000	47.51	-14.57	32.94	74.00	-41.06	peak
2	1440.000	46.10	-12.98	33.12	74.00	-40.88	peak
3	1936.000	45.01	-11.27	33.74	74.00	-40.26	peak
4	2402.000	50.17	-8.99	41.18	/	/	fundamental
5	2600.000	43.45	-8.19	35.26	74.00	-38.74	peak
6	2778.000	43.49	-7.66	35.83	74.00	-38.17	peak


Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Horizontal	Test Voltage:	DC 12 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1150.000	48.95	-14.33	34.62	74.00	-39.38	peak
2	1174.000	49.99	-14.22	35.77	74.00	-38.23	peak
3	1440.000	48.67	-12.98	35.69	74.00	-38.31	peak
4	2306.000	47.51	-9.49	38.02	74.00	-35.98	peak
5	2441.000	46.26	-8.79	37.47	1	/	fundamental
6	2584.000	44.05	-8.24	35.81	74.00	-38.19	peak

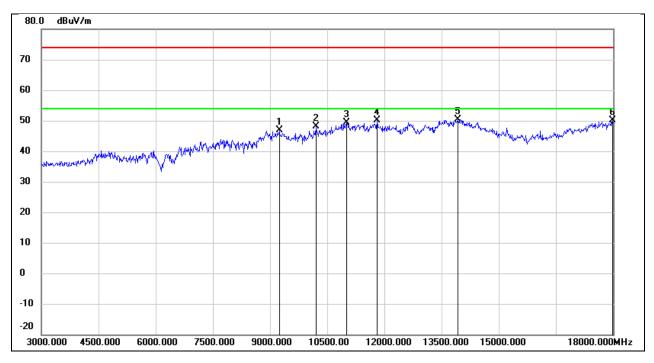

Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Vertical	Test Voltage:	DC 12 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1100.000	46.97	-14.57	32.40	74.00	-41.60	peak
2	1500.000	45.88	-12.71	33.17	74.00	-40.83	peak
3	2088.000	44.90	-10.61	34.29	74.00	-39.71	peak
4	2441.000	49.47	-8.79	40.68	/	/	fundamental
5	2588.000	44.21	-8.22	35.99	74.00	-38.01	peak
6	2866.000	43.77	-7.38	36.39	74.00	-37.61	peak


Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 12 V

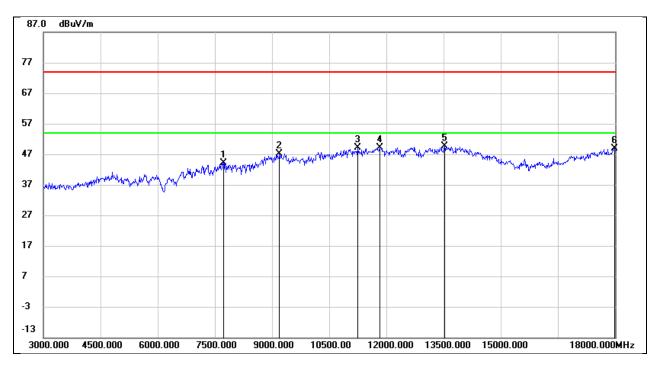
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1174.000	49.99	-14.22	35.77	74.00	-38.23	peak
2	1440.000	47.83	-12.98	34.85	74.00	-39.15	peak
3	2266.000	45.43	-9.69	35.74	74.00	-38.26	peak
4	2480.000	48.74	-8.59	40.15	/	/	fundamental
5	2584.000	44.43	-8.24	36.19	74.00	-37.81	peak
6	2766.000	43.52	-7.68	35.84	74.00	-38.16	peak

Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	DC 12 V

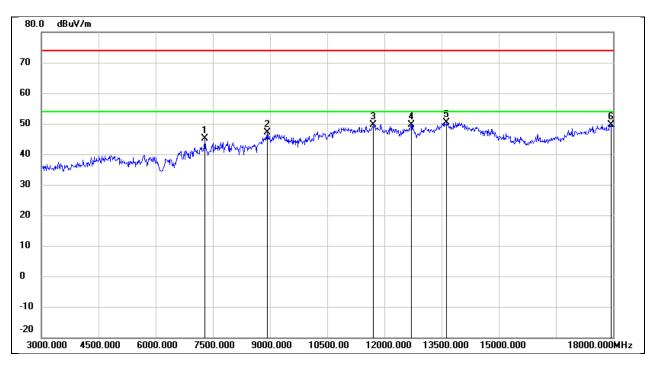


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1150.000	48.35	-14.33	34.02	74.00	-39.98	peak
2	1440.000	53.52	-12.98	40.54	74.00	-33.46	peak
3	2040.000	45.93	-10.86	35.07	74.00	-38.93	peak
4	2376.000	44.22	-9.13	35.09	74.00	-38.91	peak
5	2480.000	51.81	-8.59	43.22	1	/	fundamental
6	2660.000	48.17	-8.01	40.16	74.00	-33.84	peak

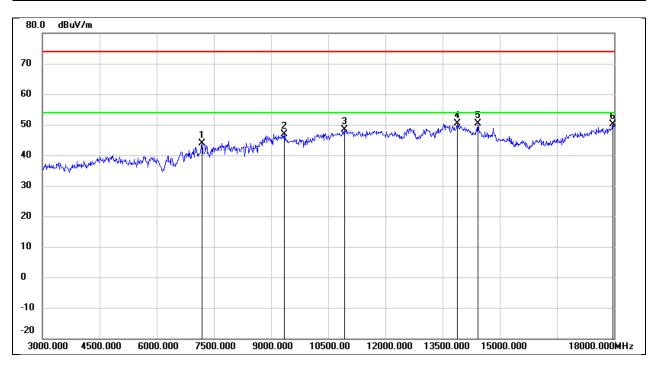
8.3. SPURIOUS EMISSIONS(3 GHZ~18 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 12 V

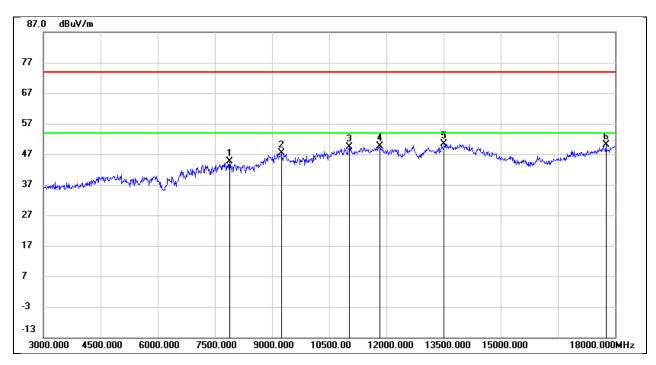
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9240.000	36.20	10.58	46.78	74.00	-27.22	peak
2	10200.000	35.61	12.40	48.01	74.00	-25.99	peak
3	11010.000	34.53	14.81	49.34	74.00	-24.66	peak
4	11805.000	32.58	17.43	50.01	74.00	-23.99	peak
5	13935.000	28.65	21.82	50.47	74.00	-23.53	peak
6	17985.000	24.42	25.60	50.02	74.00	-23.98	peak


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 12 V

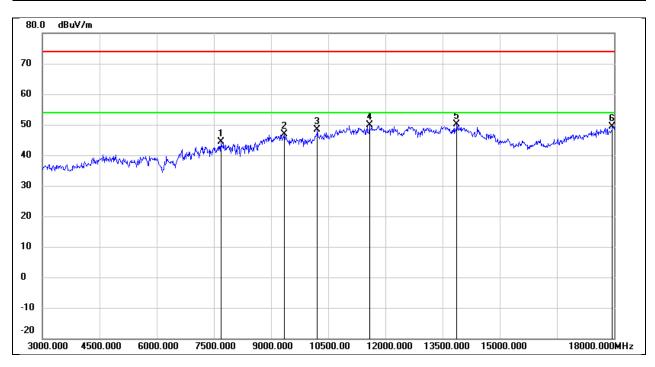
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7725.000	37.80	6.32	44.12	74.00	-29.88	peak
2	9195.000	36.46	10.56	47.02	74.00	-26.98	peak
3	11250.000	33.40	15.69	49.09	74.00	-24.91	peak
4	11820.000	31.75	17.47	49.22	74.00	-24.78	peak
5	13530.000	28.79	20.96	49.75	74.00	-24.25	peak
6	17985.000	23.37	25.60	48.97	74.00	-25.03	peak


Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Horizontal	Test Voltage:	DC 12 V

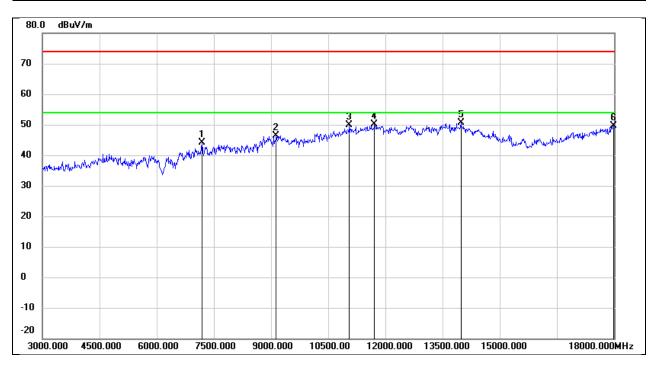
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7290.000	38.55	6.48	45.03	74.00	-28.97	peak
2	8925.000	37.24	9.94	47.18	74.00	-26.82	peak
3	11700.000	32.46	17.14	49.60	74.00	-24.40	peak
4	12705.000	31.68	18.06	49.74	74.00	-24.26	peak
5	13635.000	29.27	21.19	50.46	74.00	-23.54	peak
6	17955.000	24.28	25.42	49.70	74.00	-24.30	peak


Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Vertical	Test Voltage:	DC 12 V

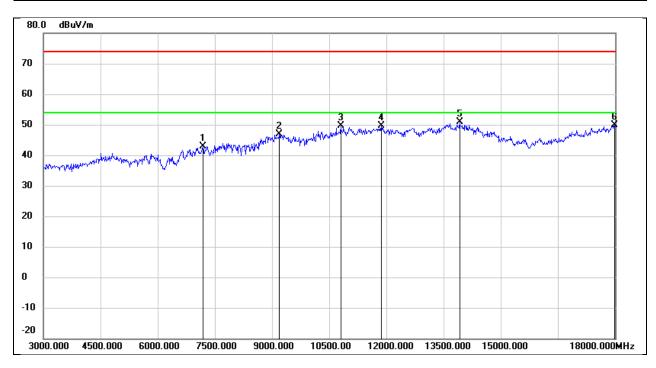
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7185.000	37.25	6.55	43.80	74.00	-30.20	peak
2	9345.000	36.18	10.63	46.81	74.00	-27.19	peak
3	10920.000	33.90	14.49	48.39	74.00	-25.61	peak
4	13890.000	28.70	21.72	50.42	74.00	-23.58	peak
5	14430.000	30.07	20.20	50.27	74.00	-23.73	peak
6	17970.000	24.50	25.51	50.01	74.00	-23.99	peak


Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 12 V

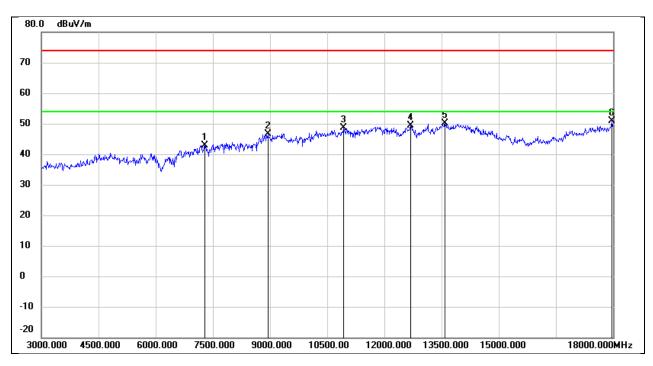
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7890.000	38.32	6.31	44.63	74.00	-29.37	peak
2	9240.000	36.74	10.58	47.32	74.00	-26.68	peak
3	11025.000	34.56	14.85	49.41	74.00	-24.59	peak
4	11835.000	32.12	17.51	49.63	74.00	-24.37	peak
5	13515.000	29.53	20.93	50.46	74.00	-23.54	peak
6	17760.000	25.80	24.27	50.07	74.00	-23.93	peak


Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	DC 12 V

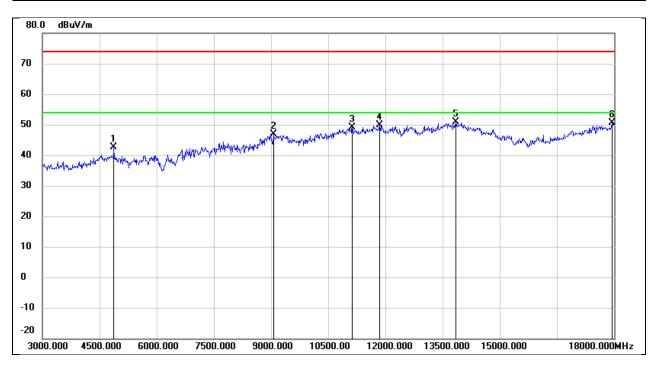
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7680.000	38.06	6.32	44.38	74.00	-29.62	peak
2	9345.000	36.30	10.63	46.93	74.00	-27.07	peak
3	10215.000	35.97	12.43	48.40	74.00	-25.60	peak
4	11580.000	33.02	16.82	49.84	74.00	-24.16	peak
5	13875.000	28.54	21.70	50.24	74.00	-23.76	peak
6	17955.000	23.91	25.42	49.33	74.00	-24.67	peak


Test Mode:	8DPSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 12 V

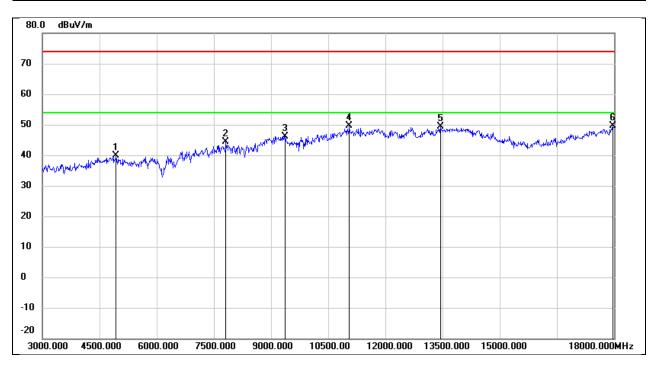
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7185.000	37.57	6.55	44.12	74.00	-29.88	peak
2	9135.000	35.78	10.55	46.33	74.00	-27.67	peak
3	11055.000	34.81	14.96	49.77	74.00	-24.23	peak
4	11715.000	33.03	17.19	50.22	74.00	-23.78	peak
5	13980.000	28.64	21.92	50.56	74.00	-23.44	peak
6	17985.000	24.15	25.60	49.75	74.00	-24.25	peak


Test Mode:	8DPSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 12 V

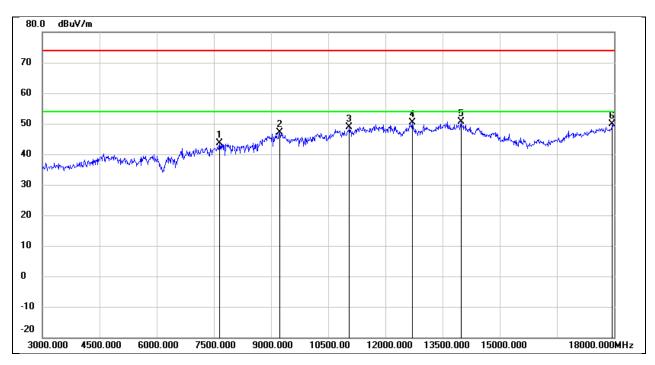
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7185.000	36.41	6.55	42.96	74.00	-31.04	peak
2	9195.000	36.23	10.56	46.79	74.00	-27.21	peak
3	10800.000	35.48	14.06	49.54	74.00	-24.46	peak
4	11865.000	32.05	17.59	49.64	74.00	-24.36	peak
5	13920.000	29.19	21.79	50.98	74.00	-23.02	peak
6	17985.000	24.32	25.60	49.92	74.00	-24.08	peak


Test Mode:	8DPSK	Frequency(MHz):	2441
Polarity:	Horizontal	Test Voltage:	DC 12 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7290.000	36.41	6.48	42.89	74.00	-31.11	peak
2	8940.000	36.56	10.04	46.60	74.00	-27.40	peak
3	10935.000	34.09	14.54	48.63	74.00	-25.37	peak
4	12690.000	31.44	18.02	49.46	74.00	-24.54	peak
5	13590.000	29.08	21.09	50.17	74.00	-23.83	peak
6	17970.000	25.37	25.51	50.88	74.00	-23.12	peak

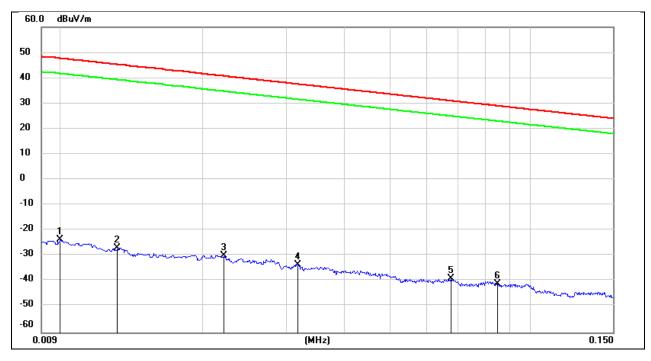

Test Mode:	8DPSK	Frequency(MHz):	2441
Polarity:	Vertical	Test Voltage:	DC 12 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	42.65	-0.03	42.62	74.00	-31.38	peak
2	9060.000	36.37	10.51	46.88	74.00	-27.12	peak
3	11130.000	34.00	15.25	49.25	74.00	-24.75	peak
4	11850.000	32.38	17.56	49.94	74.00	-24.06	peak
5	13845.000	29.37	21.62	50.99	74.00	-23.01	peak
6	17940.000	25.24	25.34	50.58	74.00	-23.42	peak


Test Mode:	8DPSK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 12 V

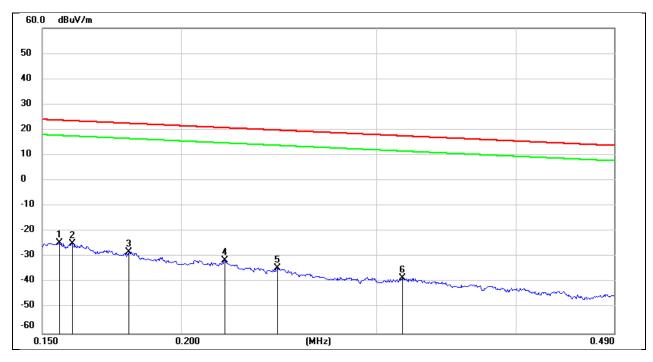
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4935.000	39.61	0.20	39.81	74.00	-34.19	peak
2	7815.000	38.14	6.32	44.46	74.00	-29.54	peak
3	9375.000	35.56	10.64	46.20	74.00	-27.80	peak
4	11055.000	34.66	14.96	49.62	74.00	-24.38	peak
5	13440.000	28.80	20.64	49.44	74.00	-24.56	peak
6	17970.000	24.08	25.51	49.59	74.00	-24.41	peak

Test Mode:	8DPSK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	DC 12 V

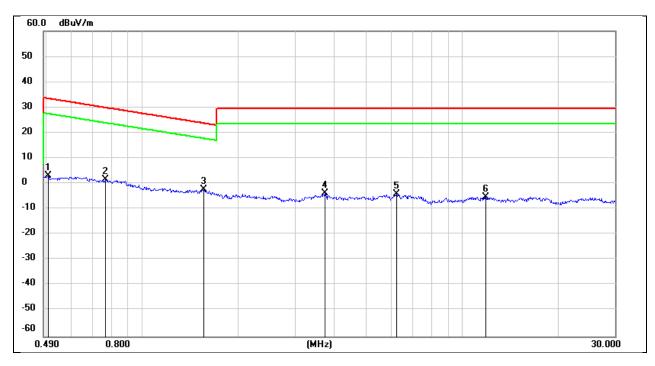


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7650.000	37.18	6.33	43.51	74.00	-30.49	peak
2	9225.000	36.51	10.58	47.09	74.00	-26.91	peak
3	11055.000	33.93	14.96	48.89	74.00	-25.11	peak
4	12705.000	32.32	18.06	50.38	74.00	-23.62	peak
5	13980.000	28.75	21.92	50.67	74.00	-23.33	peak
6	17955.000	24.38	25.42	49.80	74.00	-24.20	peak

8.4. SPURIOUS EMISSIONS(9 KHZ~30 MHZ)

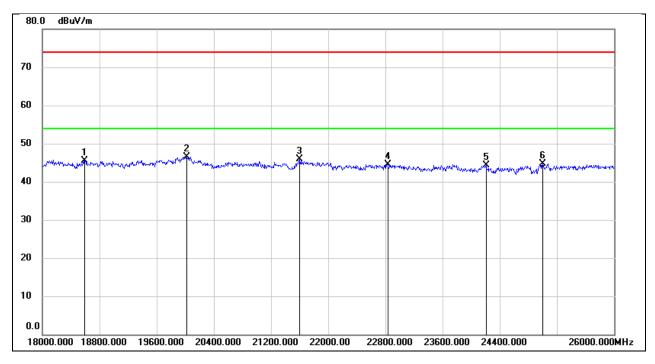

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 12 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0100	77.72	-101.40	-23.68	47.60	-71.28	peak
2	0.0131	74.47	-101.38	-26.91	45.25	-72.16	peak
3	0.0221	71.63	-101.35	-29.72	40.71	-70.43	peak
4	0.0318	67.84	-101.40	-33.56	37.55	-71.11	peak
5	0.0675	62.64	-101.56	-38.92	31.02	-69.94	peak
6	0.0850	60.72	-101.67	-40.95	29.01	-69.96	peak


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 12 V

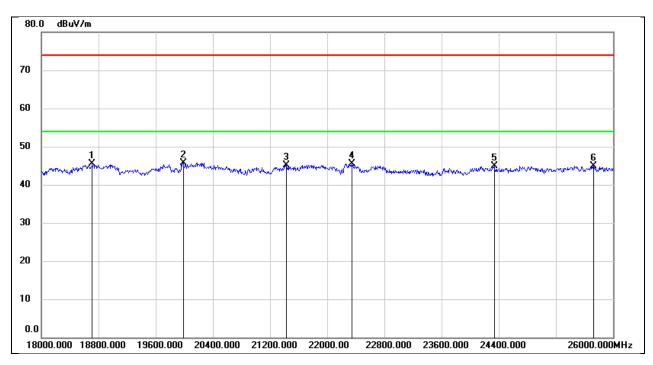
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1554	77.27	-101.65	-24.38	23.77	-48.15	peak
2	0.1595	76.86	-101.65	-24.79	23.55	-48.34	peak
3	0.1794	73.77	-101.68	-27.91	22.53	-50.44	peak
4	0.2190	70.27	-101.75	-31.48	20.79	-52.27	peak
5	0.2442	67.53	-101.79	-34.26	19.85	-54.11	peak
6	0.3163	63.70	-101.87	-38.17	17.60	-55.77	peak

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 12 V



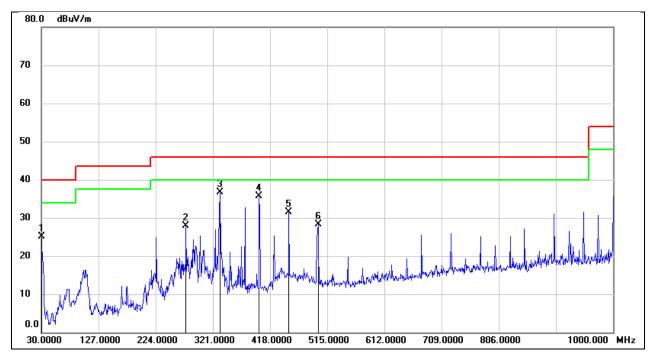
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.5080	65.35	-62.07	3.28	33.49	-30.21	peak
2	0.7641	63.92	-62.12	1.80	29.94	-28.14	peak
3	1.5564	59.68	-62.02	-2.34	23.76	-26.10	peak
4	3.7100	57.70	-61.41	-3.71	29.54	-33.25	peak
5	6.2445	57.13	-61.32	-4.19	29.54	-33.73	peak
6	11.8513	55.56	-60.88	-5.32	29.54	-34.86	peak

8.5. SPURIOUS EMISSIONS(18 GHZ~26 GHZ)

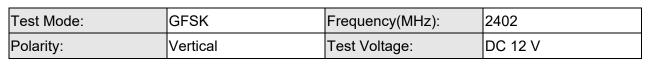

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 12 V

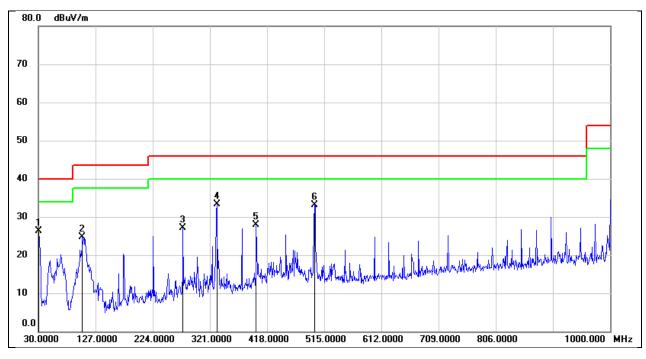
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18592.000	50.75	-5.31	45.44	74.00	-28.56	peak
2	20016.000	52.06	-5.47	46.59	74.00	-27.41	peak
3	21600.000	50.52	-4.54	45.98	74.00	-28.02	peak
4	22832.000	48.09	-3.60	44.49	74.00	-29.51	peak
5	24208.000	47.21	-2.81	44.40	74.00	-29.60	peak
6	25000.000	46.86	-2.10	44.76	74.00	-29.24	peak

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 12 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18712.000	50.90	-5.40	45.50	74.00	-28.50	peak
2	19984.000	51.21	-5.44	45.77	74.00	-28.23	peak
3	21432.000	49.74	-4.71	45.03	74.00	-28.97	peak
4	22344.000	49.59	-4.09	45.50	74.00	-28.50	peak
5	24336.000	47.53	-2.65	44.88	74.00	-29.12	peak
6	25728.000	45.61	-0.72	44.89	74.00	-29.11	peak


8.6. SPURIOUS EMISSIONS(30 MHZ~1 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 12 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.0000	43.38	-18.24	25.14	40.00	-14.86	QP
2	275.4100	44.99	-17.02	27.97	46.00	-18.03	QP
3	333.6099	50.35	-13.68	36.67	46.00	-9.33	QP
4	399.5700	48.57	-12.96	35.61	46.00	-10.39	QP
5	450.0100	43.43	-11.84	31.59	46.00	-14.41	QP
6	499.4800	38.95	-10.68	28.27	46.00	-17.73	QP

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.0000	44.63	-18.24	26.39	40.00	-13.61	QP
2	104.6900	45.55	-20.80	24.75	43.50	-18.75	QP
3	275.4100	44.12	-17.02	27.10	46.00	-18.90	QP
4	332.6400	47.09	-13.74	33.35	46.00	-12.65	QP
5	399.5700	40.86	-12.96	27.90	46.00	-18.10	QP
6	498.5100	43.80	-10.71	33.09	46.00	-12.91	QP

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC part 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC part 15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DESCRIPTION

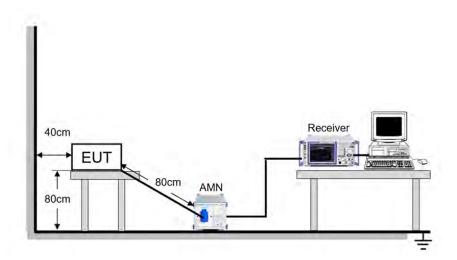
Pass

10. AC POWER LINE CONDUCTED EMISSION

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.207 (a).

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00


TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

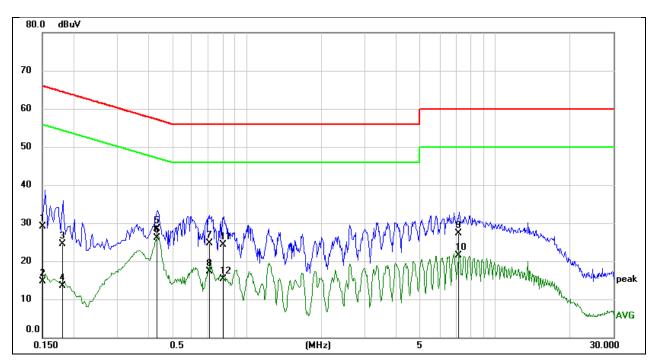
The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST SETUP

TEST ENVIRONMENT

Temperature	25 .4℃	Relative Humidity	65%
Atmosphere Pressure	101kPa	Test Voltage	AC 120 V, 60 Hz


TEST DATE / ENGINEER

Test Date September 12, 2023	Test By	Wite Chen
------------------------------	---------	-----------

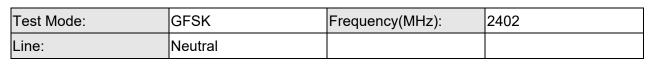
TEST RESULTS

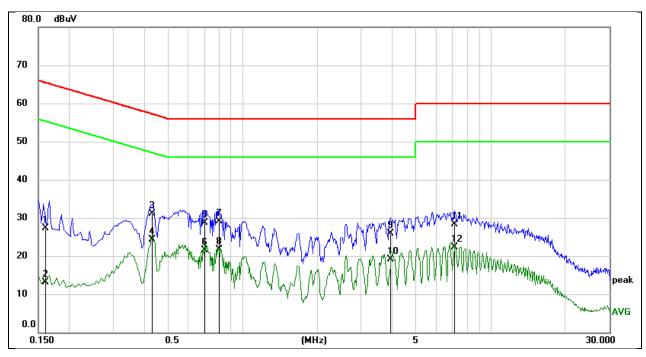
Test Mode:	GFSK	Frequency(MHz):	2402
Line:	Line		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1503	19.49	9.59	29.08	65.98	-36.90	QP
2	0.1503	5.03	9.59	14.62	55.98	-41.36	AVG
3	0.1801	14.84	9.59	24.43	64.48	-40.05	QP
4	0.1801	3.93	9.59	13.52	54.48	-40.96	AVG
5	0.4343	18.84	9.60	28.44	57.17	-28.73	QP
6	0.4343	16.41	9.60	26.01	47.17	-21.16	AVG
7	0.7027	15.12	9.60	24.72	56.00	-31.28	QP
8	0.7027	7.63	9.60	17.23	46.00	-28.77	AVG
9	7.1662	17.60	9.72	27.32	60.00	-32.68	QP
10	7.1662	11.87	9.72	21.59	50.00	-28.41	AVG
11	0.8059	14.80	9.60	24.40	56.00	-31.60	QP
12	0.8059	5.72	9.60	15.32	46.00	-30.68	AVG

Note:

1. Result = Reading + Correct Factor.


2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

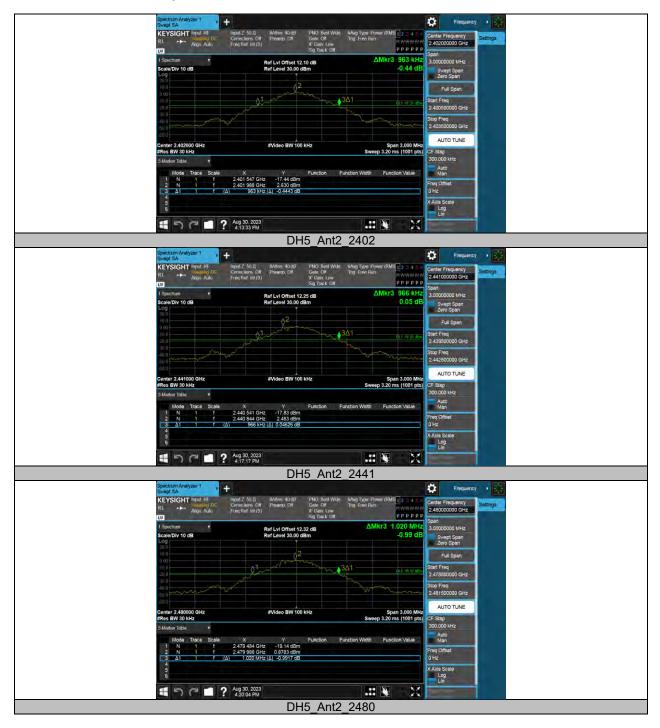
Note: All the modes have been tested, only the worst data was recorded in the report.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1618	17.74	9.51	27.25	65.37	-38.12	QP
2	0.1618	3.60	9.51	13.11	55.37	-42.26	AVG
3	0.4311	21.56	9.52	31.08	57.23	-26.15	QP
4	0.4311	14.75	9.52	24.27	47.23	-22.96	AVG
5	0.6993	19.26	9.50	28.76	56.00	-27.24	QP
6	0.6993	12.04	9.50	21.54	46.00	-24.46	AVG
7	0.8025	19.55	9.50	29.05	56.00	-26.95	QP
8	0.8025	12.11	9.50	21.61	46.00	-24.39	AVG
9	3.9555	16.31	9.60	25.91	56.00	-30.09	QP
10	3.9555	9.58	9.60	19.18	46.00	-26.82	AVG
11	7.1558	18.66	9.62	28.28	60.00	-31.72	QP
12	7.1558	12.73	9.62	22.35	50.00	-27.65	AVG

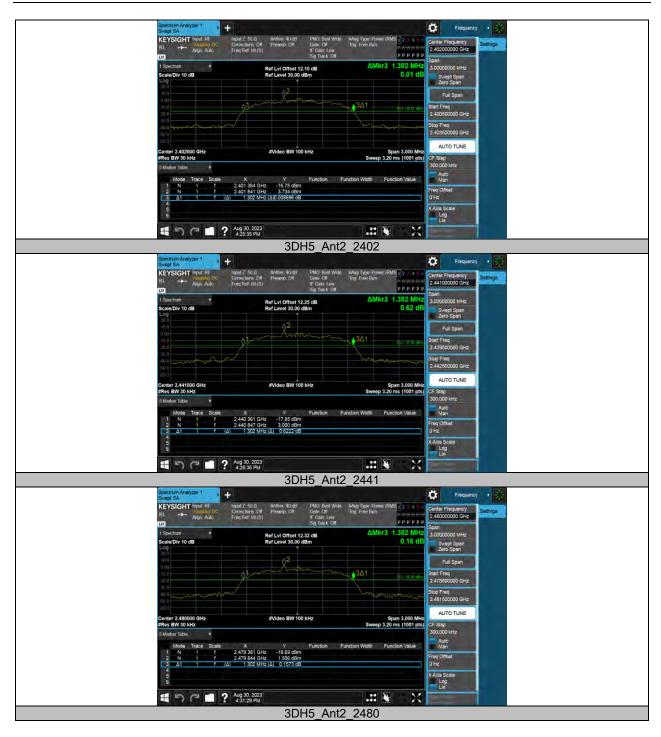
Note:

- 1. Result = Reading + Correct Factor.
- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

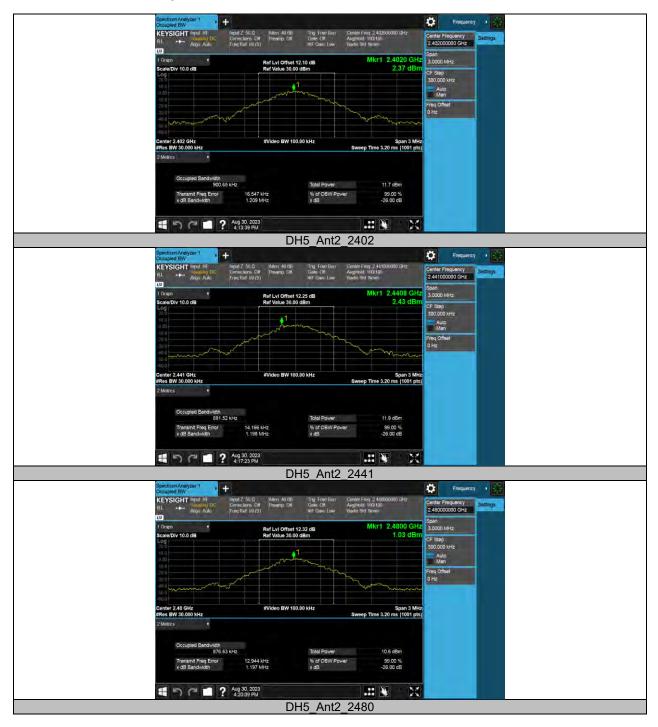
Note: All the modes have been tested, only the worst data was recorded in the report.


11. TEST DATA

11.1. APPENDIX A: 20DB EMISSION BANDWIDTH 11.1.1. Test Result


Test Mode	Antenna	Frequency[MHz]	20db EBW[MHz]	FL[MHz]	FH[MHz]	Verdict
DH5		2402	0.963	2401.547	2402.510	PASS
	Ant2	2441	0.966	2440.541	2441.507	PASS
		2480	1.020	2479.484	2480.504	PASS
3DH5		2402	1.302	2401.364	2402.666	PASS
	Ant2	2441	1.302	2440.361	2441.663	PASS
		2480	1.302	2479.361	2480.663	PASS

11.1.2. Test Graphs



11.2. APPENDIX B: OCCUPIED CHANNEL BANDWIDTH 11.2.1. Test Result

Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Verdict
		2402	0.90065	2401.5662	2402.4669	PASS
DH5	Ant2	2441	0.88152	2440.5734	2441.4549	PASS
		2480	0.87663	2479.5746	2480.4513	PASS
		2402	1.1966	2401.4115	2402.6081	PASS
3DH5	Ant2	2441	1.1933	2440.4141	2441.6074	PASS
		2480	1.2128	2479.4001	2480.6129	PASS

11.2.2. Test Graphs

11.3. APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER 11.3.1. Test Result

Test Mode	Antenna	Frequency[MHz]	Result[dBm]	Limit[dBm]	Verdict
		2402	5.54	≤20.97	PASS
DH5	Ant2	2441	5.16	≤20.97	PASS
		2480	4.12	≤20.97	PASS
		2402	7.93	≤20.97	PASS
3DH5	Ant2	2441	7.26	≤20.97	PASS
		2480	6.15	≤20.97	PASS

11.4. APPENDIX D: CARRIER FREQUENCY SEPARATION 11.4.1. Test Result

Test Mode	Antenna	Frequency[MHz]	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant2	Нор	1.016	≥0.680	PASS
3DH5	Ant2	Нор	1.008	≥0.868	PASS

11.4.2. Test Graphs

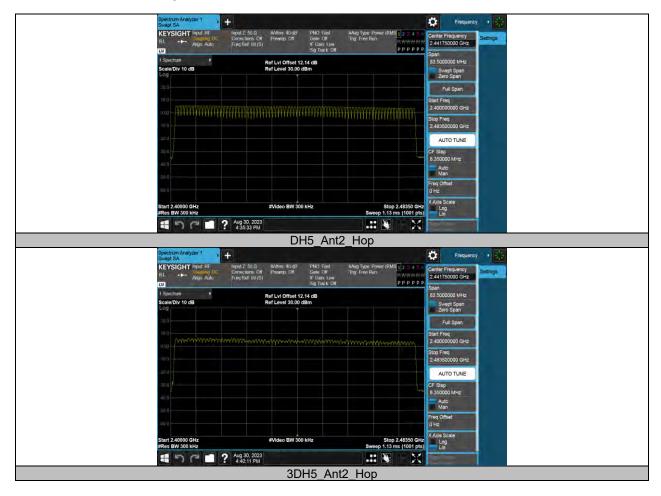
11.5. APPENDIX E: TIME OF OCCUPANCY 11.5.1. Test Result

FHSS Mode										
TestMode	Antenna	Channel	BurstWidth	Result[s]	Limit[s]	Verdict				
restinode	Antenna	Channel	[ms]	Results	Linit[3]	Verdict				
DH1	Ant2	Нор	0.381	0.122	<=0.4	PASS				
DH3	Ant2	Нор	1.637	0.262	<=0.4	PASS				
DH5	Ant2	Нор	2.885	0.308	<=0.4	PASS				
3DH1	Ant2	Нор	0.39	0.125	<=0.4	PASS				
3DH3	Ant2	Нор	1.642	0.263	<=0.4	PASS				
3DH5	Ant2	Нор	2.892	0.308	<=0.4	PASS				


AFHSS Mode										
TestMode	Antenna	Channel	BurstWidth [ms]	Result[s]	Limit[s]	Verdict				
DH1	Ant2	Нор	0.381	0.061	<=0.4	PASS				
DH3	Ant2	Нор	1.637	0.131	<=0.4	PASS				
DH5	Ant2	Нор	2.885	0.154	<=0.4	PASS				
3DH1	Ant2	Нор	0.39	0.062	<=0.4	PASS				
3DH3	Ant2	Нор	1.642	0.131	<=0.4	PASS				
3DH5	Ant2	Нор	2.892	0.154	<=0.4	PASS				

11.5.2. Test Graphs

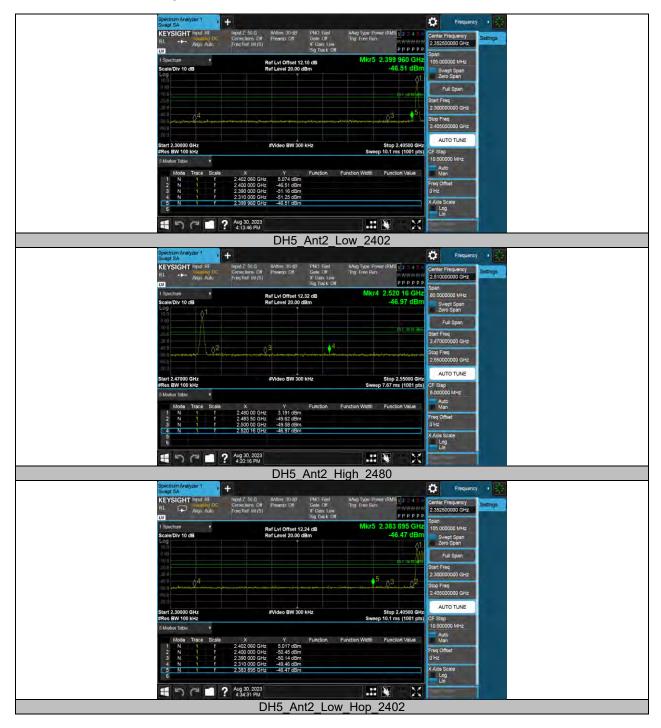
Spectrum Analyzer 1				
Spectrum Analyzer 1 Swept SA KEYSIGHT Input: RF	Hinput Z: 50 Ω #Atton. 40 dB PNO Fast	#Avg Type: Power (RMS 1 2 3 4 5 5	Frequency	
RL Align Auto	Corrections OII Preamp, Off Gate Off Free Ref Ial (S) IF Gain Law	The Delay 2 000 mm WWWWWW	Center Frequency 2.441000000 GHz Settings	
131	Sig Track. Of	ΔMkr2 381.0 μs	Span	
Scale/Div 10 dB	Ref LvI Offset 12.25 dB Ref Level 30.00 dBm	4.98 dB	0.00000000 Hz Swept Span Zero Span	
20.0				
1000	201		Full Span Start Freq	
0.00	1-241	TRIG X.VI.	2.441000000 GHz	
-1010			Stop Freq 2.441000000 GHz	
-20.0			AUTO TUNE	
-20 0	Contraction and a standard and a standard and a standard a standard and a standard and a standard a standard a	a diale and a diale and a diale of a	CF Step	
40.0 Million Million and Million			1.000000 MHz	
50.0	I the state a second to state and	de Tildele e herese hat	Auto Man	
400.0			Freq Offset 0 Hz	
Center 2.441000000 GHz	#Video BW 3.0 MHz	Span 0 Hz	X Axis Scale	
Res BW 1.0 MHz		Sweep 10.13 ms (8000 pts)	Log Lin	
1	? Aug 30, 2023 4:45:43 PM			
	DH1_Ant	2_Hop		
Spectrum Analyzer 1 Swept SA			😧 Frequency 🔹 💒	
	Input Z-50 0 #Atton. 40 d8 PNC Fast Corrections Off Preamp. Off Gale Off Freq Ref Inf (S) IF Gain Low	#Avg Type: Power (RMS 1 2 3 4 5 5 Trig. Video	Center Frequency Settings	
RL Aign Auto	Freq Ref Int (S) IF Cain, Lew Sig Track, Off	Trig Delay 2 000 ms	2 441000000 GHz	
1 Spectrum v	Ref LvI Offset 12.25 dB	ΔMkr2 1.637 ms 4.48 dB	0.00000000 Hz	
Scale/Div 10 dB	Ref Level 30.00 dBm	4.40 UD	Swept Span Zero Span	
20.0			Full Span	
10.0	1 2Δ1	TRIG LVL	Start Freq	
0.00			2.441000000 GHz Stop Freq	
-10.0			2.441000000 GHz	
-20.0			AUTO TUNE	
-20.0 Halle Raine Mine Physics 19	New William Provention and the second	transfilminia periada da kalépadan ing Silita p	CF Step 1.000000 MHz	
40.0 phapetophane allower	in the installation of the state of the stat	apiration photo and according to	Auto	
60 /1			Freq Offset	
-010			0 Hz	
Center 2.441000000 GHz Res BW 1.0 MHz	#Video BW 3.0 MHz	Span 0 Hz Sweep 10.13 ms (8000 pts)	X Axis Scale Log Lin	
	2 Aug 30, 2023 4:46:08 PM			
Spectrum Analyzer 1	DH3_Ant	2_110p	1	
Spectrum Analyzer 1 Swept SA KEYSIGHT Input: RF	HINDUT Z-50 Q #Attent 40 dB PNO Fast	#Avg Type: Power (RMS 1 2 3 4 5 6	Frequency ·	
RL +++ Align Auto	Corrections Off Preamp, Off Gale Off Freq Ref Jal (S) IF Cain Low Sig Track Off	Ting Video Ting Delay 2 000 ms	Center Frequency Settings 2.441000000 GHz	
1 Spectrum		ΔMkr2 2.885 ms	Span 0.00000000 Hz	
Scale/Div 10 dB	Ref LvI Offset 12.25 dB Ref Level 30.00 dBm	19.83 dB	Swept Span Zero Span	
Log			All real real real real real real real re	
20.0	201		Full Span Start Freq	
0.00	201	TRIG LVA.	Start Freq 2.441000000 GHz	
-10 0	1		Stop Freq 2.441000000 GHz	
30.0				
-30.9			CF Step	
- 30.9 Internet of the state of the second sta			1.000000 MHz	
40.0 MpApara Menapat	1 Manager Manager	Ale Ale Area of a large a large	Auto Man	
-00-0			Freq Offset 0 Hz	
			X Axis Scale	
Center 2.441000000 GHz Res BW 1.0 MHz	#Video BW 3.0 MHz	Span 0 Hz Sweep 10.13 ms (8000 pts)	Log	
170	2 Aug 30, 2023 4:35:50 PM			
	DH5_Ant	2 Hop		
	o_, and			



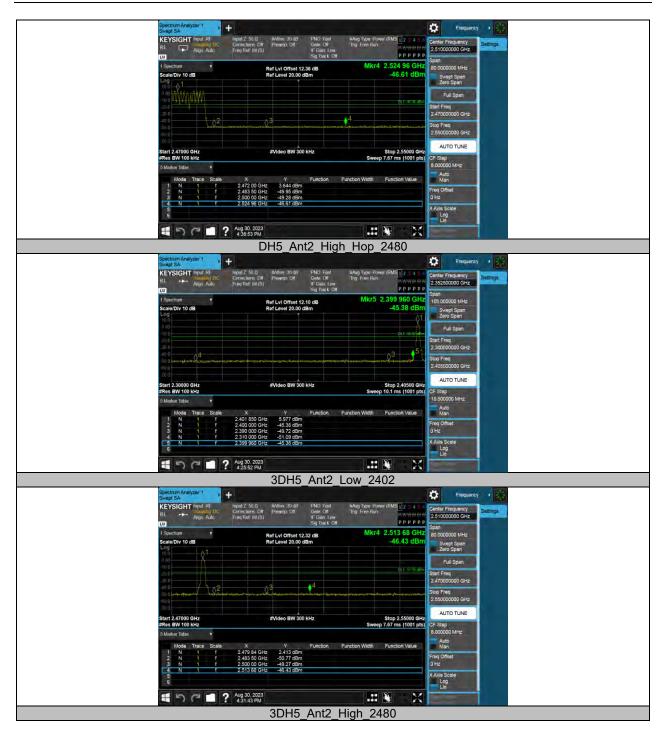
11.6. APPENDIX F: NUMBER OF HOPPING CHANNELS 11.6.1. Test Result

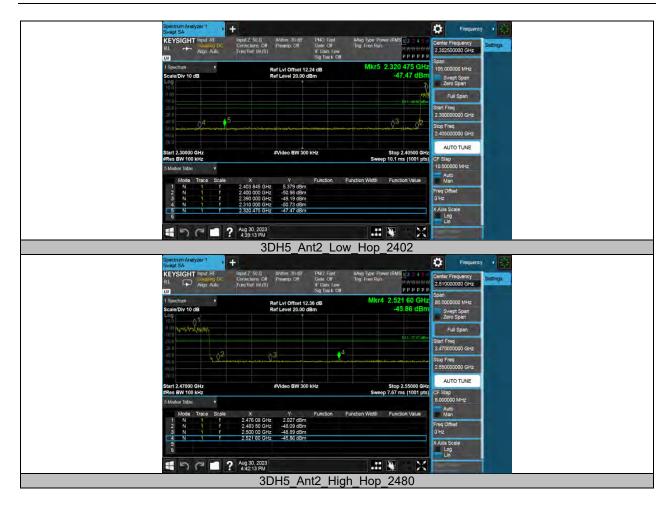
Test Mode	Antenna	Frequency[MHz]	Result[Num]	Limit[Num]	Verdict
DH5	Ant2	Нор	79	≥15	PASS
3DH5	Ant2	Нор	79	≥15	PASS

11.6.2. Test Graphs

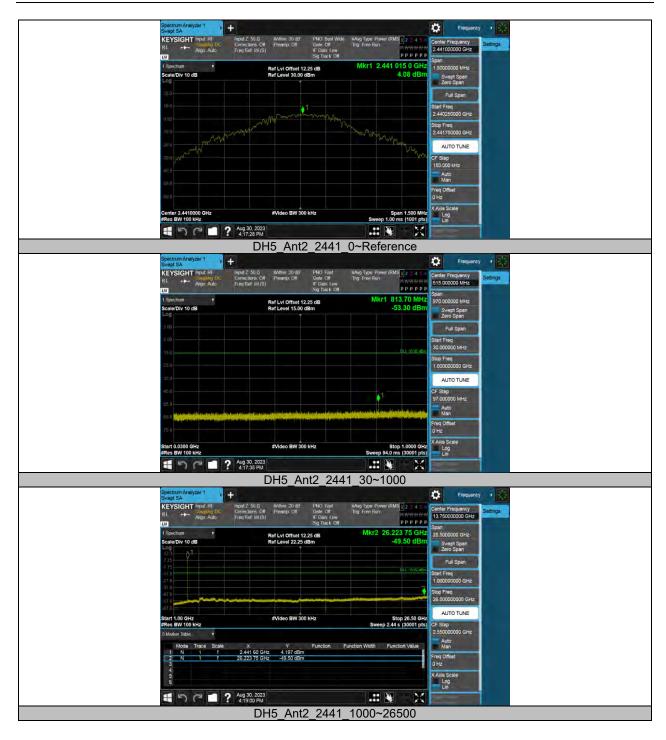


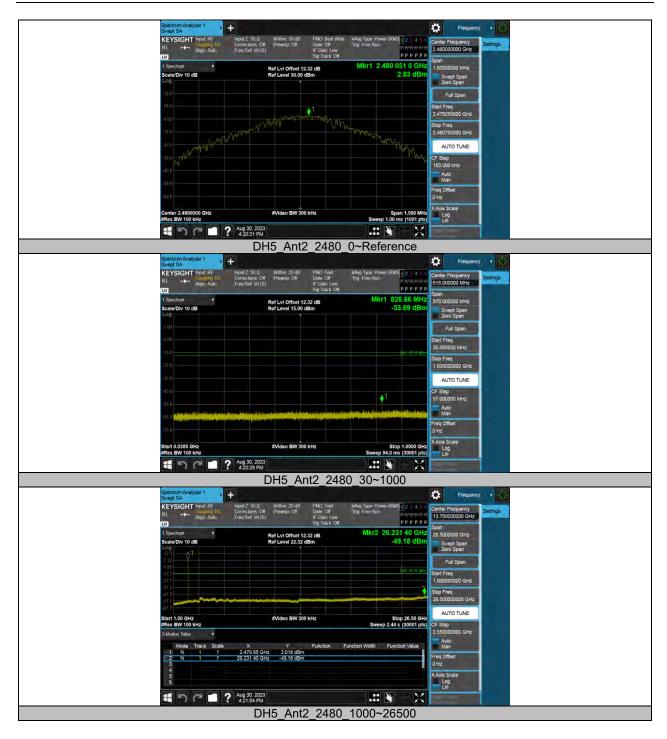
11.7. APPENDIX G: BAND EDGE MEASUREMENTS 11.7.1. Test Result


Test Mode	Antenna	ChName	Frequency[MHz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
		Low	2402	5.07	-46.51	≤-14.93	PASS
DH5	Ant2	High	2480	3.19	-46.97	≤-16.81	PASS
DHD	Anz	Low	Hop_2402	5.02	-46.47	≤-14.98	PASS
		High	Hop_2480	3.64	-46.61	≤-16.36	PASS
		Low	2402	5.98	-45.38	≤-14.02	PASS
3DH5	Ant2	High	2480	2.41	-46.43	≤-17.59	PASS
3005	Antz	Low	Hop_2402	5.38	-47.47	≤-14.62	PASS
		High	Hop_2480	2.03	-45.86	≤-17.97	PASS

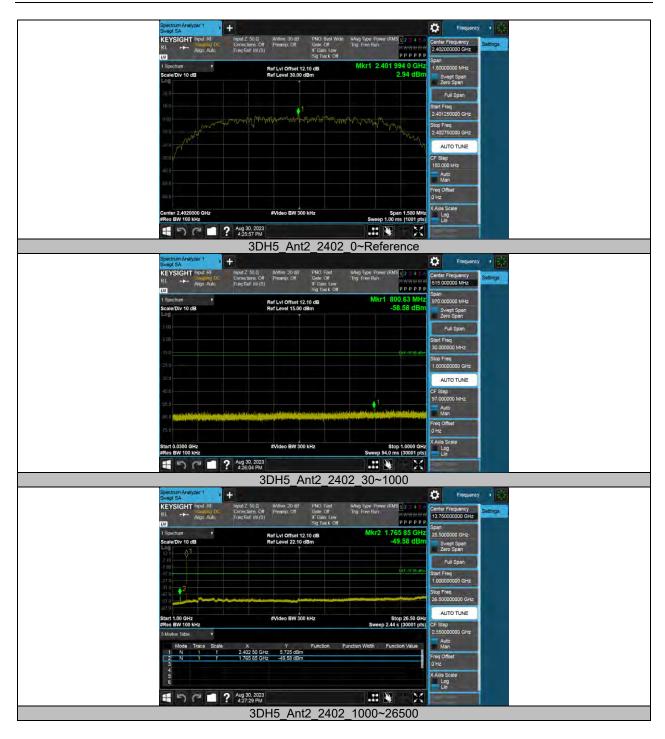

11.7.2. Test Graphs

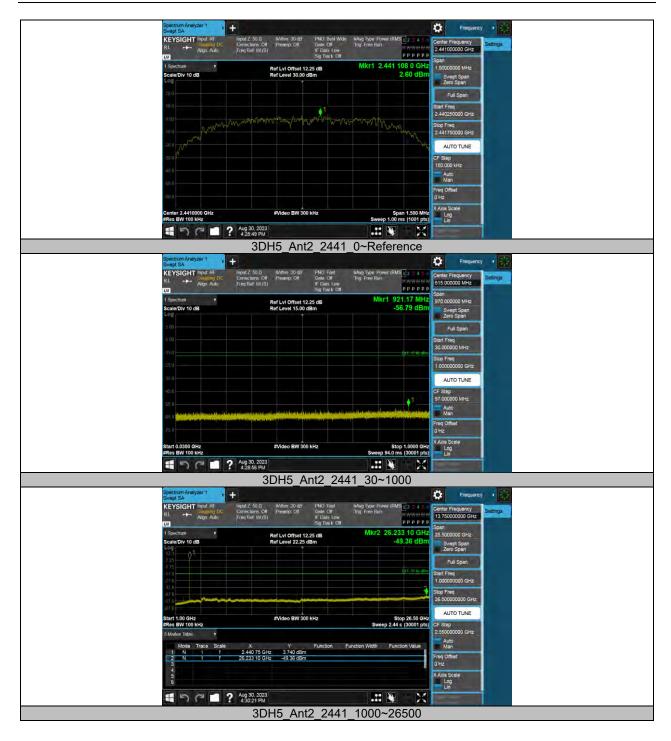
11.8. APPENDIX H: CONDUCTED SPURIOUS EMISSION 11.8.1. Test Result

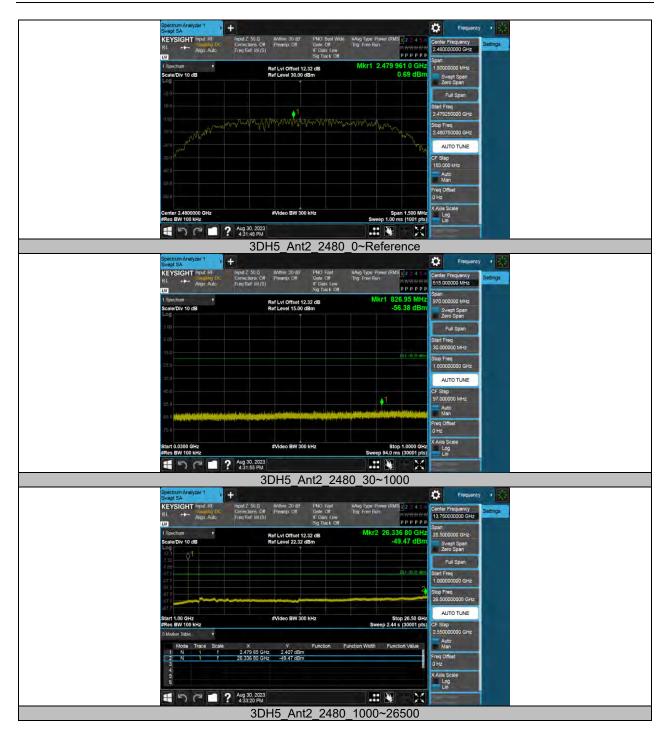

Test Mode	Antenna	Frequency[MHz]	FreqRange [MHz]	Result [dBm]	Limit [dBm]	Verdict
			Reference	4.91		PASS
		2402	30~1000	-56.19	≤-15.09	PASS
			1000~26500	-50.1	≤-15.09	PASS
			Reference	4.08		PASS
DH5	Ant2	2441	30~1000	-53.3	≤-15.92	PASS
			1000~26500	-49.5	≤-15.92	PASS
		2480	Reference	2.83		PASS
			30~1000	-53.69	≤-17.17	PASS
			1000~26500	-49.18	≤-17.17	PASS
		2402	Reference	2.94		PASS
			30~1000	-58.58	≤-17.06	PASS
			1000~26500	-49.58	≤-17.06	PASS
			Reference	2.60		PASS
3DH5	Ant2	2441	30~1000	-56.79	≤-17.4	PASS
			1000~26500	-49.36	≤-17.4	PASS
		2480	Reference	0.69		PASS
			30~1000	-56.38	≤-19.31	PASS
			1000~26500	-49.47	≤-19.31	PASS


11.8.2. Test Graphs

Spertrum Analyzer 1		1	
Spectrum Analyzer 1 Swept SA KEVSICHT Innet BE	Insul 7:50.0 #Alton 30.d8 PND Boot Wate	HAVE THE DESIGN (DUD)	C Frequency
KEYSIGHT input RE RL ++ Augn Auto	Corrections Off Preamp: Off Gate Off Freq Ref Init (S) IF Gain Low	Ting. Free Run	2 40200000 GHz Settings
DN	Sig Track. Of	рееее Mkr1 2.402 009 0 GHz	Span
1 Spectram v Scale/Div 10 dB	Ref LvI Offset 12.10 dB Ref Level 30.00 dBm	4.91 dBm	1.5000000 MHz Swept Span
Log			Swept Span Zero Span
20.0		1	Full Span
10.0	A M Comment of Works		Start Freq 2.401250000 GHz
0.00	any many war and a second	William .	Stop Freq
-100	Mar Mar	winathing	2.402760000 GHz
-2013		- m	AUTO TUNE
- 80.0 press			CF Step 150.000 kHz
40.0			Auto Man
60.71			Freq Offset
401.0			0 Hz
Center 2.4020000 GHz #Res BW 100 kHz	#Video BW 300 kHz	Span 1.500 MHz Sweep 1.00 ms (1001 pts)	X Axis Scale
4 5 C 1	2 Aug 30, 2023 4:13:51 PM		
Residence Ford State	DH5_Ant2_2402_	1	
Spectrum Analyzer 1 Swept SA	Hand 7:50.0 #Altern 20.49 DND Eard		C Frequency
	Input Z: 50 0. #Atton: 20 dB PNO Fast Corrections: Off Preamp: Off Gate: Off Frog Ref Int (S) IF Gain: Low	M MITTING HOLL	Center Frequency Settings
Da	Sig Track Off	PPPPPP	Span
1 Spectrum Scale/Div 10 dB	Ref Lvi Offset 12.10 dB Ref Level 15.00 dBm	Mkr1 800.67 MHz -56.19 dBm	570.000000 MHz
Log			Swept Span Zero Span
5 10			Full Span
-5 00			Start Freq 30.000000 MHz
- 15.0		DL1-15.09.0Em	Stop Freq
29.0			1.00000000 GHz
-36.0			AUTO TUNE
-45.0		1	CF Step 97.00000 MHz
-55.0		all a single from a line shall a single on	Auto Man
R5.0			Freq Offset
-75 0			0 Hz
Start 0.0300 GHz	#Video BW 300 kHz	Stop 1.0000 GHz	X Axis Scale Log Lin
#Res BW 100 kHz	Aug 30, 2023	Sweep 94.0 ms (30001 pts)	Li
1960			
	DH5_Ant2_2402		
Spectrum Analyzer 1 Swept SA	+		Frequency ·
KEYSIGHT input RI RL Align Auto	Conections Off Preemp. Off Gate Off Freq Ref Int (S) IF Cain Low	WAvg Type Power (RMS 2 2 4 5 6 Tng. Free Run Mytterwork	Center Frequency Settings
50 20	Freq Ref Int (S) IF Gain Low Sig Track Off	PPPPPP	Span
1 Spectrum + Scale/Div 10 dB	Ref Lvi Offset 12.10 dB Ref Level 22.10 dBm	Mkr2 25.667 85 GHz -50.10 dBm	25,5000000 GHz
			Swept Span Zero Span
210			Full Span
11.0		DE 1 -15 09 dBm	Start Freq 1.00000000 GHz
37.9		2	Stop Freq
57.9			25.50000000 GHz
67.3 Start 1.00 GHz	#Video BW 300 kHz	Stop 26.50 GHz	AUTO TUNE
#Res BW 100 kHz	AVIAGO DIN SUO KINZ,	Sweep 2.44 s (30001 pts)	CF Step 2.55000000 GHz
5 Marker Table		Haran	2.55000000 GHz Auto Man
Mode Trace Sca 1 N 1 f	e X Y Function Fi 2.401 65 GHz 4.747 dBm 25.667 85 GHz -50.10 dBm	unction Width Function Value	Man Freq Offset
3	25.867 85 GHz -50.10 dBm		0 Hz
4 5 6			X Axis Scale
	Aur 30, 2023		
1			
	DH5_Ant2_2402_	1000~26500	







11.9. APPENDIX I: DUTY CYCLE 11.9.1. Test Result

Test Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
DH5	2.88	3.72	0.7742	77.42	1.11	0.35	1
3DH5	2.88	3.73	0.7721	77.21	1.12	0.35	1

Note:

Duty Cycle Correction Factor=10log (1/x).

Where: x is Duty Cycle (Linear)

Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be used.

11.9.2. Test Graphs

END OF REPORT