

Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel Tel. +972-4-6288001 Fax. +972-4-6288277 E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC 47 CFR part 15 section 15.255

FOR:

Siklu Communication Ltd. Point-to-Multipoint Wireless V-band link operating in 57-64 GHz Models: MH-B100-CCS-PoE-MWB MH-T200-CNN-PoE-MWB MH-T200-CCC-PoE-MWB FCC ID:2ACYESK-MH60GE-A1

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Table of contents

1	Applicant information	3
2	Equipment under test attributes	3
3	Manufacturer information	3
4	Test details	3
5	Tests summary	4
6	EUT description	5
6.1	General information	5
6.2	Ports and lines	5
6.3	Support and test equipment	5
6.4	Changes made in the EUT	5
6.5	Test configuration	6
6.6	Transmitter characteristics	7
7	Transmitter tests	8
7.1	Transmitter power test	8
7.2	Occupied bandwidth test	12
7.3	Out of band radiated emissions below 40 GHz	15
7.4	Out of band radiated emissions above 40 GHz up to 200 GHz	29
7.5	Frequency stability test	41
8	APPENDIX A Test equipment and ancillaries used for tests	43
8.1	Test equipment and ancillaries used for tests	44
9	APPENDIX B Measurement uncertainties	45
10	APPENDIX C Test laboratory description	46
11	APPENDIX D Specification references	46
12	APPENDIX E Test equipment correction factors	47
13	APPENDIX F Abbreviations and acronyms	56

1 Applicant information

Address:43 Hasivim street, Petach-Tikva 49517, IsraeTelephone:+972 3921 4015Fax:+972 3921 4162E-mail:baruch@siklu.comContact name:Mr. Baruch Schwarz	Client name:	Siklu Communication Ltd.
Telephone: +972 3921 4015 Fax: +972 3921 4162 E-mail: baruch@siklu.com Contact name: Mr. Baruch Schwarz	Address:	43 Hasivim street, Petach-Tikva 49517, Israel
Fax: +972 3921 4162 E-mail: baruch@siklu.com Contact name: Mr. Baruch Schwarz	Telephone:	+972 3921 4015
E-mail:baruch@siklu.comContact name:Mr. Baruch Schwarz	Fax:	+972 3921 4162
Contact name: Mr. Baruch Schwarz	E-mail:	baruch@siklu.com
	Contact name:	Mr. Baruch Schwarz

2 Equipment under test attributes

Product name:	Point-to-Multipoint wireless V-band link operating in 57-64 GHz
Product type:	Transceiver
Model(s):	MH-B100-CCS-PoE-MWB
Brand name:	MultiHaul
Serial number:	S704000100
Hardware version:	A0
Software release:	1.0
Receipt date	12/08/2016

3 Manufacturer information

Manufacturer name:	Siklu Communication Ltd.
Address:	43 Hasivim street, Petach-Tikva 49517, Israel
Telephone:	+972 3921 4015
Fax:	+972 3921 4162
E-Mail:	baruch@siklu.com
Contact name:	Mr. Baruch Schwarz

4 Test details

Project ID:	29038
Location:	Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel
Test started:	12/08/2016
Test completed:	1/12/2017
Test specification(s):	FCC 47 CFR part 15 section 15.255

5 Tests summary

Test	Status
FCC Section 15.255(b)(ii), Transmitter power and power spectral density	Pass
FCC Section 15.215(c), Occupied bandwidth	Pass
FCC Section 15.255(c), Conducted spurious emissions	Not required
FCC Section 15.255(c)(2), Radiated spurious emissions below 40 GHz	Pass
FCC Section 15. 255(c)(3), Radiated emissions outside assigned band and above 40 GHz up to 200 GHz	Pass
FCC Section 15.255(f), Frequency tolerance	Tested without limit
FCC Section 15.255(g), RF exposure	Pass, exhibit included in Application for certification

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by:	Mr. K. Zushchyk, test engineer	January 12, 2017	X
Reviewed by:	Mrs. M. Cherniavsky, certification engineer	January 19, 2017	Chur
Approved by:	Mr. M. Nikishin, EMC and Radio group manager	February 6, 2017	ft o

6 EUT description

6.1 General information

The EUT is an outdoor unit of point-to-multipoint high BW system, based on WiGi technology, operating in the 57-64 GHz regulated V-Band. The EUT radio supports up to 2.5 Gbps.

There are two options for this system. Functionally, a system can serve as a base unit (BU) or as an end point ("Terminal Unit" – TU). In terms of HW, both types have identical Architecture, HW, and Low-Level SW drivers. The difference is only in the application layer.

Several combinations are possible for system assembly. Some of them are more P2P like, while others benefit from P2MP capability.

During the testing the EUT system was powered by POE+.

6.2 Ports and lines

Port type	Port description	Conected from	Connected to	Qty.	Cable type	Cable length, m
Telecom	Ethernet-POE	EUT ETH1	POE+	1	Shielded	2
Telecom	Ethernet-PSE	EUT ETH2	Open circuit	1	Shielded	2
Telecom	Ethernet-PSE/SFP	EUT ETH3	Open circuit	1	Shielded/fiber optic	2

6.3 Support and test equipment

Description	scription Manufacturer Model number		Serial number	
Laptop	Dell	E7440	35868926774	
POE	Power Dsine Microsemi	9001G-40/SP rev b	11226519000962A01	

6.4 Changes made in the EUT

No changes were performed in the EUT during testing.

6.5 Test configuration

6.5.1 EUT test configuration

6.6 Transmitter characteristics

Type of equipment									
V Stand-alone (Equipment with or without its own control provisions)									
Combined equipment	(Equipme	quipment where the radio part is fully integrated within another type of equipment)							
Plug-in card (Equipment intended for a variety of host systems)									
Intended use	Conditio	n of u	se						
V fixed	Always a	t a dis	tance more	e than	2 m from all p	eople			
mobile	Always a	t a dis	tance more	e than	20 cm from all	people			
portable	May oper	rate at	a distance	e close	r than 20 cm to	o human body			
Assigned frequency range		57.0	GHz – 64.	0 GHz					
Operating frequencies (tester	d)	6048	0 MHz, 62	640 M	Hz				
Maximum rated output power	r	EIRP)					39.50 dBm	
		V	No						
				T		continuous varia	ble		
Is transmitter output power			Vee			stepped variable	with steps	ize dB	
variable?			res	mini	mum RF powe	er		dBm	
				max	imum RF pow	er			
Antenna connection	Antenna connection								
								with temporary RF	
		etand	standard connector		r V Integra	Integral		connector	
unique couping		Stant				integrai		without temporary RF	
							connector		
Antenna/s technical characte	eristics								
Туре	Mar	nufacti	ufacturer Model number			Gain			
Integrated array of 32 dipole	Sikl	u Ltd.			CCB001			24 dBi	
antenna									
Transmitter 99% power bane	dwidth, M	IHz	Т	ransn	nitter aggrega	te data rate/s, Mbps		Type of modulation	
2160			2500 QPSK				QPSK		
Type of multiplexing	Type of multiplexing TDD								
Transmitter power source									
Nominal rated voltage			ige			Battery type			
V DC Nominal rated voltage			ige 48	V					
Voltage range			PO	E 42-5	57 V				
AC mains Nominal rated voltage					Frequency				
Common power source for transmitter and receiver V yes no									

Test specification: Section 15.255(b)(ii), Transmitter power and power spectral density						
Test procedure:	47 CFR, Section 2.1046; Sect	47 CFR, Section 2.1046; Section 15.255(b); ANSI C63.10, Section 9.11				
Test mode:	Compliance	Vordict	DV66			
Date:	12/21/2016	verdict:	FA33			
Temperature: 22 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC			
Remarks:						

7 Transmitter tests

7.1 Transmitter power test

7.1.1 General

This test was performed to measure the peak output power. Specification test limits are given in Table 7.1.1.

Table 7.1.1 Output power limits

Assigned frequency range	Maximum output power					
MH-	Peak conducte	ed output power	EIRP, dBm*			
IVII 12	mW	dBm	Peak	Average		
57000 – 64000	500	27.0	43	40		

7.1.2 Test procedure

- 7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and its proper operation was checked.
- 7.1.2.2 The EUT was adjusted to produce maximum available for end user RF output power.
- **7.1.2.3** The average and peak voltage was measured at the low and high frequency channels with oscilloscope connected to RF detectorand provided in the associated plots.
- 7.1.2.4 The unmodulated signal was applied to Zero-Biased Detector via variable attenuator as shown in Figure 7.1.2.
- **7.1.2.5** The variable attenuator was adjusted such that the oscilloscope indicated a voltage equal to the peak voltage recorded in the step 7.1.2.3.
- 7.1.2.6 The variable attenuator was disconnected from the Zero-Biased Detector.
- 7.1.2.7 Without changing any settings, the variable attenuator was connected to a power meter as shown in Figure 7.1.3.
- 7.1.2.8 The power was measured and result was recorded in Table 7.1.2 and Table 7.1.3.
- 7.1.2.9 The steps 7.1.2.4 through 7.1.2.8 were repeated for the average voltage recorded in the step 7.1.2.3 and 7.1.2.4.

Test specification:	Section 15.255(b)(ii), Transmitter power and power spectral density				
Test procedure:	47 CFR, Section 2.1046; Sect	47 CFR, Section 2.1046; Section 15.255(b); ANSI C63.10, Section 9.11			
Test mode:	Compliance	Verdict: PASS			
Date:	12/21/2016				
Temperature: 22 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC		
Remarks:					

Figure 7.1.1 Peak output power test setup

Figure 7.1.3 Peak output power test setup

Margin****,

dB

-1.20

-1.22

Verdict

Pass

Pass

Test specification:	Section 15.255(b)(ii), Transmitter power and power spectral density				
Test procedure:	47 CFR, Section 2.1046; Sect	47 CFR, Section 2.1046; Section 15.255(b); ANSI C63.10, Section 9.11			
Test mode:	Compliance	Vardiat: DASS			
Date:	12/21/2016	verdict.	FA33		
Temperature: 22 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC		
Remarks:					

Table 7.1.2 Peak output power test results

OPERATING FREQUENCY RANGE: 57.0 - 64.0 GHz DETECTOR USED: Peak MEASUREMENTS DISTANCE: 0.6 m VIDEO BANDWIDTH: >10 MHz TRANSMITTER OUTPUT POWER SETTINGS: Maximum MODULATION **QPSK** DSO, Margin**** Frequency, λ*, Power measured, Antenna E EIRP*** Limit, Verdict . МНz dBuV/m dB mV dBm Gain, dBi dBm dBm m 60480 0.00496 -7.02 -0.25 24.00 149.64 39.50 43.00 3.50 Pass 62640 0.00479 -7.09 -0.65 24.00 148.55 39.41 43.00 -3.59 Pass

* - λ = 300/Frequency(MHz)

** - E_{meas} = 126.8 – 20log(λ) + Power measured – Measurement Antenna Gain

*** - EIRP= E_{meas} + 20log(Measurements distance) – 104.7

**** - Margin = EIRP – Limit

Table 7.1.3 Average output power test results

OPERATING FREQUENCY RANGE:					57.0 – 64.0 GHz			
DETECTOR USED:					Average			
MEASUREMENTS DISTANCE:					0.6 m			
VIDEO BANDWIDTH:					>10 MHz			
TRANSMITTER OUTPUT POWER SETTINGS:					Maximum			
	MODULAT	ION:			C	2PSK		
	Frequency,	λ*,	DSO,	Power measured,	Antenna	E _{meas} **,	EIRP***,	Limit,
	MHz	m	mV	dBm	Gain, dBi	dBuV/m	dBm	dBm
	60480	0.00496	4.597	-0.95	24.00	147.94	38.80	40.00

-1.30

* - λ = 300/Frequency(MHz)

0.00479

62640

** - E_{meas} = 126.8 – 20log(λ) + Power measured – Measurement Antenna Gain

*** - EIRP= E_{meas} + 20log(Measurements distance) - 104.7

4.939

**** - Margin = EIRP - Limit

Reference numbers of test equipment used

HL 0661	HL 0771	HL 3291	HL 3333	HL 3293	HL 3901	HL 4856	

24.00

147.89

38.78

40.00

Full description is given in Appendix A.

Test specification:	Section 15.255(b)(ii), Transmitter power and power spectral density				
Test procedure:	47 CFR, Section 2.1046; Sect	47 CFR, Section 2.1046; Section 15.255(b); ANSI C63.10, Section 9.11			
Test mode:	Compliance				
Date:	12/21/2016	verdict:	FA33		
Temperature: 22 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC		
Remarks:					

Plot 7.1.1 Output power test result at the low frequency

Plot 7.1.2 Output power test result at the high frequency

Test specification:	Section 15.215(c), Occupied bandwidth				
Test procedure:	47 CFR, Section 2.1049, ANSI C63.10, Section 9.3				
Test mode:	Compliance				
Date:	1/12/2017	verdict: PASS			
Temperature: 23 °C	Air Pressure: 1008 hPa	Relative Humidity: 42%	Power Supply: 48 VDC		
Remarks:					

7.2 Occupied bandwidth test

7.2.1 General

This test was performed to measure transmitter occupied bandwidth. Specification test limits are given in Table 7.2.1.

Table 7.2.1 Occupied bandwidth limits

Assigned frequency range, MHz	Modulation envelope reference points		
57000 - 64000	20 dBc		

NOTE: Modulation envelope reference points provided in terms of attenuation below unmodulated carrier.

7.2.2 Test procedure

- 7.2.2.1 The EUT was set up as shown in Figure 7.2.1, energized and its proper operation was checked.
- **7.2.2.2** The EUT was set to transmit modulated carrier as provided in Table 7.2.2.
- **7.2.2.3** The transmitter occupied bandwidth was measured with spectrum analyzer as frequency delta between reference points on modulation envelope. The test results are provided in Table 7.2.2 and the associated plots.

Figure 7.2.1 Occupied bandwidth test setup

Test specification:	Section 15.215(c), Occupied bandwidth				
Test procedure:	47 CFR, Section 2.1049, ANS	47 CFR, Section 2.1049, ANSI C63.10, Section 9.3			
Test mode:	Compliance	Verdiet: DASS			
Date:	1/12/2017	veruict.	FAGG		
Temperature: 23 °C	Air Pressure: 1008 hPa	Relative Humidity: 42%	Power Supply: 48 VDC		
Remarks:					

Table 7.2.2 Occupied bandwidth test results

OPERATING FREQU	JENCY RANGE:	57000 –6 Peak	57000 –64000 MHz Peak		
Frequency, MHz	Modulation	Occupied bandwidth 99%, MHz	Occupied bandwidth 20 dBc MHz	Verdict	
60480	ODSK	2104.8	2308.0	Pass	
62640	QPSK	2009.8	2243.0	Pass	

Reference numbers of test equipment used

HL 0771	HL 3433	HL 3434			

Full description is given in Appendix A.

Test specification:	Section 15.215(c), Occupied bandwidth					
Test procedure:	47 CFR, Section 2.1049, ANS	47 CFR, Section 2.1049, ANSI C63.10, Section 9.3				
Test mode:	Compliance	Vardiat: DASS				
Date:	1/12/2017	verdict.	FA33			
Temperature: 23 °C	Air Pressure: 1008 hPa	Relative Humidity: 42%	Power Supply: 48 VDC			
Remarks:						

Plot 7.2.1 Occupied bandwidth at low frequency

Spectrum An Occupied BV	nalyzer 1 V	• +				
	Input: Ext Mixer Signal ID: On Align: Auto	Corrections: Off Freq Ref: Int (S) NFE: Off	Mixer Path: Normal	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: 60.48000000 GHz Avg Hold:>10/10 Radio Std: None	
1 Graph	T					Mkr1 62.640 GHz
Scale/Div 10	0.0 dB			Ref Value 0.43	dBm	dBm
Log						1
-9.57						
-19.0						
-29.6		mannen	www.wenderson		and the second s	
-49.6		~~~				
-59.6						the second secon
-69.6						
-79.6						
-89.6						
Center 60.48 #Res BW 8.0	8 GHz 0000 MHz	I	N N	/ideo BW 50.00	0 MHz*	Span 3.24 GHz Sweep Time 1.33 ms (1001 pts
2 Metrics	۲					
	Occupied Ba Transmit Fre	andwidth 2.1048 GHz	73.866 MHz		Total Power % of OBW Power	-9.15 dBm 99.00 %
	x dB Bandwi	dth	2.308 GHz		x dB	-20.00 dB
1 5		Jan 04, 2017 8:05:24 PM				

Plot 7.2.2 Occupied bandwidth at the high frequency

Spectrum Analy Occupied BW	zer 1	• +				
	Input: Ext Mixer Signal ID: On Align: Auto	Corrections: Off Freq Ref: Int (S) NFE: Off	Mixer Path: Normal	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: 62.640000000 GHz Avg Hold:>10/10 Radio Std: None	
1 Graph	•			1		Mkr1 62.640 GHz
Scale/Div 10.0	dB			Ref Value 0.43	dBm	-29.589 dBm
-9.57						
-19.6				_ 1		
-29.6				~~~~~		
-39.6		- men mont	Martin a a		the second second	www.
-49.6	man warden has					Martin and and
-59.6						
-69.6						
-79.6						
-89.0						
Center 62.64 G #Res BW 8.00	Hz 00 MHz		<u>۱</u>	/ideo BW 50.000) MHz*	Span 3.24 GHz Sweep Time 1.33 ms (1001 pts)
2 Metrics	•					
	Occupied Ba	ndwidth 2.0098 GHz			Total Power	-10.0 dBm
	Transmit Fro	Error 1	7 119 MU7		% of OBW/ Power	99.00 %
	x dB Bandwid	ith -1	2.243 GHz		x dB	-20.00 dB
1 5	┍╴ ?	Jan 04, 2017 8:04:49 PM				

Test specification:	Section 15.255(c)(2), Out of band radiated emissions below 40 GHz						
Test procedure:	47 CFR, Section 2.1053; ANSI C63.10, Section 9.13						
Test mode:	Compliance	Vardiate DASS					
Date:	12/21/2016	verdict.	FA33				
Temperature: 22 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC				
Remarks:							

7.3 Out of band radiated emissions below 40 GHz

7.3.1 General

This test was performed to measure field strength of spurious emissions from the EUT. Specification test limits are given in Table 7.3.1.

	Field strength at 3 m within restricted bands, dB(µV/m)***					
Frequency, Minz	Peak	Quasi Peak	Average			
0.009 - 0.090	148.5 – 128.5	NA	128.5 – 108.5**			
0.090 - 0.110	NA	108.5 - 106.8**	NA			
0.110 - 0.490	126.8 – 113.8	NA	106.8 – 93.8**			
0.490 – 1.705		73.8 - 63.0**				
1.705 – 30.0*		69.5**				
30 – 88	NA	40.0	NA			
88 – 216		43.5				
216 – 960		46.0				
960 - 40000	74.0	NA	54.0			

Table 7.3.1 Radiated emission limits

*- The above field strength limits applied from the lowest radio frequency generated in the device, without going below 9 kHz up to the tenth harmonic of the highest fundamental frequency.

**- The limit for 3 m test distance was calculated using the inverse square distance extrapolation factor as follows: $\lim_{S_2} = \lim_{S_1} + 40 \log (S_1/S_2),$

where S_1 and S_2 – standard defined and test distance respectively in meters.

***- The limit decreases linearly with the logarithm of frequency.

7.3.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

- 7.3.2.1 The EUT was set up as shown in Figure 7.3.1, energized and the performance check was conducted.
- **7.3.2.2** The specified frequency range was investigated with loop antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna was rotated around its vertical axis and the measuring antenna polarization was switched from vertical to horizontal.
- 7.3.2.3 The worst test results (the lowest margins) were recorded in Table 7.3.2 and shown in the associated plots.

7.3.3 Test procedure for spurious emission field strength measurements above 30 MHz

- **7.3.3.1** The EUT was set up as shown in Figure 7.3.2, Figure 7.3.3, energized and the performance check was conducted.
- **7.3.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal.
- **7.3.3.3** The worst test results (the lowest margins) were recorded in Table 7.3.2, Table 7.3.3 and shown in the associated plots.

Test specification:	Section 15.255(c)(2), Out of band radiated emissions below 40 GHz						
Test procedure:	47 CFR, Section 2.1053; ANS	47 CFR, Section 2.1053; ANSI C63.10, Section 9.13					
Test mode:	Compliance	Vordict	DASS				
Date:	12/21/2016	verdict.	FA33				
Temperature: 22 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC				
Remarks:							

Figure 7.3.1 Radiated emissions below 30 MHz test set up

Figure 7.3.2 Radiated emissions in 30 MHz-1000 MHz test set up

Test specification:	Section 15.255(c)(2), Out of band radiated emissions below 40 GHz					
Test procedure:	47 CFR, Section 2.1053; ANS	47 CFR, Section 2.1053; ANSI C63.10, Section 9.13				
Test mode:	Compliance	Vordiot	DASS			
Date:	12/21/2016	verdict.	FA33			
Temperature: 22 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC			
Remarks:						

Figure 7.3.3 Setup for spurious emission field strength measurements above1000 MHz

Test specification:	Section 15.255(c)(2), Out of band radiated emissions below 40 GHz					
Test procedure:	47 CFR, Section 2.1053; ANSI C63.10, Section 9.13					
Test mode:	Compliance					
Date:	12/21/2016	verdict.	FA33			
Temperature: 22 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC			
Remarks:						

Table 7.3.2 Radiated emissions test results below 1000 MHz

TEST SITE: TEST DISTANCE: EUT POSITION: MODULATION: EMISSION BANDWIDTH: MODULATING SIGNAL: TRANSMITTER OUTPUT POWER SETTINGS: INVESTIGATED FREQUENCY RANGE: RESOLUTION BANDWIDTH: Semi Anechoic Chamber 3 m Typical (Vertical) QPSK 2160 MHz PRBS Maximum 0.009 - 40000 MHz 1.0 kHz (9 kHz - 150 kHz) 9.0 kHz (150 kHz - 30 MHz) 120 kHz (30 MHz - 1000 MHz) ≥ Resolution bandwidth Active loop (9 kHz - 30 MHz) Biconilog (30 MHz - 1000 MHz)

VIDEO BANDWIDTH: TEST ANTENNA TYPE:

	Dest		Quasi-peak			,		
Frequency, MHz	ency, emission, dB(μV/m) dB(μV		Antenna polarization	Antenna height, m	l urn-table position**, degrees	Verdict		
Low frequent	cy 60480 MHz							
41.85	36.1	34.6	40.0	-5.4	Vertical	1.0	53	Pass
75.46	36.7	35.8	40.0	-4.2	Vertical	1.1	105	Pass
650.00	45.7	44.0	46.0	-2.0	Horizontal	1.3	90	Pass
750.00	44.8	43.4	46.0	-2.6	Horizontal	1.5	60	Pass
875.00	45.2	43.9	46.0	-2.1	Vertical	1.5	356	Pass
High frequen	cy 62640 MHz	2						
41.85	36.3	34.8	40.0	-5.2	Vertical	1.1	60	Pass
75.46	36.4	35.3	40.0	-4.7	Vertical	1.1	110	Pass
650.00	45.7	43.5	46.0	-2.5	Horizontal	1.3	97	Pass
750.00	45.2	43.9	46.0	-2.1	Horizontal	14	100	Pass
875.00	45.7	43.5	46.0	-2.5	Vertical	1.5	356	Pass

*- Margin = Measured emission - specification limit.

**- EUT front panel refer to 0 degrees position of turntable.

Test specification:	Section 15.255(c)(2), Out of band radiated emissions below 40 GHz					
Test procedure:	47 CFR, Section 2.1053; ANSI C63.10, Section 9.13					
Test mode:	Compliance					
Date:	12/21/2016	verdict.	FA33			
Temperature: 22 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC			
Remarks:						

Table 7.3.3 Radiated emissions test results in 1000 – 40000 MHz range

		Dook field strength	Average field strength	
TEST ANTENNA TYPE:		Double-Ridged Waveguide Horn		
VIDEO BANDWIDTH:		≥ Resolution	bandwidth	
RESOLUTION BANDWIDTH:		1000 kHz		
INVESTIGATED FREQUENCY RA	NGE:	1000 – 4000	0 MHz	
TRANSMITTER OUTPUT POWER	SETTINGS:	Maximum		
MODULATING SIGNAL:		PRBS		
EMISSION BANDWIDTH:		2160 MHz		
MODULATION:		QPSK		
EUT POSITION:		Typical (Ver	tical)	
TEST DISTANCE:		3 m		
TEST SITE:		OATS		

Frequency,	Frequency, Antenna		Azimuth,	muth, (VBW=3 MHz)			(VBW=30 Hz)			Vordiot
MHz	Polariz.	Height, m	degrees*	Measured, dB(μV/m)	Limit, dB(µV/m)	Margin, dB**	Measured, dB(μV/m)	Limit, dB(µV/m)	largin, dB'	verdict
Low frequency 60480 MHz										
1000.025	Н	2.1	310	52.69	74.0	-21.31	41.33	54.0	-12.67	
2031.275	V	1.3	350	56.03	74.0	-17.97	43.02	54.0	-10.98	
2666.670	Н	2.1	45	62.45	74.0	-11.55	41.75	54.0	-12.25	Deee
5312.550	V	1.7	340	48.24	74.0	-25.76	40.70	54.0	-13.30	Fd55
5625.050	V	1.7	340	51.24	74.0	-22.76	46.00	54.0	-8.00	
7560.054	Н	1.6	330	56.43	74.0	-17.57	51.94	54.0	-2.06	
High freque	ncy 62640) MHz								
1000.000	Н	1.8	325	53.79	74.0	-20.21	40.70	54.0	-13.30	
2031.275	V	1.3	0	57.20	74.0	-16.80	42.86	54.0	-11.14	
2666.613	Н	2.0	45	61.05	74.0	-12.95	42.05	54.0	-11.95	Dass
5312.563	V	1.8	325	47.81	74.0	-26.19	40.17	54.0	-13.83	1 055
5625.140	V	1.8	350	51.04	74.0	-22.96	44.93	54.0	-9.07	
7560.050	Н	1.5	330	56.48	74.0	-17.52	51.91	54.0	-2.09	

*EUT front panel refer to 0 degrees position of turntable **- Margin = Measured emission - specification limit.

Reference numbers of test equipment used

HL 0446	HL 0521	HL 0604	HL 3818	HL 4353	HL 4956	HL 5101	HL 5111		
E H H H H H H H H H H									

Full description is given in Appendix A.

TEST DISTANCE:

Test specification:	Section 15.255(c)(2), Out of band radiated emissions below 40 GHz						
Test procedure:	47 CFR, Section 2.1053; ANSI C63.10, Section 9.13						
Test mode:	Compliance	Vardiat	DASS				
Date:	12/21/2016	verdict.	FA33				
Temperature: 22 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC				
Remarks:							

Plot 7.3.1 Radiated emission measurements from 9 to 150 kHz

TEST SITE:

TEST DISTANCE:

Test specification:	Section 15.255(c)(2), Out of band radiated emissions below 40 GHz			
Test procedure:	47 CFR, Section 2.1053; ANSI C63.10, Section 9.13			
Test mode:	Compliance	- Verdict: PASS		
Date:	12/21/2016			
Temperature: 22 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC	
Remarks:				

Plot 7.3.3 Radiated emission measurements from 0.15 to 30 MHz at low frequency

Plot 7.3.4 Radiated emission measurements from 0.15 to 30 MHz at high frequency

sec

TEST DISTANCE:

Test specification:	Section 15.255(c)(2), Out of band radiated emissions below 40 GHz			
Test procedure:	47 CFR, Section 2.1053; ANSI C63.10, Section 9.13			
Test mode:	Compliance	Verdict: PASS		
Date:	12/21/2016			
Temperature: 22 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC	
Remarks:				

Plot 7.3.5 Radiated emission measurements from 30 to 1000 MHz at low frequency

Semi anechoic chamber 3 m Horizontal

Ø

Test specification:	Section 15.255(c)(2), Out of band radiated emissions below 40 GHz			
Test procedure:	47 CFR, Section 2.1053; ANSI C63.10, Section 9.13			
Test mode:	Compliance	Verdict: PASS		
Date:	12/21/2016			
Temperature: 22 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC	
Remarks:				

Plot 7.3.7 Radiated emission measurements from 30 to 1000 MHz at high frequency

Semi anechoic chamber 3 m Horizontal

Ø

ACTV DET: PEAK MEAS DET: PEAK OP AVG MKR 873.3 MHz 44.36 dBµV/m

Test specification:	Section 15.255(c)(2), Out of band radiated emissions below 40 GHz			
Test procedure:	47 CFR, Section 2.1053; ANSI C63.10, Section 9.13			
Test mode:	Compliance	Verdict: PASS		
Date:	12/21/2016			
Temperature: 22 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC	
Remarks:				

Plot 7.3.9 Radiated emission measurements from 1000 to 6000 MHz at low frequency

Plot 7.3.10 Radiated emission measurements from 1000 to 6000 MHz at low frequency

TEST SITE: TEST DISTANCE: ANTENNA POLARIZATION: Semi Anechoic chamber 3 m Horizontal

Ø

Test specification:	Section 15.255(c)(2), Out of band radiated emissions below 40 GHz			
Test procedure:	47 CFR, Section 2.1053; ANSI C63.10, Section 9.13			
Test mode:	Compliance	Verdict: PASS		
Date:	12/21/2016			
Temperature: 22 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC	
Remarks:				

Plot 7.3.11 Radiated emission measurements from 1000 to 6000 MHz at high frequency

Plot 7.3.12 Radiated emission measurements from 1000 to 6000 MHz at high frequency

TEST SITE: TEST DISTANCE: ANTENNA POLARIZATION: Semi Anechoic chamber 3 m Horizontal

Ø

Test specification:	Section 15.255(c)(2), Out of band radiated emissions below 40 GHz			
Test procedure:	47 CFR, Section 2.1053; ANSI C63.10, Section 9.13			
Test mode:	Compliance	Verdict: PASS		
Date:	12/21/2016			
Temperature: 22 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC	
Remarks:				

Plot 7.3.13 Radiated emission measurements from 6000 - 18000 MHz at low frequency

Test specification:	Section 15.255(c)(2), Out of band radiated emissions below 40 GHz			
Test procedure:	47 CFR, Section 2.1053; ANSI C63.10, Section 9.13			
Test mode:	Compliance	Verdict: PASS		
Date:	12/21/2016			
Temperature: 22 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC	
Remarks:				

Plot 7.3.15 Radiated emission measurements from 18000 to 26500 MHz at low frequency

TEST SITE: TEST DISTANCE: ANTENNA POLARIZATION:

OATS 3 m Vertical and Horizontal

Test specification:	Section 15.255(c)(2), Out of band radiated emissions below 40 GHz			
Test procedure:	47 CFR, Section 2.1053; ANS	C63.10, Section 9.13		
Test mode:	Compliance	Verdict: PASS		
Date:	12/21/2016			
Temperature: 22 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC	
Remarks:				

Plot 7.3.17 Radiated emission measurements from 26500 to 40000 MHz at low frequency

Test specification:	Section 15.255(c)(3), Out of band radiated emissions above 40 GHz			
Test procedure:	ANSI C63.10, Sections 9.9, 9.	.12		
Test mode:	Compliance			
Date:	12/20/2016-12/21/2016	veruici.	FA33	
Temperature: 22°C	Air Pressure: 1011 hPa	Relative Humidity: 51%	Power Supply: 48 VDC	
Remarks:				

7.4 Out of band radiated emissions above 40 GHz up to 200 GHz

7.4.1 General

This test was performed to measure radiated spurious emissions from the EUT. Specification test limits are given in Table 7.4.1.

Frequency, GHz	Power density at 3 m distance pW/cm ²	Distance, m	Field strength dB(μV/m)*, peak	Field strength dB(μV/m)*, average
40 – 220	90.0	3.0	105.30	85.30
75 - 110	90.0	0.70	120.90**	100.90**
110 - 140	90.0	0.05	140.90**	120.90**
140 - 200	90.0	0.01	154.80**	134.80**

Table 7.4.1 Radiated spurious emission test limits

* Field strength was calculated per equation (26) of ANSI C63.10-2013 section 9 as follows: E=sqrt(PD×377), where PD is the power density at the distance specified by the limit in W/m², E- field strength in V/m. **- The limit for other test distance was calculated using the inverse distance extrapolation factor as follows: $\lim_{s_2} \lim_{s_1 \to s_1} \lim_{s_2 \to s_1} \lim_{s_1 \to s_2} \lim_{s_2 \to s_2} \lim_{s_2 \to s_2} \lim_{s_1 \to s_2} \lim_{s_2 \to s_2} \lim$

7.4.2 Test procedure for spurious emission field strength measurements

- 7.4.2.1 The EUT was set up as shown in Figure 7.4.1, energized and the performance check was conducted.
- **7.4.2.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal.
- **7.4.2.3** The test results are given in Table 7.4.2 and shown in the associated plots.

Test specification:	Section 15.255(c)(3), Out of band radiated emissions above 40 GHz			
Test procedure:	ANSI C63.10, Sections 9.9, 9	.12		
Test mode:	Compliance	Vardiat: DASS		
Date:	12/20/2016-12/21/2016	verdict:	FA33	
Temperature: 22°C	Air Pressure: 1011 hPa	Relative Humidity: 51%	Power Supply: 48 VDC	
Remarks:				

Figure 7.4.1 Radiated emissions above 40 GHz test set up

Test specification:	Section 15.255(c)(3), Out of band radiated emissions above 40 GHz			
Test procedure:	ANSI C63.10, Sections 9.9, 9	.12		
Test mode:	Compliance	Vardiat	DV66	
Date:	12/20/2016-12/21/2016	verdict: PASS		
Temperature: 22°C	Air Pressure: 1011 hPa	Relative Humidity: 51%	Power Supply: 48 VDC	
Remarks:				

Table 7.4.2 Out of band radiated emissions test results

TEST DISTANCE: EUT POSITION: MODULATION: CHANNEL BANDWIDTH: TRANSMITTER OUTPUT POWER: INVESTIGATED FREQUENCY RANGE: RESOLUTION BANDWIDTH: VIDEO BANDWIDTH: TEST ANTENNA TYPE:	0.05 - 3 m Typical (Vertical) QPSK 2160 MHz Maximum 40 – 200 GHz 1000 kHz ≥ Resolution bandwidth Standard Gain Horn 24dB (40-60 GHz) Standard Gain Horn 24dB (50-75 GHz) Standard Gain Horn 24dB (75-110 GHz) Standard Gain Horn 24dB (90-140 GHz) Standard Gain Horn 24dB (140-220 GHz)
Antenna	Peak field strength(VBW=3 MHz) Average field strength(VBW=1 kHz)

Fraguenau	Anter	าทล	A -imauth	Peak field strength(VBW=3 MHz)		Average field strength(VBW=1 kHz)				
Frequency,	Delevie	Height,	Azimuth,	Measured,	Limit,	Margin,	Measured,	Limit,	Margin,	Verdict
WHZ	Polariz.	m	aegrees"	dB(µV/m)	dB(µV/m)	dB**	dB(µV/m)	dB(μV/m)	dB**	
Low carrier frequency										
No emissions were found						Pass				
High carrier frequency										
No emissions were found					Pass					

*- EUT front panel refer to 0 degrees position of turntable. **- Margin = Measured emission - specification limit.

Reference numbers of test equipment used

HL 0747	HL 0748	HL 0770	HL 0771	HL 0772	HL 1295	HL 1299	HL 1303
HL 1304	HL 1306	HL 1312	HL 2909	HL 3235	HL 3290	HL 3291	HL 3294
HL 3297	HL 3305	HL 3329	HL 3433	HL 3434	HL 3536	HL 3901	HL 4023

Full description is given in Appendix A.

Test specification:	Section 15.255(c)(3), Out of band radiated emissions above 40 GHz				
Test procedure:	ANSI C63.10, Sections 9.9, 9	12			
Test mode:	Compliance	Vordict	DV66		
Date:	12/20/2016-12/21/2016	verdict.	FA33		
Temperature: 22°C	Air Pressure: 1011 hPa	Relative Humidity: 51%	Power Supply: 48 VDC		
Remarks:					

Plot 7.4.2 Radiated emission measurements from 40 to 57 GHz at the high frequency

OATS 3 m Vertical & Horizontal DETECTOR: Average

Test specification:	Section 15.255(c)(3), Out of band radiated emissions above 40 GHz			
Test procedure:	ANSI C63.10, Sections 9.9, 9.	12		
Test mode:	Compliance	Vordict	DV66	
Date:	12/20/2016-12/21/2016	verdict.	FA33	
Temperature: 22°C	Air Pressure: 1011 hPa	Relative Humidity: 51%	Power Supply: 48 VDC	
Remarks:				

Plot 7.4.4 Radiated emission measurements from 64 to 75 GHz at the high frequency

Test specification:	Section 15.255(c)(3), Out of band radiated emissions above 40 GHz			
Test procedure:	ANSI C63.10, Sections 9.9, 9.	12		
Test mode:	Compliance	Verdiety DASS		
Date:	12/20/2016-12/21/2016	verdict.	FA33	
Temperature: 22°C	Air Pressure: 1011 hPa	Relative Humidity: 51%	Power Supply: 48 VDC	
Remarks:				

Plot 7.4.5 Radiated emission measurements from 75 to 90 GHz at the low frequency

Test specification:	Section 15.255(c)(3), Out of band radiated emissions above 40 GHz			
Test procedure:	ANSI C63.10, Sections 9.9, 9	12		
Test mode:	Compliance	Vordict	DV66	
Date:	12/20/2016-12/21/2016	verdict.	FA33	
Temperature: 22°C	Air Pressure: 1011 hPa	Relative Humidity: 51%	Power Supply: 48 VDC	
Remarks:				

Plot 7.4.8 Radiated emission measurements from 90 to 110 GHz at the high frequency

Test specification:	Section 15.255(c)(3), Out of band radiated emissions above 40 GHz			
Test procedure:	ANSI C63.10, Sections 9.9, 9	.12		
Test mode:	Compliance	Vordiot	DV66	
Date:	12/20/2016-12/21/2016	verdict.	FA33	
Temperature: 22°C	Air Pressure: 1011 hPa	Relative Humidity: 51%	Power Supply: 48 VDC	
Remarks:				

Test specification:	Section 15.255(c)(3), Out of band radiated emissions above 40 GHz			
Test procedure:	ANSI C63.10, Sections 9.9, 9	.12		
Test mode:	Compliance	Vordiot	DV66	
Date:	12/20/2016-12/21/2016	verdict.	FA33	
Temperature: 22°C	Air Pressure: 1011 hPa	Relative Humidity: 51%	Power Supply: 48 VDC	
Remarks:				

Test specification:	Section 15.255(c)(3), Out of band radiated emissions above 40 GHz			
Test procedure:	ANSI C63.10, Sections 9.9, 9	.12		
Test mode:	Compliance	Vordiot	DV66	
Date:	12/20/2016-12/21/2016	verdict.	FA33	
Temperature: 22°C	Air Pressure: 1011 hPa	Relative Humidity: 51%	Power Supply: 48 VDC	
Remarks:				

Test specification:	Section 15.255(c)(3), Out of band radiated emissions above 40 GHz			
Test procedure:	ANSI C63.10, Sections 9.9, 9	.12		
Test mode:	Compliance	Vordiot	DV66	
Date:	12/20/2016-12/21/2016	verdict.	FA33	
Temperature: 22°C	Air Pressure: 1011 hPa	Relative Humidity: 51%	Power Supply: 48 VDC	
Remarks:				

Test specification:	Section 15.255(c)(3), Out of band radiated emissions above 40 GHz			
Test procedure:	ANSI C63.10, Sections 9.9, 9.	12		
Test mode:	Compliance	Vordict	DASS	
Date:	12/20/2016-12/21/2016	verdict.	FA33	
Temperature: 22°C	Air Pressure: 1011 hPa	Relative Humidity: 51%	Power Supply: 48 VDC	
Remarks:				

Test specification:	Section 15.255(f), Frequency tolerance		
Test procedure:	47 CFR, Section 2.1055; ANSI C63.10, Section 9.14		
Test mode:	Compliance	Vardiat: DASS	
Date:	12/08/2016	verdict.	FA33
Temperature: 24.3°C	Air Pressure: 1012 hPa	Relative Humidity: 42%	Power Supply: 48 VDC
Remarks:			

7.5 Frequency stability test

7.5.1 General

This test was performed to measure frequency stability of transmitter RF carrier. Specification test limits are given in Table 7.5.1.

Table	7.5.1	Fred	luencv	stability	/ limits
1 4 5 1 5			aonoy	otasint	,

Assigned frequency, MHz	Maximum allowed frequency displacement	
60480	NIA	
62640	NA	

7.5.2 Test procedure

- 7.5.2.1 The EUT was set up as shown in Figure 7.5.1, energized and its proper operation was checked.
- **7.5.2.2** The EUT power was turned off. Temperature within test chamber was set to +30°C and a period of time sufficient to stabilize all of the oscillator circuit components was allowed.
- **7.5.2.3** The EUT was powered on and carrier frequency was measured at start up moment and then every minute until frequency had been stabilized or 10 minutes elapsed whichever reached the last. The EUT was powered off.
- 7.5.2.4 The above procedure was repeated at 0°C and at the lowest test temperature.
- **7.5.2.5** The EUT was powered on and carrier frequency was measured at start up moment and at the end of stabilization period at the rest of test temperatures and voltages. The EUT was powered off.
- 7.5.2.6 Frequency displacement was calculated and compared with the limit as provided in Table 7.5.2.

Figure 7.5.1 Frequency stability test setup

Test specification:	Section 15.255(f), Frequency tolerance			
Test procedure:	47 CFR, Section 2.1055; ANS	47 CFR, Section 2.1055; ANSI C63.10, Section 9.14		
Test mode:	Compliance	Vordict	DAGG	
Date:	12/08/2016	verdict: PASS		
Temperature: 24.3°C	Air Pressure: 1012 hPa	Relative Humidity: 42%	Power Supply: 48 VDC	
Remarks:				

Table 7.5.2 Frequency stability test results

OPERATING FREQUENCY: NOMINAL POWER VOLTAGE: TEMPERATURE STABILIZATION PERIOD: POWER DURING TEMPERATURE TRANSITION: SPECTRUM ANALYZER MODE: RESOLUTION BANDWIDTH: VIDEO BANDWIDTH: MODULATION:

57000 – 64000 MHz 48 V output of AC/DC adapter (V input=120 VAC) 20 min Off Counter 3 kHz 10 kHz Unmodulated

т, ⁰С	Voltage,		Frequency, MHz					Max frequency drift, kHz		
	, v	Start up	1 st min	2 nd min	3 rd min	4 th min	5 th min	10 th min	Posit	Negative
Low f	requency									
-20	nominal	60578.3325	60578.3200	60578.3575	60578.3125	60578.3325	60578.3325	60578.3325	0	-1570.00
-10	nominal	60578.2900	NA	NA	NA	NA	NA	60578.2950	0	-1592.50
0	nominal	60578.1700	60578.1700	60578.1575	60578.1725	60578.1750	60578.1725	60578.1700	0	-1725.00
10	nominal	60579.9875	NA	NA	NA	NA	NA	60580.0025	120.00	0
20	+15%(126.5V)	60579.9000	NA	NA	NA	NA	NA	60579.9050	22.50	0
20	nominal	60579.8825	NA	NA	NA	NA	NA	60579.9250	42.50	0
20	-15%(93.5V)	60579.8875	NA	NA	NA	NA	NA	60579.9000	17.50	0
30	nominal	60579.8225	60579.8175	60579.8200	60579.8150	60579.8100	60579.8100	60579.8050	0	-77.50
40	nominal	60579.7450	NA	NA	NA	NA	NA	60579.7425	0	-140.00
50	nominal	60579.8000	NA	NA	NA	NA	NA	60579.8025	0	-82.50
High 1	requency									
-20	nominal	62740.3450	62740.3475	62740.3325	62740.3450	62740.3450	62740.3475	62740.3450	455.00	0
-10	nominal	62740.3000	NA	NA	NA	NA	NA	62740.3075	415.00	0
0	nominal	62740.1700	62740.1725	62740.1725	62740.1720	62740.1750	62740.1775	62740.1800	287.50	0
10	nominal	62739.9825	NA	NA	NA	NA	NA	62740.0075	115.00	0
20	+15%(126.5V)	62739.8912	NA	NA	NA	NA	NA	62739.9015	9.00	-1.30
20	nominal	62739.8925	NA	NA	NA	NA	NA	62739.9002	7.70	0
20	-15%(93.5V)	62739.8912	NA	NA	NA	NA	NA	62739.9005	8.00	-1.30
30	nominal	62739.7975	62739.7950	62739.7975	62739.7925	62739.7925	62739.7900	62739.7925	0	-102.50
40	nominal	62739.7350	NA	NA	NA	NA	NA	62739.7325	0	-160.00
50	nominal	62739.7900	NA	NA	NA	NA	NA	62739.7975	0	-102.50

* - Reference frequency

Reference numbers of test equipment used

HL 1303	HL 2358	HL 2909	HL 3291	HL 3295	HL 3305	HL 3433	HL 3434

Full description is given in Appendix A.

8 APPENDIX A Test equipment and ancillaries used for tests

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
0446	Antenna, Loop, Active, 10 kHz - 30 MHz	EMCO	6502	2857	18-Jan-16	18-Jan-17
0521	EMI Receiver (Spectrum Analyzer) with RF filter section 9 kHz-6.5 GHz	Hewlett Packard	8546A	3617A 00319, 3448A002 53	27-Oct-16	27-Oct-17
0604	Antenna BiconiLog Log-Periodic/T Bow- TIE, 26 - 2000 MHz	EMCO	3141	9611-1011	10-May-16	10-May-17
0661	Generator Swept Signal, 10 MHz to 40 GHz, + 10 dBm	Hewlett Packard	83640B	3614A002 66	10-May-16	10-May-17
0747	Mixer, Millimeter Wave Harmonic 90 - 140 GHZ	Oleson Microwave Labs	M08HW	F80429-1	30-Nov-16	30-Nov-17
0748	Mixer Millimeter Wave Harmonic 60 - 90 GHz	Oleson Microwave Labs	M12 HW	E 804 29-1	30-Nov-16	30-Nov-17
0770	Antenna Standard Gain Horn, 40-60 GHz WR-19, U-band, 24 dB mid-band gain	Quinstar Technology	QWH- 1900-AA	118	17-Jul-16	17-Jul-17
0771	Antenna Standard Gain Horn, 60-90 GHz, WR-12, 24 dB mid-band gain	Quinstar Technology	QWH- 1200-AA	111	14-Jul-16	14-Jul-17
0772	Antenna Standard Gain Horn, 75-110 GHz, WR-10, 24 dB mid-band gain	Quinstar Technology	QWH- 0800-AA	110	14-Jul-16	14-Jul-17
1295	Adapter 35WR28Kf, 26.5-40 GHz	Wiltron	35WR28K F	1295	17-Sep-15	17-Sep-17
1299	Transition waveguide ET28S -19R	Custom Microwave	ET28S - 19R	1299	30-Jul-15	30-Jul-18
1303	Transition waveguide ET28S -12R	Custom Microwave	ET28S - 12R	S0951	30-Jul-15	30-Jul-18
1304	Transition waveguide ET28S - 8R	Custom Microwave	ET28S - 8R	1304	30-Jul-15	30-Jul-18
1306	Transition waveguide ET28S - 5R	Custom Microwave	ET28S - 5R	1306	30-Jul-15	30-Jul-18
1312	Mixer Millimeter Wave Harmonic 140-220 GHz	Oleson Microwave Labs	M05HWD	G91112-1	30-Nov-16	30-Nov-17
2358	Power Supply, 2 X 0-36VDC / 5A, 5VDC / 5A	Horizon Electronics	DHR3655 D	767469	02-Jun-16	02-Jun-17
2909	Spectrum analyzer, ESA-E, 100 Hz to 26.5 GHz	Agilent Technologies	E4407B	MY414447 62	21-Feb-16	21-Feb-17
3235	Harmonic mixer 40 to 60 GHz	Agilent Technologies	11970U	MY300301 82	16-Aug-16	16-Aug-19
3290	Attenuator, direct reading, 40 to 60 GHz, 0.4 W	Quinstar Technology	QAD- U00000	10381008	30-Nov-16	30-Nov-17
3291	Attenuator, direct reading, 60 to 90 GHz, 0.2 W	Quinstar Technology	QAD- E00000	10381009	30-Nov-16	30-Nov-17
3293	Frequency multiplier, input 20-30 GHz, output 60-90 GHz	Quinstar Technology	QPM- 75003E	10381003	30-Nov-16	30-Nov-17
3294	Tapered transition, WR-28, UG-599 to WR-15, UG-385 (26.5-40 GHz to 50-75 GHz)	Quinstar Technology	QWP- AV0000	10381004	30-Jul-15	30-Jul-18
3295	Tapered transition, WR-28, UG-599 to WR-15, UG-385 (26.5-40 GHz to 50-75 GHz)	Quinstar Technology	QWP- AV0000	10381005	30-Jul-15	30-Jul-18
3297	Tapered, WR-28, UG-599 to WR-10, UG- 387 (26.5-40 GHz to 75-100 GHz)	Quinstar Technology	QWP- AW0000	10381007	30-Jul-15	30-Jul-18
3305	Harmonic mixer 50 to 75 GHz	Agilent Technologies	11970V	MY300301 49	16-Aug-16	16-Aug-19

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
3329	Antenna Standard Gain Horn, 140-220 GHz, WR-5, 24 dB mid-band gain	Quinstar Technology	NA	3329	20-Jul-16	20-Jul-17
3333	Oscilloscope, 1 GHz, 4 channels	LeCroy Corporation	LC584AL	10239	18-Jan-17	18-Jan-18
3433	Test Cable , DC-18 GHz, 1.5 m, SMA - SMA	Mini-Circuits	CBL-5FT- SMSM+	25679	20-Mar-16	20-Mar-17
3434	Test Cable , DC-18 GHz, 1.5 m, SMA - SMA	Mini-Circuits	CBL-5FT- SMSM+	25683	20-Mar-16	20-Mar-17
3536	Antenna Standard Gain Horn, 90-140 GHz, WR-8, 24 dB mid-band gain	Quinstar Technology	QWH- FPRR00	111590040 01	13-Jun-16	13-Jun-17
3818	PSA Series Spectrum Analyzer, 3 Hz- 44 GHz	Agilent Technologies	E4446A	MY482502 88	03-May-16	03-May-17
3901	Microwave Cable Assembly, 40.0 GHz, 3.5 m, SMA/SMA	Huber-Suhner	SUCOFLE X 102A	1225/2A	15-Feb-16	15-Feb-17
4023	Diplexer for use OML mixers with Agilent spectrum analyzer	Oleson Microwave Labs	DPL.26	NA	30-Nov-16	30-Nov-17
4353	Low Loss Armored Test Cable, DC - 18 GHz, 6.2 m, N type-M/N type-M	MegaPhase	NC29- N1N1-244	12025101 003	15-Mar-16	15-Mar-17
4856	Amplifier, solid state, 18 GHz to 40 GHz, 20 dBm output power	Quinstar Technology	QGW- 18402023 -JO	167790010 01	14-Apr-16	14-Apr-17
4956	Active horn antenna, 18 to 40 GHz	Com-Power Corporation	AHA-840	105004	17-Jan-17	17-Jan-18
5101	RF cable, 18 GHz, 6 m, N-type	Huber-Suhner	SF106A/1 1N/11N/6 000MM	500847/6A	26-Jul-16	26-Jul-17
5111	RF cable, 40 GHz, 5.5 m, K-type	Huber-Suhner	SF102EA/ 11SK/11S K/5500M M	502493/2E A	26-Jul-16	26-Jul-17

8.1 Test equipment and ancillaries used for tests

HL No.	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
NA	Signal Analyzer	Keysight	MXA N9020B	MY56080134	21-Apr-16	21-Apr-18
NA	Waveguide Harmonic Mixer	Keysight	M1971E OPT 003	MY55270136	29-Nov-16	29-Nov-17
NA	RF detector	Pacific	VDH	NA	NA	NA
NA	PM-Sensor	Keysight	E8486A	MY55050012	15-Nov-16	15-Nov-17
NA	Power meter	Keysight	E4419B	GB39290617	10-Mar-16	11-Mar-17

9 APPENDIX B Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Test description	Expanded uncertainty
Frequency error	± 0.56 ppm
Carrier power conducted	± 1.7 dB
Spurious emissions conducted at RF antenna	30 MHz to 2.9 GHz: ± 2.6 dB
connector	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 12.75 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Radiated emissions at 3 m measuring distance	
Horizontal polarization	Biconilog antenna: ± 5.3 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: ± 5.3 dB
Vertical relativation	Double ridged horn antenna: \pm 5.3 dB
ventical polarization	Biconilog antenna: ± 6.0 dB
	Biconical antenna: ± 5.7 dB
	Log periodic antenna: ± 6.0 dB
	Double ridged horn antenna: \pm 6.0 dB

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

10 APPENDIX C Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, safety, environmental and telecommunication testing facility.

Hermon Laboratories is recognized and accredited by the Federal Communications Commission (USA) for 1, 2, 15, 18 parts of Code of Federal Regulations 47 (CFR 47), Test Firm Registration Number is 927748, Designation Number is IL1001; registered by Industry Canada for electromagnetic emissions, file number IC 2186A-1 for OATS, certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, G-869 for RE measurements above 1 GHz, C-845 for conducted emissions site, T-1606 for conducted emissions at telecommunication ports). The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing and environmental simulation (for exact scope please refer to Certificate No. 839.01).

P.O. Box 23, Binyamina 30500, Israel.
+972 4628 8001
+972 4628 8277
mail@hermonlabs.com
www.hermonlabs.com

Person for contact: Mr. Alex Usoskin, CEO.

11 APPENDIX D Specification references

47CFR part 15: 2015	Radio Frequency Devices.
FCC 47CFR part 2: 2015	Frequency allocations and radio treaty matters; general rules and regulations
ANSI C63.2: 1996	American National Standard for Instrumentation-Electromagnetic Noise and Field Strength, 10 kHz to 40 GHz-Specifications.
ANSI C63.4: 2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
ANSI C63.10: 2013	American National Standard of Procedures for Compliance Testing of Unlicemsed Wireless Devices

12 APPENDIX E Test equipment correction factors

Antenna Factor Active Loop Antenna EMC Test Systems, model 6502, S/N 2857, HL 0446

Frequency, MHz	Magnetic Antenna Factor, dB(S/m)	Electric Antenna Factor, dB(1/m)
0.009	-32.8	18.7
0.010	-33.8	17.7
0.020	-38.3	13.2
0.050	-41.1	10.4
0.075	-41.3	10.2
0.100	-41.6	9.9
0.150	-41.7	9.8
0.250	-41.6	9.9
0.500	-41.8	9.7
0.750	-41.9	9.6
1.000	-41.4	10.1
2.000	-41.5	10.0
3.000	-41.4	10.1
4.000	-41.4	10.1
5.000	-41.5	10.0
10.000	-41.9	9.6
15.000	-41.9	9.6
20.000	-42.2	9.3
25.000	-42.8	8.7
30.000	-44.0	7.5

Antenna factor in dB(S/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ A/m). Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Antenna factor Standard gain horn antenna Quinstar Technology Model QWH Ser.No.112, HL 0768, 0769, 0770, 0771, 0772

Frequency min, GHz	Frequency max, GHz	Antenna factor, dB(1/m)
18.000	26.500	32.01
26.500	40.000	35.48
40.000	60.000	39.03
60.000	90.000	42.55
90.000	140.000	46.23
140.000	220.000	50.11

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Antenna factor				
Biconilog antenna EMCO Model 3141				
Ser.No.1011, HL 0604				

Frequency, MHz	Antenna factor, dB(1/m)	Frequency, MHz	Antenna factor, dB(1/m)	Frequency, MHz	Antenna factor, dB(1/m)
26	7.8	580	20.6	1320	27.8
28	7.8	600	21.3	1340	28.3
30	7.8	620	21.5	1360	28.2
40	7.2	640	21.2	1380	27.9
60	7.1	660	21.4	1400	27.9
70	8.5	680	21.9	1420	27.9
80	9.4	700	22.2	1440	27.8
90	9.8	720	22.2	1460	27.8
100	9.7	740	22.1	1480	28.0
110	9.3	760	22.3	1500	28.5
120	8.8	780	22.6	1520	28.9
130	8.7	800	22.7	1540	29.6
140	9.2	820	22.9	1560	29.8
150	9.8	840	23.1	1580	29.6
160	10.2	860	23.4	1600	29.5
170	10.4	880	23.8	1620	29.3
180	10.4	900	24.1	1640	29.2
190	10.3	920	24.1	1660	29.4
200	10.6	940	24.0	1680	29.6
220	11.6	960	24.1	1700	29.8
240	12.4	980	24.5	1720	30.3
260	12.8	1000	24.9	1740	30.8
280	13.7	1020	25.0	1760	31.1
300	14.7	1040	25.2	1780	31.0
320	15.2	1060	25.4	1800	30.9
340	15.4	1080	25.6	1820	30.7
360	16.1	1100	25.7	1840	30.6
380	16.4	1120	26.0	1860	30.6
400	16.6	1140	26.4	1880	30.6
420	16.7	1160	27.0	1900	30.6
440	17.0	1180	27.0	1920	30.7
460	17.7	1200	26.7	1940	30.9
480	18.1	1220	26.5	1960	31.2
500	18.5	1240	26.5	1980	31.6
520	19.1	1260	26.5	2000	32.0
540	19.5	1280	26.6		
560	19.8	1300	27.0		

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Antenna factor, HL 4956

Active Horn Antenna Factor Calibration

18 GHz to 40 GHz

Equipment:				ACTIVE HC	ORN ANTENNA
Model:					AHA-840
Serial Number:					105004
Calibration Dist	tance:				3 meter
Polarization:					Horizonta
Calibration Dat	e:				1/26/2015
Frequency	Preamplifier Gain	Antenna Factor with pre-amp	Frequency	Preamplifier Gain	Antenna Factor with pre-amp
(GHz)	(dB)	(dB/m)	(GHz)	(dB)	(dB/m)
18	38.83	-1.06	29.5	42.47	-5-33
18.5	39.34	-2.65	30	41.91	-4.86
19	39.71	-3.88	30.5	41.60	-4.64
19.5	39.87	-4-35	31	41.52	-4.60
20	39.98	-3-97	31.5	41.56	-4.79
20.5	40.42	-3.68	32	41.80	-5.21
21	41.12	-4.06	32.5	42.29	-5.54
21.5	41.74	-5.46	33	42.79	-5.63
22	42.14	-6.22	33.5	42.88	-5.38
22.5	42.35	-6.42	34	42.62	-4.76
23	42.50	-6.59	34.5	42.63	-4.84
23.5	42.65	-6.82	35	43.15	-5.13
24	42.81	-7.01	35.5	43.91	-5.83
24.5	42.86	-7.37	36	44-59	-6.39
25	42.73	-7.53	36.5	45.04	-6.64
25.5	42.77	-7.45	37	45.08	-6.40
26	42.85	-7.21	37-5	44.82	-5-75
26.5	42.98	-7.17	38	44.16	-4.58
27	43.14	-7.22	38.5	42.90	-2.66
27.5	43.18	-7.32	39	42.39	-1.71
28	43.04	-7.10	39.5	43.76	-2.49
39 5	43.01	-6.73	40	45.98	-5.21

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10.0	0.06	9000	2.01
100	0.17	9500	2.06
500	0.41	10000	2.05
1000	0.58	10500	2.18
1500	0.72	11000	2.26
2000	0.86	11500	2.28
2500	0.96	12000	2.43
3000	1.04	12500	2.53
3500	1.13	13000	2.52
4000	1.23	13500	2.56
4500	1.31	14000	2.60
5000	1.41	14500	2.59
5500	1.49	15000	2.67
6000	1.55	15500	2.76
6500	1.63	16000	2.86
7000	1.71	16500	2.91
7500	1.78	17000	2.95
8000	1.86	17500	3.02
8500	1.92	18000	3.07

Cable loss Test Cable, Mini-Circuits, CBL-5FT-SMSM+, SMA-SMA, 18 GHz, 1.5 m Mini-Circuits, HL 3433

Cable loss
est Cable, Mini-Circuits, CBL-5FT-SMSM+, SMA-SMA, 18 GHz, 1.5 m, S/N 25683
Mini-Circuite HI 3434

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10.0	0.06	9000	1.96
100	0.16	9500	2.01
500	0.40	10000	2.01
1000	0.57	10500	2.14
1500	0.72	11000	2.21
2000	0.85	11500	2.24
2500	0.95	12000	2.36
3000	1.03	12500	2.47
3500	1.11	13000	2.46
4000	1.21	13500	2.50
4500	1.29	14000	2.53
5000	1.39	14500	2.53
5500	1.46	15000	2.62
6000	1.52	15500	2.70
6500	1.60	16000	2.80
7000	1.68	16500	2.86
7500	1.75	17000	2.88
8000	1.83	17500	2.94
8500	1.88	18000	3.00

Cable loss
Microwave Cable Assembly, Huber-Suhner, 40 GHz, 3.5 m, SMA-SMA, S/N 1225/2A
HL 3901

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	0.09	9500	4.29	21000	6.67
100	0.41	10000	4.40	22000	6.92
500	0.93	10500	4.52	23000	7.00
1000	1.33	11000	4.64	24000	7.18
1500	1.63	11500	4.76	25000	7.29
2000	1.90	12000	4.87	26000	7.55
2500	2.12	12500	4.99	27000	7.70
3000	2.33	13000	5.11	28000	7.88
3500	2.50	13500	5.20	29000	8.02
4000	2.67	14000	5.31	30000	8.15
4500	2.82	14500	5.42	31000	8.35
5000	2.99	15000	5.51	32000	8.40
5500	3.16	15500	5.58	33000	8.62
6000	3.32	16000	5.68	34000	8.73
6500	3.51	16500	5.78	35000	8.78
7000	3.65	17000	5.91	36000	8.94
7500	3.79	17500	5.99	37000	9.21
8000	3.92	18000	6.07	38000	9.37
8500	4.04	19000	6.36	39000	9.45
9000	4.18	20000	6.49	40000	9.52

Cable loss Low Loss Armored Test Cable, MegaPhase, 18 GHz, 6.2 m, N type-M/N type-M, NC29-N1N1-244S/N 12025101 003, HL 4353

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
50	0.20	9000	2.71
100	0.27	9500	2.81
300	0.47	10000	2.90
500	0.61	10500	2.97
1000	0.87	11000	3.06
1500	1.07	11500	3.13
2000	1.24	12000	3.20
2500	1.39	12500	3.26
3000	1.53	13000	3.34
3500	1.65	13500	3.39
4000	1.77	14000	3.47
4500	1.89	14500	3.54
5000	1.99	15000	3.62
5500	2.07	15500	3.69
6000	2.20	16000	3.76
6500	2.30	16500	3.83
7000	2.39	17000	3.86
7500	2.51	17500	3.94
8000	2.58	18000	4.02
8500	2.65		

Cable loss RF Cable, Huber-Suhner, 18 GHz, 6 m, N- type, SF106A/11N/11N/6000MM, S/N 500847/6A HL 5101

Frequency, MHz	Cable loss, dB	Frequency, MH z	Cable loss, dB
0.1	0.01	5500	2 42
50	0.22	6000	2.53
100	0.31	6500	2.65
200	0.43	7000	2.76
300	0.53	7500	2.86
400	0.62	8000	2.96
500	0.69	8500	3.06
600	0.76	9000	3.16
700	0.82	9500	3.26
800	0.87	10000	3.35
900	0.93	10500	3.44
1000	0.98	11000	3.54
1100	1.03	11500	3.62
1200	1.08	12000	3.70
1300	1.12	12500	3.80
1400	1.17	13000	3.88
1500	1.21	13500	3.97
1600	1.25	14000	4.04
1700	1.29	14500	4.13
1800	1.33	15000	4.22
1900	1.37	15500	4.31
2000	1.41	16000	4.39
2500	1.59	16500	4.47
3000	1.75	17000	4.54
3500	1.90	17500	4.61
4000	2.04	18000	4.68
4500	2.17		
5000	2.30		

Cable loss RF Cable, Huber-Suhner, 40 GHz, 5.5 m, K type, SF102EA/11SK/11SK/5500MM, S/N 502493/2EA HL 5111

Frequency,	Cable loss,	Frequency,	Cable loss,
MHz	dB	MHz	dB
100	0.68	20500	10.17
200	0.97	21000	10.30
300	1.18	21500	10.43
500	1.52	22000	10.58
1000	2.14	22500	10.73
1500	2.62	23000	10.85
2000	3.03	23500	10.98
2500	3.39	24000	11.11
3000	3.72	24500	11.20
3500	4.03	25000	11.32
4000	4.32	25500	11.47
4500	4.59	26000	11.59
5000	4.84	26500	11.72
5500	5.09	27000	11.83
6000	5.32	27500	11.94
6500	5.55	28000	12.04
7000	5.77	28500	12.16
7500	5.99	29000	12.28
8000	6.19	29500	12.40
8500	6.40	30000	12.50
9000	6.60	30500	12.59
9500	6.79	31000	12.68
10000	6.98	31500	12.80
10500	7.16	32000	12.94
11000	7.34	32500	13.09
11500	7.51	33000	13.23
12000	7.68	33500	13.32
12500	7.84	34000	13.44
13000	8.00	34500	13.54
13500	8.15	35000	13.68
14000	8.31	35500	13.81
14500	8.46	36000	13.90
15000	8.62	36500	13.99
15500	8.76	37000	14.12
16000	8.91	37500	14.22
16500	9.06	38000	14.33
17000	9.21	38500	14.47
17500	9.35	39000	14.54
18000	9.49	39500	14.62
18500	9.62	40000	14.75
19000	9.76		
19500	9.90		
20000	10.05		

13 APPENDIX F Abbreviations and acronyms

A	ampere
AC	alternating current
A/m	ampere per meter
AM	amplitude modulation
AVRG	average (detector)
CBW	channel bandwidth
cm	centimeter
dB	decibel
dBm	decibel referred to one milliwatt
dB(uV)	decibel referred to one microvolt
$dB(\mu V)$ $dB(\mu V/m)$	decibel referred to one microvolt per meter
	decibel referred to one microampare
	direct auropt
	amiagion handwidth
	emission bandwidth
	equivalent isotropically radiated power
	enective radiated power
	frequency
	ricobortz
	giganeriz
GND	ground
H	
HL	Hermon laboratories
HZ	
K	KIIO
KHZ	KIIOnertz
LO	local oscillator
m	meter
MHZ	meganertz
min	minute
mm	millimeter
ms	millisecond
μs	microsecond
NA	not applicable
NB	narrow band
OATS	open area test site
Ω	Ohm
QP	quasi-peak
PM	pulse modulation
PS	power supply
RE	radiated emission
RF	radio frequency
rms	root mean square
Rx	receive
S	second
Т	temperature
Тх	transmit
V	volt
VA	volt-ampere

END OF DOCUMENT