

Prüfbericht-Nr.: Test Report No.:	P00286775.r02	Auftrags-Nr.: Order No.:	89218989	Seite 1 von 32 Page 1 of 32
Kunden-Referenz-Nr.: Client Reference No.:	102489	Auftragsdatum: Order date:	2021-05-12	
Auftraggeber: Client:	Vecos Europe B.V. Esp 237, 9	/ecos Europe B.V. Esp 237, 5633 AD Eindhoven, The Netherlands		
Prüfgegenstand: Test item:	Intentional Radiator - RFID Device (NFC)			
Bezeichnung / Typ-Nr.: Identification / Type No.:	Locker Lock V3+			
Auftrags-Inhalt: Order content.	Compliance with regulatory re	Compliance with regulatory requirements		
Prüfgrundlage: Test specification:				

Wareneingangsdatum: Date of receipt:	2021-05-17
Prüfmuster-Nr.: Test sample No.:	Snr. 21-16-002-002 Snr: 21-16-002-001 (AC power line only)
Prüfzeitraum: Testing period:	2021-05-19 - 2021-06-01
Ort der Prüfung: Place of testing:	Leek
Prüflaboratorium: Testing laboratory:	TÜV Rheinland Nederland B.V. Leek Laboratory
Prüfergebnis*: Test result*:	Pass

geprüft v	on / tested by:	vd Mee		genehmigt vo	on / authorized by:	Jaipaka
2021-06-	16 R. van der M	leer/Test Eng.		2021-06-16	S. Siddapur / Expert	
Datum Date	Name / Stellun Name / Position	0	erschrift nature	Datum Date	Name / Stellung Name / Position	Unterschrift Signature
Sonstige	H	sue date is equal i W version: 02 N version: v.0.00.				
	des Prüfgegenstar		ıng:		ständig und unbeschä blete and undamaged	digt
* Legende:	1 = sehr gut P(ass) = entspricht o.g.	2 = gut Prüfgrundlage(n)	3 = befriedigend F(ail) = entspricht nic	ht o.g. Prüfgrundlage	4 = ausreichend e(n) N/A = nicht anwendbar	5 = mangelhaft N/T/ = nicht getested
Legend:	1 = very good P(ass) = passed a.m.	2 = good Test specification(s)	3 = satisfactory F(ail) a.m. test specia	fication(s)	4 = sufficient N/A = not applicable	5 = poor N/T = not tested
a	uszugsweise vervie s test report only rela	elfältigt werden. ates to the above i	Dieser Bericht b mentioned testsar	erechtigt nicht mple. Without pe	hne Genehmigung d zur Verwending eine ermission of the test ce t entitle to carry any te	s Prüfzeichens. enter this test report

Prufbericht-Nr:

Test report No: P00286755.r02

Seite 2 von 32 Page 2 of 32

None of the tests were subcontracted to qualified subcontractors.

The reported tests marked with a \checkmark or Yes were performed under ISO 17025:2017 accreditation. If the place of testing differs from the location given on page 1 this is given under the respective test clause in the report. This test report consists of multiple pages, the number of pages can be seen in the header on the top right of each page. The report ends when the last page is reached.

For the influence of the measuring uncertainties on the results, reference is made to the validation of the respective methods.

The test results exclusively relate to the tested sample.

This report is only to be read is a whole, no sections from this report may be copied.

No opinions or interpretation are included in this report.

TÜV Rheinland Nederland B.V. is solely responsible for the content. All rights reserved.

No part of this report may be reproduced, provided to and/or examined by third parties, and/or published by print, photoprint, microfilm, in electronic form or any other means without the explicit previous written consent of TÜV Rheinland Nederland B.V.

In case this report was drafted within the context of an assignment to TÜV Rheinland Nederland B.V., the rights and obligations of contracting parties are subject to the General Terms & Conditions for Advisory, Research and Certification assignments to TÜV Rheinland Nederland B.V. and/or the relevant agreement concluded between the contracting parties.

© 2010 TÜV Rheinland Nederland

Statements

- This document does not represent type approval or certification of the product.
- The test results only relate to the behaviour of the test specimens of the examined product under the particular conditions of the test in laboratory conditions
- The validity of this report will expire directly after alterations or modifications of the examined product (combination)(s) and/or the criteria.
- The information provided by the customer, identified within this report, may affect on the validity of the results.

Prufbericht-Nr: Test report No: P00286755.r02

Seite 3 von 32 Page 3 of 32

Liste der verwendenten Prüfmittel List of used test equipment

Prüfmittel Kind of Equipment	Hersteller / Manufacturer	Bezeichnung / Model Name	Prüfmittel- Nr. / ID-Nr. Equipment No. / ID-No.	Kalibrierung Calibration (ddmm/yyyy)	Nächste Kalibrierung Next calibration (dd/mm/yyyy)
For Radiated Emissions					
Measurement Receiver	Rohde & Schwarz	ESR7	2790499	18/09/2020	18/09/2021
RF Cable S-AR	Gigalink	APG0500	2789217	12/03/2021	12/03/2022
Controller	Maturo	SCU/088/ 8090811	2789220	N/A	N/A
Antenna mast+control	Innco Systems	MA4640-XP-ET- 0800-com	9002463	N/A	N/A
Test facility	Comtest	FCC listed: 786213 IC: 2932G-2	2789009	08/03/2020	08/03/2022
Spectrum Analyzer	Rohde & Schwarz	FSV	2789106	31/08/2020	31/08/2021
Temperature- Humiditymeter	Extech	SD500	2789214	03/07/2020	03/07/2021
Biconilog Testantenna	Teseq	CBL 6111D	2789237	04/08/2020	04/08/2021
Climat chamber	E-spec	PL3-KPH	2790470	31/08/2020	31/08/2021
Temperature meter (monitoring Climat chamber)	Dostmann	P770	2789236	15/04/2021	15/04/2022
Voltmeter (monitoring Voltage reg)	Keysight	34461A	2790157	31/08/2020	31/08/2021
Voltage regulator	RFT	LTS 006	2788905	N/A	N/A
60cm Loop antenna	Chase	HLA6120	2790033	19/12/2017	19/07/2021
Loop antenna, Passive	EMCO	6509	2788774	15/12/2020	15/12/2023
6 cm Loop antenna	ETS Lindgren	7405-901	2789078	14/02/2020	14/02/2023

Prufbericht-Nr:

Test report No: P00286755.r02

Seite 4 von 32 Page 4 of 32

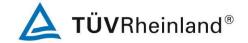
Kind of Equipment	Manufacturer	Model Name	Inventory number	Calibration date (mm/yyyy)	Calibration due date (mm/yyyy)
For AC Powerline Conducted Emissions					
Pulse limiter	R&S	ESH3-Z2	2788823	24/09/2020	24/09/2021
LISN	Rohde & Schwarz	ESH2-Z5	2788791	21/07/2020	21/07/2021
Measurement Receiver	Rohde & Schwarz	ESCS30	2789421	12/11/2020	12/11/2021
Shielded room for Conducted emissions			2789207	NA	NA
Temperature- Humiditymeter	Extech	SD500	2789211	03/07/2020	03/07/2021
Power supply for EUT	Delta Elektronika	SM6020	2788812	22/02/2021	22/02/2022
120Vac source	EMtest	DPA500N	2789197	22/11/2019	22/11/2021

Conformance of the used measurement and test equipment with the requirements of ISO/IEC 17025:2017 has been confirmed before testing. NA= Not Applicable

Accreditation

The reported tests were performed under ISO17025:2017 accreditation, unless otherwise specified as 'not under Accreditation'

An overview of all TÜV Rheinland Nederland B.V. accreditations, notifications and designations, please visit our website <u>www.tuv.com/nl</u>. You can find the relevant declarations under the download link


Prufbericht-Nr: P00286755.r02 Test report No:

Seite 5 von 32 Page 5 of 32

Produktbeschreibung DISCLAIMER - Product description (as provided by the client)

1	Produktdetails Product details	Locker Lock with NXP RFID operating on 13.56 MHz
2	Maße / Gewicht Dimensions / Weight	See product info
3	Bedienelemente Operating elements	None
4	Ausstattung / Zubehör Equipment / Accessories	None
5	Verwendete Materialien Used materials	None
6	Sonstiges Other	HW version: 02 SW version: v0.00.019 Antenna type: Inductive Coil (internal) Modulation method: ASK
<u> </u>	EUT	EUT and AUX in typical setup
	EUT reading a tag	EUT with Dummv antenna-for AC Powerline Conducted emissions
		V3+ Dummy antenne Dassestrone.dez Dassestrone.

Test report No:

Seite 6 von 32 Page 6 of 32

		Revisions Revisions	
Revision Revision	Datum Date	Anmerkung Remark	Verfasser Author
-	2021.06.08	First release	R. van der Meer
01	2021.06.16	added antenna type,HW&SW versions; Cal data extended; Limit table <30MHz added; Block diagrams added.Typos corrected	R. van der Meer
02	2021.06.17	Table corrected dBuA/m to uA/m value	R. van der Meer

Measurement Uncertainty

Measurement Type	Frequency	Uncertainty
Radiated Emission	9 kHz – 1 GHz	±5.13 dB
AC Power Line	150 kHz – 30 MHz	±3.2 dB
Bandwidth	9 kHz - 40 GHz	±1 %
Frequency	>77kHz without GPS reference	1.3 ppm

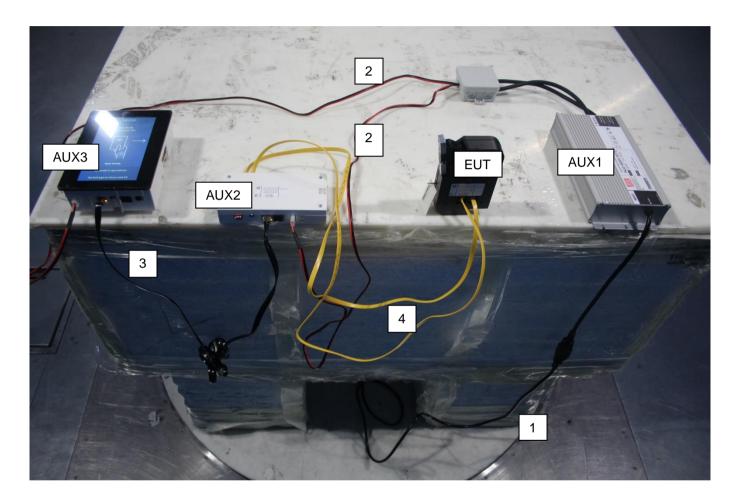
Prufbericht-Nr: P00286755.r02

Test report No:

Seite 7 von 32 Page 7 of 32

Table of contents

	Measurement Uncertainty	6
1	•••••	
	1.1 Tested system details	8
	1.1.1 Description of input and output ports.	
	1.2 Test summary	
	1.3 Test methodology	
	1.4 Test facility.	
	1.5 Test conditions	
2	System test configuration.	
	2.1 Justification	
	2.2 EUT mode of operation.	
	2.3 Special accessories	
_	2.4 Equipment modifications.	
3		
	3.1.1 Limit	
	3.1.2 Measuring instrument and setting	
	3.2 Test procedure:	14
	 3.3 Radiated field strength measurements (30 MHz – 1 GHz, E-field) 3.4 Radiated field strength measurements 9 kHz – 30 MHz 	
	3.4.1 Test equipment used (for reference see test equipment listing)	
	3.5 Plots of the emissions	
4		
-	4.1 AC Power Line Conducted Emission data of the EUT.	
	4.1.1 Requirements	
	4.1.2 Limit	
	4.1.3 Measuring instrument and setting	
	4.1.4 Test procedures	
	4.2 AC power Line Conducted emission data of the EUT	
	4.2.1 Test equipment used (for reference see test equipment listing)	21
	4.2.2 Plot of the AC power Line Conducted emissions	22
5		24
	5.1 Frequency stability (on 13.56 MHz) in accordance with 47 CFR Part 15, section 15.225 (e) / RSS-2	.10
	(B.6)(b):	
	5.1.1 At 85% and 115% of rated voltage supply level	
	5.1.2 Test equipment used (for reference see test equipment listing)	
6		
_	6.1 Bandwidth of the emission	
7	U	
	7.1.1 Photographs of the carrier stability setup	
	7.1.2 Photograph test setup, AC Power Line Conducted emissions	31


Prufbericht-Nr: P00286755.r02 *Test report No:*

Seite 8 von 32 Page 8 of 32

1 General information.

1.1 Tested system details.

Details and an overview of the system and all of its components, as it has been tested, may be found below.

	List of used cables						
Number	Function	From	То	Length	Remarks		
1	AC Power	mains 120Vac 60 Hz	AUX1	< 3m	-		
2	27 Vdc power	AUX1	AUX2 & AUX3	< 3m	-		
3	Ethernet	AUX3	AUX2	< 3m	-		
4	power and data	AUX2	AUX1	< 3m	-		

Prufbericht-Nr: P00286755.r02

÷

2

÷

÷

2

:

:

:

:

:

:

2

÷

2

:

:

2

:

Test report No:

Seite 9 von 32 Page 9 of 32

Details and an overview of the system and all of its components, as it has been tested, may be found below.

Test item EUT : EUT See page 1 and 5 for details

Test item AUX1 Manufacturer Brand mark Model Output Voltage Serial Number Remark Power supply for EUT MEAN WELL ENTERPRISES CO.,LTD. MEAN WELL HLG-480H-30TE11 27 Vdc HC0ABX0365

Test item AUX2
Manufacturer
Brand mark
Model
Serial number
Remark

Hub Vecos VECOS Hub V3-24 20-36-001-060

Test item AUX3	
Manufacturer	
Brand mark	
Model	
Serial number	
Remark	

Touch screen Vecos VECOS LBC 3.0 21-12-006605050

Prufbericht-Nr: P00286755.r02

Test report No:

Seite 10 von 32 Page 10 of 32

1.1.1 Description of input and output ports.

There are two USB ports available on the EUT, these are included in the separate Part 15B/ICES-003 test report (nr P00286755.r03).

1.2 Test summary

The EUT was tested in accordance with the specifications given in the table below.

Test St	andard				
47 CFR Part 15 (10-1-19 Edition)	RSS-210 Issue 10, Amendment, April 2020	Description	Page	Pass / Fail / Not Applicable	
15.207(a)	RSS-Gen(8.8)	AC power line Conducted emissions	19 - 22	Pass	
15.209, 15.225	RSS-Gen(8.9) and RSS-210(A.1.4)	Radiated emissions	13 – 18	Pass	
15.215(c)	RSS-Gen(6.7)	Bandwidth of the emission	24 - 25	Pass	
15.225	RSS-210 (A.1.4)	Carrier stability	23	Pass	

Table: Test specifications

Prufbericht-Nr: P00286755.r02

Test report No:

Seite 11 von 32 Page 11 of 32

1.3 Test methodology.

The test methodology used is based on the requirements of 47 CFR Part 15 (10-1-19), sections 15.31, 15.35, 15.205, 15.209, 15.225 and RSS-GEN (ISSUE 5, FEBRUARY 2021 AMENDMENT 2) RSS-210 (ISSUE 10, AMENDMENT, APRIL 2020).

The test methods, which have been used, are based on ANSI C63.10: 2013.

Radiated emission tests above 30 MHz were performed at a measurement distance of 3 meters. Radiated emission tests below 30 MHz were performed at a measurement distance of 3 meters. To calculate the field strength level from these results to the appropriate distance at which the limit is specified, the appropriate extrapolation factor is used.

The receivers are switching automatically to the right bandwidth in accordance with CISPR 16. This is implemented in the receiver. The antenna factors are programmed in the test receiver. The receiver automatically calculates the appropriate correction factor for the utilized antenna and also the appropriate antenna factor for the cable loss. The total correction is automatically added to the measured value.

1.4 Test facility.

The Federal Communications Commission and Industry Canada has reviewed the technical characteristics of the test facilities at TÜV Rheinland Nederland B.V., located at Eiberkamp 10, 9351 VT Leek, The Netherlands, and has found these test facilities to be in compliance with the requirements of 47 CFR Part 15, section 2.948.

The description of the test facilities has been filed at the Office of the Federal Communications Commission under Designation Number NL0005 (test site registration number: 786213). The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

The description of the test facilities has been filed to Industry Canada under CABID number NL0002 (test site registration number: 2932G-2). The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

1.5 Test conditions.

Normal test conditions:

Temperature (*)	: +15°C to +35°C
Relative humidity(*)	: 20 % to 75 %
Supply voltage	: 120 Vac / 60 Hz (27Vdc to EUT)

*When it was impracticable to carry out the tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests are stated separately.

Prufbericht-Nr: P00286755.r02

Test report No:

Seite 12 von 32 Page 12 of 32

2 System test configuration.

2.1 Justification.

An EUT was supplied which enabled a constant transmit mode for testing purposes. For AC PowerLine conducted emissions a special sample was delivered by the applicant whereby the antenna was replaced by a dummy resistive load.

The justification and manipulation of cables and equipment in order to simulate a worst-case behavior of the test setup has been carried out as prescribed in ANSI C63.10-2013.

2.2 EUT mode of operation.

The EUT has been tested in modulated transmit mode, i.e. the EUT is transmitting while continuously transmitting data.

2.3 Special accessories.

No special accessories are used and/or needed to achieve compliance.

2.4 Equipment modifications.

No modifications have been made to the equipment in order to achieve compliance.

Prufbericht-Nr: P00286755.r02 Test report No:

Seite 13 von 32 Page 13 of 32

3 Radiated emission data.

RESULT: PASS

Date of testing:

2021-05-19

Frequency range:

9kHz - 1GHz

Requirements:

FCC 15.205, FCC 15.209, FCC 15.225 and IC RSS-Gen(8.9, 8.10) and RSS-210(B.6)

Radiated emissions which fall in the restricted bands, as defined in FCC 15.205(a), must comply with the radiated emission limits specified in FCC 15.209(a).

Radiated emissions which fall outside the operation frequency band and outside restricted bands shall either meet the limit specified in FCC 15.209(a)/ RSS-Gen (8.9) or be attenuated at least 20dB below the power level in the 100kHz bandwidth within the band that contains the highest level of the desired power (the less severe limit applies).

3.1.1 Limit

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following tables:

Frequency (MHz)	Field strength (microvolts/meter)	Field strength (dBµV/m)	Field strength (μA/m)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	43.5-13.8	6.37/F (F in kHz)	300
0.490-1.705	, ,		63.7/F (F in kHz)	30
1.705-30.0	30	29.5	0.08	30

Frequency (MHz)	Field strength (µV/meter)	Field strength (dBµV/m)	Measurement distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Table of applicable limits

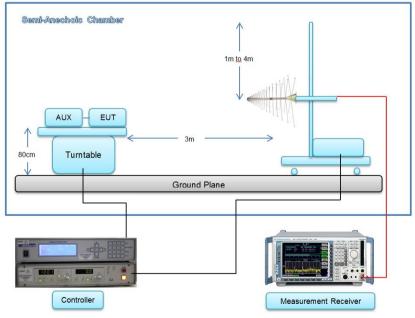
Test report No:

Seite 14 von 32 Page 14 of 32

3.1.2 Measuring instrum	ent and setting
-------------------------	-----------------

Radiated emi	Radiated emissions test settings								
Frequency range	30 MHz – 1000 MHz								
Test distance	3 m								
Receive antenna scan height	1 m - 4 m								
Receive antenna polarization	Vertical / Horizontal								
Test instrument detector and bandwidth <1GHz	Quasi-peak (Qp) 120 kHz *unless otherwise noted								

3.2 Test procedure:


ANSI C63.10-2013.

The EUT was placed on a nonconductive turntable 0.8m above the ground plane. Before final measurements of radiated emissions were performed, the EUT was scanned to determine its emission spectrum profile. The physical arrangement of the test system, the associated cabling and the EUT orientation (X, Y, Z) were varied in order to ensure that maximum emission amplitudes were attained.

The spectrum was examined from 9 kH to 1000 MHz. Final radiated emission measurements were made at 3m distance.

At each frequency where a spurious emission was found, the EUT was rotated 360° and the antenna was raised and lowered from 1 to 4m in order to determine the emission's maximum level. Measurements were taken using both horizontal and vertical antenna polarizations.

The six highest emission amplitudes relative to the appropriate limit were recorded in this report. Field strength values of radiated emissions at frequencies not listed in the tables are more than 20 dB below the applicable limit.

Block diagram of the test setup

Test report No:

Seite 15 von 32 Page 15 of 32

3.3 Radiated field strength measurements (30 MHz – 1 GHz, E-field)

Frequency (MHz)	EUT orientation	Antenna orientation	Measurement results @3m (dBµV/m)	Limits @3m (dBµV/m)	Pass/Fail
40.68* ^H	X	Vertical	33.5	43.5	Pass
162.7* ^H	Z	Vertical	32.8	43.5	Pass
168.4	Y	Vertical	25.4	43.5	Pass
350	X	Horizontal	42.0	46.0	Pass
360	360 X		39.5	46.0	Pass
775	Y	Vertical	36.6	46.0	Pass

Table 2 Radiated emissions of the EUT

The results of the radiated emission tests, carried out in accordance with 47 CFR Part 15 section 15.205, 15.209 and IC RSS-Gen(8.9, 8.10) are depicted in Table 2.

Notes:

- 1. Field strength values of radiated emissions at frequencies not listed in the Table 2 above are more than 20 dB below the applicable limit. Worst case values noted (which from pre-test proved to be while reading a tag).
- 2. A resolution bandwidth of 120 kHz was used.
- 3. * H denotes a harmonic of the fundamental, *R denotes an emission in a restricted band
- 4. A selection of plots are provided on the next pages.

Used test equipment and ancillaries:

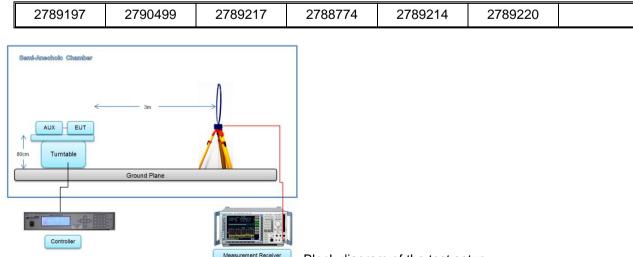
2790499	2789217	2789009	2789214	2789237	9002463	2789197	

Test report No:

Seite 16 von 32 Page 16 of 32

Frequency Measurement Detector Extrapolation Measurement Limits Pass/Fail (MHz) results factor results (calculated) dBuV/m@30m dBuV/m@30m dBµV/m @3m dB (unless otherwise stated) (unless otherwise stated) 13.110-13.410 56.3 Qp 40 16.3 40.5 Pass *note7 13.410-13.553 Qp 40 27.9 50.5 67.9 Pass 13.560 82.9 40 42.9 84.0 Pass Qp fundamental 40 13.567-13.710 67.9 Qp 17.9 50.5 Pass 13.710-14.010 54.2 40 14.2 40.5 Pass Qp 27.120 40.0 Qp 40 0.0 29.5 Pass harmonic 0.26 0.003 0.08 27.120*8 Qp 40 Pass harmonic µA/m µA/m µA/m

3.4 Radiated field strength measurements 9 kHz – 30 MHz


Table 3 Radiated emissions of the EUT, in the frequency range 0.009 – 30 MHz

The results of the radiated emission tests in the frequency range 0.009 – 30 MHz, carried out in accordance with 47 CFR Part 15 section 15.209, 15.225 and IC RSS-Gen Table 6, RSS-210 (B.6) are depicted in Table 3.

Notes:

- Calculated measurement results are obtained by using the 40dB/decade factor (antenna factor and cable loss is included in initial Measurement result per transducer factor in the measuring receiver/analyzer). i.e at 13.560 MHz: 56.3 - 40dB= 16.3 dBµV/m.
- 2. A resolution bandwidth of 9 kHz was used during testing
- 3. Field strength values of radiated emissions at frequencies not listed in Table 3 are more than 20 dB below the applicable limit
- 4. The loop antenna was varied in horizontal and vertical orientations and also around it's axis (planar and axial). The reported value is the worst case found at the reported frequency.
- 5. The EUT was tested in horizontal (x), z and vertical (y) orientations. Worst case values noted.
- 6. Measurement uncertainty is ± 5.0 dB.
- 7. Highest value noted in the restrictedband: 13.36 13.41 MHz.
- 8. Also reported in uA/m as per RSS-Gen table 6

3.4.1 Test equipment used (for reference see test equipment listing).

Prufbericht-Nr: P00286755.r02

Test report No:

Seite 17 von 32 Page 17 of 32

3.5 Plots of the emissions

	rum		eceiver 🙁				(T
	evel 8	30.00 dB		👄 RBW 100 kH	-		
Att			10 dB SWT 948.1	µs 👄 VBW 300 kH	z Mode Auto	FFT Input 1 A	с
PS PA							
∋1Rm V							
Lin	nit Ch	eck		PASS	M2[1]		30.08 dBµV∕r
70 d <mark>b</mark> jr	v9nF-CC	Part 1	i E-Eield 3m Qp_rm	PASS			160.080 MH
50 dBµ\	Um.				M1[1]		27.45 dBµV/i
о авру	v/m					1 1	40.910 MH
50 dBµ\	v/m—						
40.40.6			/				
CC Part	t 15 E-I	Field 3m	Qp rm	M5M6			
d dBu		V.	Ĩ II			A STATE OF STATE OF STATE	advard how many branched and a the second
		Buch			فلده ورأبوا المدولين والماست المتعاولين	and the barren of the second se	
Zordahi	V/00	1 1414	Henry Manus of March 1944	ANTHANY MANY MANY AND			
- T			l'				
10 dBµ\	v/m+						
0 dBµV/	/m						
5 app.,							
-10 dBµ	ı∨/m—						
	ю.0 М	Hz	•	2001 p	ts		Stop 1.0 GHz
Start 3							
Start 3 1arker		Trc	X-value	Y-value	Function	Funct	ion Result
1arker	Ref			27.45 dBµV/m			
1arker	Ref	1	40.91 MHz	27.45 ubp V/m			
larker Type M1 M2	Ref	1 1	160.08 MHz	30.08 dBµV/m			
Type M1 M2 M3	Ref	1 1	160.08 MHz 350.18 MHz	30.08 dBµV/m 34.21 dBµV/m			
Type M1 M2 M3 M4	Ref	1 1 1	160.08 MHz 350.18 MHz 359.88 MHz	30.08 dBµV/m 34.21 dBµV/m 34.08 dBµV/m			
larker Type M1 M2 M3 M4 M5	Ref	1 1 1 1	160.08 MHz 350.18 MHz 359.88 MHz 400.11 MHz	30.08 dBµV/m 34.21 dBµV/m 34.08 dBµV/m 29.93 dBµV/m			
farker Type M1 M2 M3 M4	Ref	1 1 1	160.08 MHz 350.18 MHz 359.88 MHz	30.08 dBµV/m 34.21 dBµV/m 34.08 dBµV/m			

Date: 19.MAY.2021 09:35:31

Pre-scan Plot of the emissions in the range 30 – 1000 MHz, Antenna Vertical, EUT Y

RetL	evel	80.00 c	BuV/m			👄 RBW 100 k	(Hz					
Att	CVCI	00.00 0	10 dB	SWT 049		VBW 300 k		e Auto	FET In	put 1 A		
PS PA	TDF		10 00	3771 340	0.1 µ5	- +B# 300 P	112 1104	e Auto		putia		
1Rm V												
	nit Ch	eck			Р	ABS	M	2[1]			31	
	R-FCC	2 Part :	5 E-Eie	ld 3m Qp	rm P	488		~[*]				160.080 MH
o usp	win						M	1[1]				.76 dBµV/r
50 dBµ\	//m∔		—									40.910 MH
								1		1		
50 dBµ\	//m+-											
	Um.				a							
CC Part	t 15 E-	-Rield 3r	n Qp rm		M4	5 ^{M6}						بالحساد بالعاد
o dBu/	//m∔-	<u> </u>				under we all and the second and the	I I Keld Andrea	Jacobson	AND A COLOR	y, Angle and the second second	بالالانتواليماره ومعاد	montestation
And and		JYW	Sec. M.S.		Mar I and	وراد المقدين بالماريس فالمراجع ويعرب المحسب	Transferration of the last of					
20 denne	(not	MW	When Children	en and the second	Maderia	unghang with the second states	L.M.					
	A	/ Ywy	W4 /~\./.	Reality of the second	Hadena	er of the second data out the second	L.M					
r -	A	/ Ywy	the August	an and the second	hiterature	under and the state of the stat	L.M.					
20 deux LO deux) deux/	//m	<u></u>		an and a second	http://www.	an film an air air an Ail an air an Ail an air a	L. M. M.					
lO dBµ\)) dBµV/	//m	<u></u>		eenen in the second	Madania	un frankrik konstrukturen die seinen die seine die	,L.,N.,**************					
LO dBµ\	//m	<u></u>	×/*/+	an a	http://www.	und beneticel states to be a state of the second states of the second st	, Lo <i>lo¹ - 1</i> - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					
10 dBµV)) dBµV) 10 dBµ	//m	*		Returned Blattering	hitty a star and a	under han einer seiner s	, Lovier, and a second					
lO dBµ\)) dBµV/	//m	*		Ranger and Director		2001						top 1.0 GHz
10 dBµV)) dBµV) 10 dBµ	//m	*		میں م ^ی ری میں میں میں میں میں میں میں میں میں می	hite shows a							
0 dBµV dBµV/ 10 dBµ tart 3 arker	//m	IHz		-value								top 1.0 GHz
0 dBµV I dBµV/ 10 dBµ Start 3 arker Type M1	//m /m iV/m i0.0 M	IHz			1Hz	2001 Y-value 27.76 dBμV/r	pts				SI	top 1.0 GHz
0 dBµV dBµV/ 10 dBµV/ 10 dBµ itart 3 arker Type M1 M2	//m /m iV/m i0.0 M	IHz		- value 40.91 M 160.08 M	1Hz	2001 Y-value 27.76 dBµV/r 31.26 dBµV/r	pts Func				SI	top 1.0 GHz
0 dBµV 1 dBµV/ 10 dBµ itart 3 arker Type M1 M2 M3	//m /m iV/m i0.0 M	IHz		-value 40.91 M 160.08 M 350.18 M	1Hz 1Hz	2001 27.76 dBµV/r 31.26 dBµV/r 34.65 dBµV/r	pts Func n n				SI	top 1.0 GHz
0 dBµV 1 dBµV/ 10 dBµ itart 3 arker Type M1 M2 M3 M4	//m /m iV/m i0.0 M	IHz 1 1 1 1		-value 40.91 M 160.08 M 350.18 M 359.88 M	1Hz 1Hz 1Hz	2001 Y-value 27.76 dBµV/r 31.26 dBµV/r 33.62 dBµV/r 33.62 dBµV/r	pts Func n n n				SI	top 1.0 GHz
0 dBµV 1 dBµV/ 10 dBµ itart 3 arker Type M1 M2 M3	//m /m iV/m i0.0 M	IHz		-value 40.91 M 160.08 M 350.18 M	1Hz 1Hz 1Hz 1Hz	2001 27.76 dBµV/r 31.26 dBµV/r 34.65 dBµV/r	pts n Func n n n n				SI	top 1.0 GHz

Date: 19.MAY.2021 09:36:55

Pre-scan Plot of the emissions in the range 30 – 1000 MHz, Antenna Vertical, EUT Z

Prufbericht-Nr: P00286755.r02

Test report No:

Seite 18 von 32 Page 18 of 32

Spectrum	R	eceiver 🛛 🗶				
Ref Level	80.00 dBj	uV/m	😑 RBW 100 kH	z		
Att	1	lO dB 🛛 SWT 948.1	µs 👄 VBW 300 kH	z Mode Auto	FFT Input 17	AC
PS PA TDF						
1Rm View						
Limit Ch			PASS	M1[1]		29.06 dBµV/
70 d bj:v9nF-C	C Part 15	E-Eield 3m Qp_rm	PASS			40.910 MI
				M2[1]		30.91 dBµV/
50 dBµV/m+						168.330 MI
50 dBµV/m						
	Field Dec.	Ma4				
CC Part 15 E			M5M6			market have been server and the server
50 dBµV/m+	. March	1 JA 1		ومعوبا بالاستلوار والمأور بالايتنا والدير	a the spectrum of the second second	
OK BUNYA	V YMPH	have been in marting	Anjour de de de la serie de			
		A STATE OF ST				
10 ḋBµV/m+						
) dBµV/m						
-10 dBuV/m						
Start 30.0 N	1Hz		2001 p	ts		Stop 1.0 GH
1arker						
Type Ref	Trc	X-value	Y-value	Function	Func	tion Result
M1	1	40.91 MHz	29.06 dBµV/m			
M2	1	168.33 MHz	30.91 dBµV/m			
MЗ	1	350.18 MHz	34.44 dBµV/m			
M4	1	359.88 MHz	34.27 dBµV/m			
M5	1	400.11 MHz	28.65 dBµV/m			
M6	1	424.66 MHz	28.80 dBµV/m			
				Measuring.		19.05.2021

Date: 19.MAY.2021 09:31:41

Pre-scan Plot of the emissions in the range 30 – 1000 MHz, Antenna vertical, EUT X

Spectrum	\neg	Receiv	er (X										
Ref Level	52.00	dBµV/m	Offset	: -40.0	O dB 🧉	RBW	100 k	Hz						
👄 Att		20 dB	SWT	37.	9 µs 🖷	VBW	300 k	Hz N	1ode A	uto FFT	Input	1 AC		
PS PA TDF														
⊖1Pk View														
						V		N	14[1]					B dBµV/m
						M1								7610 MHz
40 dBµV/m-						1		N	11[1]					3 dBµV/m
ີ 30 ຕ 8ມV/m—						M2							13.	5580 MHz
30 0000/11						X				MЗ			M4	
20 dBµV/m-	- Andrews	man	mourner	anterio da fara	لمعلمم	سها لا	-		-	-	· · · · · · · · · · · · · · · · · · ·	-		and march
									1					
10 dBµV/m-					_		_							
0 dBµV/m							+		+					
-10 dBµV/m									1					
-20 dBuV/m														
-20 ubµv/m														
-30 dBµV/m														
00 00001,000														
-40 dBµV/m							_							
CF 15.5 MH:	z					20	01 pts					5	pan 3	29.0 MHz
Marker														
Type Ref	Trc	х	-value	1	Y	-value	1	Fund	ction	1	Fun	ction Re	sult	
M1	1		13.55	3 MHz	45.	93 dBµ	V/m							
M2	1		14.19	2 MHz	26.	58 dBµ	V/m							
M3	1		20.61			02 dBµ								
M4	1		26.76	1 MHz	22.	38 dBµ	V/m							
AC CPL								Me	asuring			-		.05.2021
)		_				11:06:49 //

Date: 26.MAY.2021 11:06:49

Pre-scan Plot of the emissions in the range $1-30\mbox{ MHz}$, Antenna axial, EUT Z

Prufbericht-Nr: P00286755.r02 Test report No:

Seite 19 von 32 Page 19 of 32

4 AC Power line Conducted emission data.

4.1 AC Power Line Conducted Emission data of the EUT.

RESULT: PASS

Tested by: Date of testing: R. van der Meer 2021-05-31

4.1.1 Requirements

47 CFR Part 15 Section 15.207 and IC RSS-Gen (8.8), for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

4.1.2 Limit

47 CFR Part 15 Section 15.207

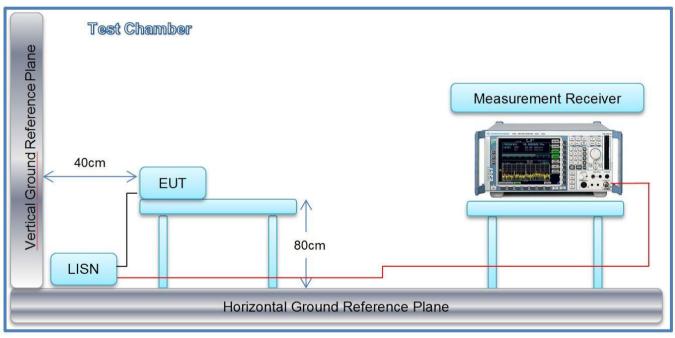
Frequency of Emission (MHz)	Conducted Limit Quasi-Peak (dBµV)	Conducted Limit Average (dBµV)
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 - 30	60	50

*Decreases with the logarithm of the frequency. The lower limit applies at the band edges.

4.1.3 Measuring instrument and setting

A Quasi-peak and Average detector were used with a bandwidth of 9 kHz.

Prufbericht-Nr: P00286755.r02


Test report No:

Seite 20 von 32 Page 20 of 32

4.1.4 Test procedures

ANSI C63.10-2013.

Each phase and neutral of the AC power line were measured with respect to ground. Measurements were performed using a 50 μ H / 50 Ω LISN. The frequency range from 150kHz to 30MHz was searched. The six highest EUT emissions relative to the limit were noted for three supply voltages. The EUT is placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane and 40cm from a vertical ground reference plane. The rear of the EUT was positioned flush with the backside of the table. The power and I/O cables were routed over the edge of the table and bundled approximately 40cm from the ground plane. The EUT was positioned at least 80cm from the LISN. The antenna was replaced with a resistive load.

Block diagram of the test setup

Prufbericht-Nr: P00286755.r02 *Test report No:*

Seite 21 von 32 Page 21 of 32

4.2 AC power Line Conducted emission data of the EUT.

Frequency (MHz)	Measurement results dB(µV) Line 1		Measurement results dB(µV) Neutral		Limits dB(µV)		Pass/Fail
	QP	AV	QP	AV	QP	AV	
0.18125	40.9	*3	38.7	*3	64.5	54.5	Pass
0.2477	27.5	*3	26.2	*3	61.8	51.8	Pass
2.2125	30.0	*3	29.3	*3	56.0	46.0	Pass
9.5211	33.2	*3	33.1	*3	60.0	50.0	Pass
10.025	33.0	*3	32.4	*3	60.0	50.0	Pass
13.56 ^{*4}	30.0	*3	30.0	*3	60.0	50.0	Pass

Table 4 AC power line conducted emission measurements

The results of the AC power line conducted emission tests, carried out in accordance with 47 CFR Part 15 section 15.207 and RSS-Gen (8.8), at the 120 Volts AC mains connection terminals of the AUX3 which was connected to the EUT, are depicted in Table 4.

Notes:

- 1. The values of conducted emissions at frequencies not listed in the table above are more than 20 dB below the applicable limit.
- 2. Measurement uncertainty is ± 3.2 dB.
- 3. Qp values already within Av limits, therefore not tested on Av.
- 4. Tested on a special EUT with dummy load in place of antenna.
- 5. USB ports not connected, this is tested in a separate Part 15B/ICES-003 report.

4.2.1 Test equipment used (for reference see test equipment listing).

2788823 2789197	2788794	2789421	2789207	2789211	2790478 / 2789158	2788812
--------------------	---------	---------	---------	---------	----------------------	---------

31. May 21 11:36

Prufbericht-Nr: P00286755.r02

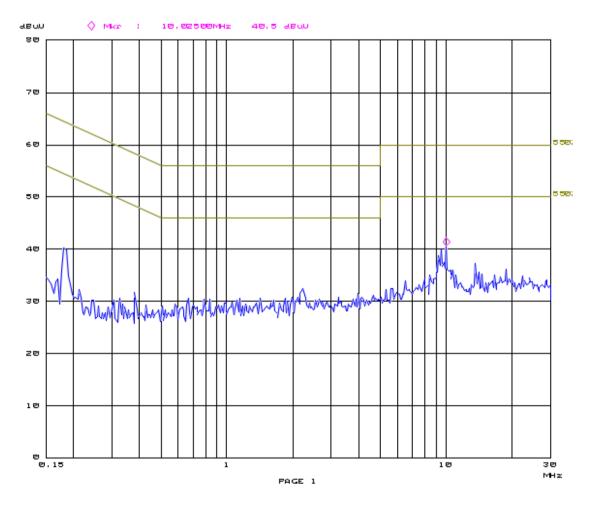
Test report No:

Seite 22 von 32 Page 22 of 32

4.2.2 Plot of the AC power Line Conducted emissions

Overview Scan Settings (1 Range) :----- Frequencies ------::: Start Stop Step ----- Receiver Settings ------: Step IF BW Detector M-Time Atten Preamp 3.9k 9k PK 0.10ms 20dBLN OFF 150k 36W 3.9K aBuu 🛇 Mkr. : 181.25 RHz 41.2 3800 80 70 5 58: 60 5 58; 50 40 mullipar nth. W -M 30 MWWWWWWWWW ⁴₩ zø 10 e L. 8.15 10 38 1 MHz PAGE 1

Pre-scan (peak values) Plot of the emission on L1


Prufbericht-Nr: P00286755.r02

Test report No:

Seite 23 von 32 Page 23 of 32

31. Mag 21 11:31

Pre-scan (peak values) Plot of the emission on L2 /N

Prufbericht-Nr: P00286755.r02 *Test report No:*

Seite 24 von 32 Page 24 of 32

5 Carrier stability under special conditions.

5.1 Frequency stability (on 13.56 MHz) in accordance with 47 CFR Part 15, section 15.225 (e) / RSS-210 (B.6)(b):

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -5 °C to +45 °C at normal supply voltage (see Table 5).

Stability under special conditions	Supply Voltage	Measured frequency (MHz)	Frequency deviation (limit <u>+</u> 0.01%)	PASS/FAIL
Temperature (°C)	(Vac)		(%)	
20.0	120	13.5600580 (reference)	N.A.	N.A.
-5.0	120	13.5601450	< 0.01	PASS
45.0	120	13.5600000	< 0.01	PASS

Table 5 The frequency tolerance of the carrier signal

5.1.1 At 85% and 115% of rated voltage supply level

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency at 85% and at 115% of the rated power supply voltage at 20 °C environmental temperature. The results are stated in Table 6.

Stability under special conditions % variation U	Measured frequency (MHz)	Frequency deviation (limit <u>+</u> 0.01%) (%)	PASS/FAIL
100.0 (120 Vac)	13.5600580 (reference)	N.A.	N.A.
85.0 (102 Vac)	13.5600580	< 0.01	PASS
115.0 (138 Vac)	13.5600580	< 0.01	PASS

Table 6 The frequency tolerance of the carrier signal

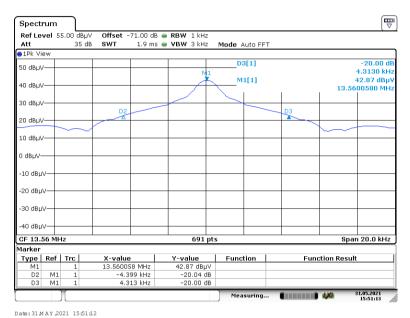
Note: No frequency deviation observed.

Block diagram of the

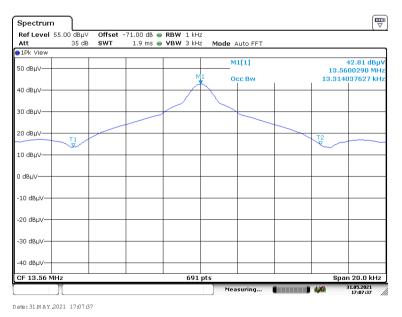
5.1.2 Test equipment used (for reference see test equipment listing).

Ī	2790470	2789236	2790157	2788905	2789078	2789106	2789214

test setup		Climat chamber
	AC source	EUT
Spectrum analyzer		Temperature probe



Prufbericht-Nr: P00286755.r02 *Test report No:*

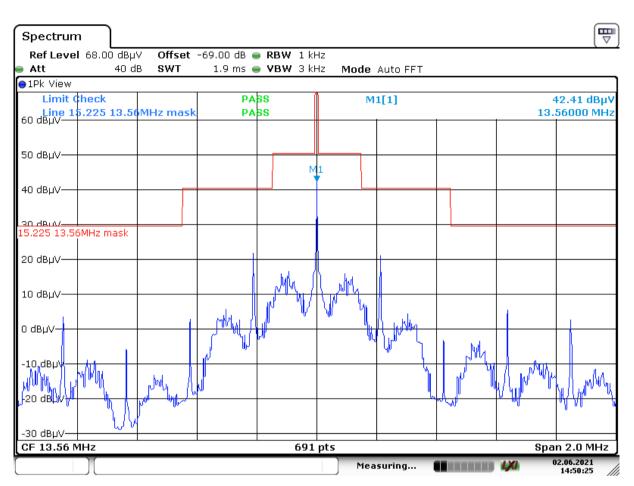

Seite 25 von 32 Page 25 of 32

6 Plots of measurement data

6.1 Bandwidth of the emission

Plot1 Emission Bandwidth of kHz (-20 dB down points) of the emission at 13.560 MHz (Fundamental Carrier). As measured with a Spectrum Analyzer

Plot2 99% Emission Bandwidth of kHz of the emission at 13.560 MHz (Fundamental Carrier). As measured with a Spectrum Analyzer

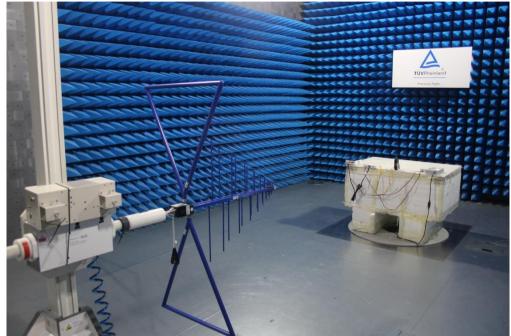


Prufbericht-Nr: P00286755.r02

Test report No:

Seite 26 von 32 Page 26 of 32

Date: 2.JUN.2021 14:50:25


Plot3 Spectrum mask of the emission at 13.560 MHz (Fundamental Carrier). As measured with a Spectrum Analyzer

Prufbericht-Nr: P00286755.r02 *Test report No:*

Seite 27 von 32 Page 27 of 32

7 Photograph test setup, Radiated Emissions

Photo 1 Photograph test setup radiated emissions 30-1000 MHz, report section 3.1

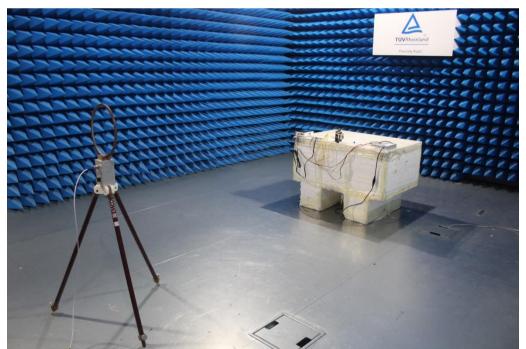


Photo 2 Photograph test setup radiated emissions <30 MHz-planar, report section 3.1

Prufbericht-Nr: P00286755.r02

Test report No:

Seite 28 von 32 Page 28 of 32

Photo 3 Photograph test setup radiated emissions <30 MHz- Axial, report section 3.1

Photo 4 Photograph test setup radiated emissions <30 MHz- Z, report section 3.1

Prufbericht-Nr: P00286755.r02

Test report No:

Seite 29 von 32 Page 29 of 32

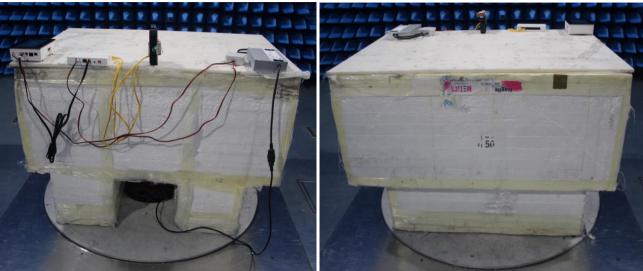


Photo 5 Photograph test setup radiated emissions-table top setup , report section 3.1

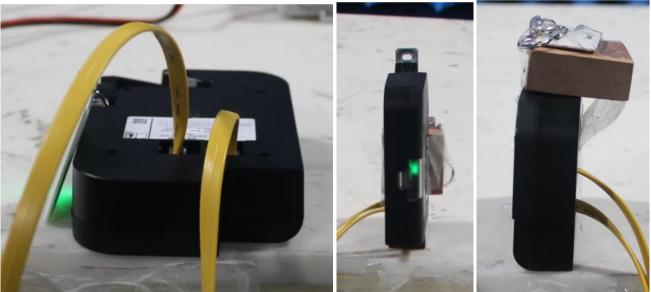


Photo a/b/c EUT positions X, Y and Z

Prufbericht-Nr: P00286755.r02

Test report No:

Seite 30 von 32 Page 30 of 32

7.1.1 Photographs of the carrier stability setup

Photo 6 Photograph test setup Carrier stability

Photo 7 Photograph test setup Carrier stability

Prufbericht-Nr: P00286755.r02

Test report No:

Seite 31 von 32 Page 31 of 32

7.1.2 Photograph test setup, AC Power Line Conducted emissions

Photo 8a/b: Photographs AC Power Line conducted emissions 0.15-30 MHz, report section 4.2

Prufbericht-Nr: P00286755.r02

Test report No:

Seite 32 von 32 Page 32 of 32

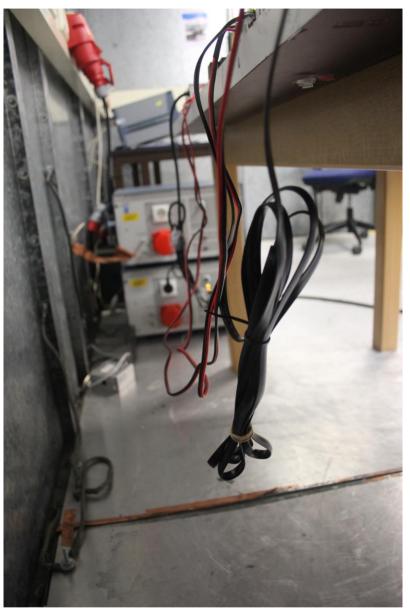


Photo 9 View of the back

<< End of report >>