

Page 1 of 98

APPLICATION CERTIFICATION FCC Part 15C On Behalf of TIMSEN INTERNATIONAL LIMITED

Bluetooth Speaker
Model No.: CR3028U-XX
("X" can be replaced by letter from "A" to "Z" or blank)

FCC ID: 2ACX8-CR3028U-XX

Prepared for : TIMSEN INTERNATIONAL LIMITED

Address : 5F, No. 447, Tianhebei Road, Tianhe District,

Guangzhou, Guangdong Province, 510610, China

Prepared by : ACCURATE TECHNOLOGY CO., LTD

Address : F1, Bldg. A, Chan Yuan New Material Port, Keyuan

Rd. Science & Industry Park, Nan Shan, Shenzhen,

Guangdong P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report No. : ATE20160914

Date of Test : May 17-22, 2016

Date of Report : May 30, 2016

Report No.: ATE20160914 Page 2 of 98

TABLE OF CONTENTS

Ι	Descrip	otion	Page
7	Test Re	eport Certification	
			,
1.		NERAL INFORMATION	
	1.1. 1.2.	Description of Device (EUT)Accessory and Auxiliary Equipment	
	1.2.	Description of Test Facility	
	1.4.	Measurement Uncertainty	
2.		ASURING DEVICE AND TEST EQUIPMENT	
3.		ERATION OF EUT DURING TESTING	
0.	3.1.	Operating Mode	
	3.2.	Configuration and peripherals	
4.	TE	ST PROCEDURES AND RESULTS	
5.		OB BANDWIDTH TEST	
5.		Block Diagram of Test Setup.	
	5.1. 5.2.	The Requirement For Section 15.247(a)(1)	
	5.3.	EUT Configuration on Measurement	
	5.4.	Operating Condition of EUT.	
	5.5.	Test Procedure	
	5.6.	Test Result	1
6.	CA	RRIER FREQUENCY SEPARATION TEST	17
	6.1.	Block Diagram of Test Setup	17
	6.2.	The Requirement For Section 15.247(a)(1)	17
	6.3.	EUT Configuration on Measurement	
	6.4.	Operating Condition of EUT	
	6.5.	Test Procedure	
_	6.6.	Test Result	
7.		MBER OF HOPPING FREQUENCY TEST	
	7.1.	Block Diagram of Test Setup	
	7.2. 7.3.	The Requirement For Section 15.247(a)(1)(iii)	
	7.3. 7.4.	Operating Condition of EUT	
	7.5.	Test Procedure	
	7.6.	Test Result	
8.	DW	VELL TIME TEST	27
	8.1.	Block Diagram of Test Setup.	
	8.2.	The Requirement For Section 15.247(a)(1)(iii)	
	8.3.	EUT Configuration on Measurement	
	8.4.	Operating Condition of EUT	
	8.5.	Test Procedure	
	8.6.	Test Result	
9.	$\mathbf{M}\mathbf{A}$	AXIMUM PEAK OUTPUT POWER TEST	
	9.1.	Block Diagram of Test Setup	43
	9.2.	The Requirement For Section 15.247(b)(1)	
	9.3. 9.4.	EUT Configuration on Measurement	
	フ.サ.	A 0.6.4.20 (10.8.4.4.10.10.10.10.10.10.10.10.10.10.10.10.10.	4

9.5.	Test Procedure	43
9.6.	Test Result	44
10. RA	est Result 44 ATED EMISSION TEST 50 lock Diagram of Test Setup 50 he Limit For Section 15.247(d) 51 estricted bands of operation 52 onfiguration of EUT on Measurement 52 est Procedure 53 he Field Strength of Radiation Emission Measurement Results 53 DEDGE COMPLIANCE TEST 66 lock Diagram of Test Setup 66 he Requirement For Section 15.247(d) 66 UT Configuration on Measurement 66 perating Condition of EUT 66 est Procedure 67 est Result 67 DWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION 15.207(A) 90 lock Diagram of Test Setup 90 ower Line Conducted Emission Measurement Limits 90 operating Condition of EUT 90 est Procedure 91 ower Line Conducted Emission Measurement Results 91 NNA REQUIREMENT 99 he Requirement 99	
10.1.	Block Diagram of Test Setup	50
10.2.	The Limit For Section 15.247(d)	51
10.3.	Restricted bands of operation	52
10.4.	Configuration of EUT on Measurement	52
10.5.		
10.6.	The Field Strength of Radiation Emission Measurement Results	53
11. BA	ND EDGE COMPLIANCE TEST	66
11.1.	Block Diagram of Test Setup	66
11.2.	The Requirement For Section 15.247(d)	66
11.3.	EUT Configuration on Measurement	66
11.4.	Operating Condition of EUT	66
11.5.	Test Procedure	67
11.6.	Test Result	67
12. AC	POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION 15.	207(A)90
12.1.	Block Diagram of Test Setup	90
12.2.		
12.3.	Configuration of EUT on Measurement	90
12.4.	Operating Condition of EUT	90
12.5.	Test Procedure	91
12.6.	Power Line Conducted Emission Measurement Results	91
13. AN	TENNA REQUIREMENT	99
13.1.	The Requirement	99
12.2	Antonna Construction	00

Page 4 of 98

Test Report Certification

Applicant : TIMSEN INTERNATIONAL LIMITED

Manufacturer : TIMSEN INTERNATIONAL LIMITED

EUT Description : Bluetooth Speaker

CR3028U-XX

Model No. : ("X" can be replaced by letter from "A" to "Z" or blank)

Trade Mark : CROSLEY

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247: 2015 ANSI C63.10: 2013

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test : Date of Report:	May 17-22, 2016 May 30, 2016	
	BobWarg	
Prepared by :	(Bob Wang, Engineer)	
Approved & Authorized Signer :	4 emily	
	(Sean Liu, Manager)	

Page 5 of 98

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT Bluetooth Speaker Model Number CR3028U-XX

("X" can be replaced by letter from "A" to "Z" or blank)

Trade Mark **CROSLEY** BT 2.1+EDR Bluetooth version

2402MHz-2480MHz Frequency Range

Number of Channels 79 Antenna Gain 0dBi

Antenna type Integral Antenna

Power Supply DC 5V (Power by Adapter) Adapter MODEL: XY06S-0501200Q-UZ

INPUT: AC 100-240V; 50/60Hz 0.3A

OUTPUT: DC 5V; 1.2A

Modulation mode GFSK, π/4 DQPSK, 8DPSK

TIMSEN INTERNATIONAL LIMITED **Applicant** Address 5F, No. 447, Tianhebei Road, Tianhe District,

Guangzhou, Guangdong Province, 510610, China

TIMSEN INTERNATIONAL LIMITED Manufacuter Address 5F, No. 447, Tianhebei Road, Tianhe District,

Guangzhou, Guangdong Province, 510610, China

Date of sample received: May 16, 2016 Date of Test May 17-22, 2016

1.2. Accessory and Auxiliary Equipment

N/A

Page 6 of 98

1.3. Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

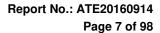
Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.4. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2


(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

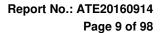
Kind of equipment	Manufacturer	Type	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 9, 2016	Jan. 09, 2017
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 9, 2016	Jan. 09, 2017
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 9, 2016	Jan. 09, 2017
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 9, 2016	Jan. 09, 2017
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 14, 2016	Jan. 13, 2017
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 14, 2016	Jan. 13, 2017
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 14, 2016	Jan. 12, 2017
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 14, 2016	Jan. 13, 2017
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 9, 2016	Jan. 09, 2017
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 9, 2016	Jan. 09, 2017
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 9, 2016	Jan. 09, 2017
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 9, 2016	Jan. 09, 2017

Page 8 of 98

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: Transmitting mode


Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz

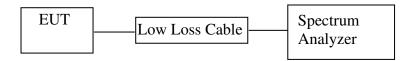
Hopping

3.2. Configuration and peripherals

EUT Figure 1 Setup: Transmitting mode

(EUT: Bluetooth Speaker)

4. TEST PROCEDURES AND RESULTS


Description of Test	Result
Conducted Emission Test	Compliant
20dB Bandwidth Test	Compliant
Carrier Frequency Separation Test	Compliant
Number Of Hopping Frequency Test	Compliant
Dwell Time Test	Compliant
Maximum Peak Output Power Test	Compliant
Radiated Emission Test	Compliant
Band Edge Compliance Test	Compliant
Antenna Requirement	Compliant
	Conducted Emission Test 20dB Bandwidth Test Carrier Frequency Separation Test Number Of Hopping Frequency Test Dwell Time Test Maximum Peak Output Power Test Radiated Emission Test Band Edge Compliance Test

Page 10 of 98

5. 20DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

(EUT: Bluetooth Speaker)

5.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

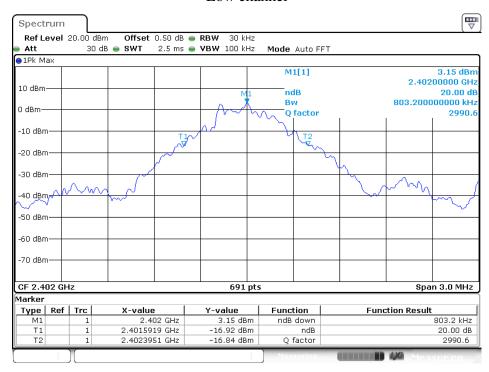
- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

5.5.Test Procedure

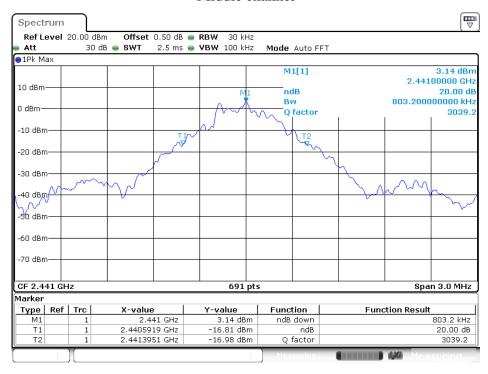
- 5.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 30 kHz and VBW to 100 kHz.
- 5.5.3. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Page 11 of 98

5.6.Test Result

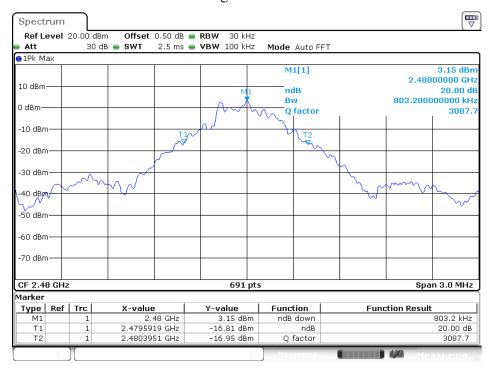

Channel	Frequency (MHz)	GFSK 20dB Bandwidth (MHz)	∏/4-DQPSK 20dB Bandwidth (MHz)	8DPSK 20dB Bandwidth (MHz)	Result
Low	2402	0.803	1.220	1.207	Pass
Middle	2441	0.803	1.220	1.207	Pass
High	2480	0.803	1.224	1.211	Pass

The spectrum analyzer plots are attached as below.

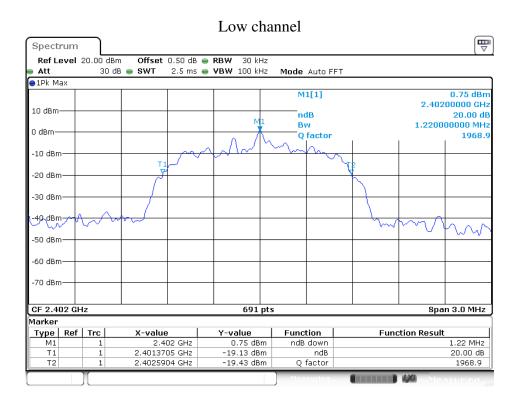


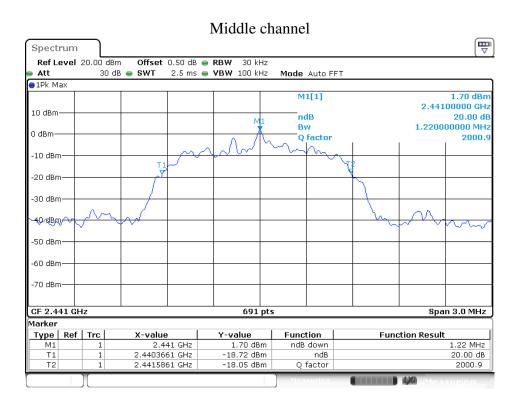
GFSK Mode

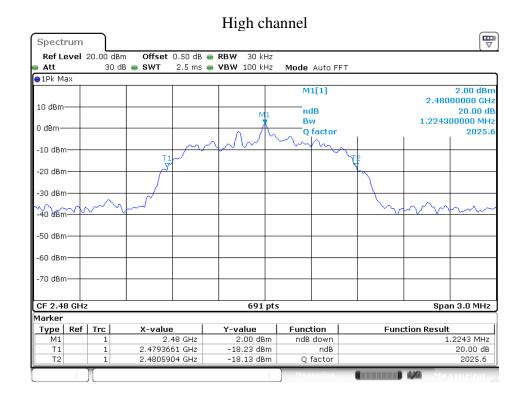
Low channel



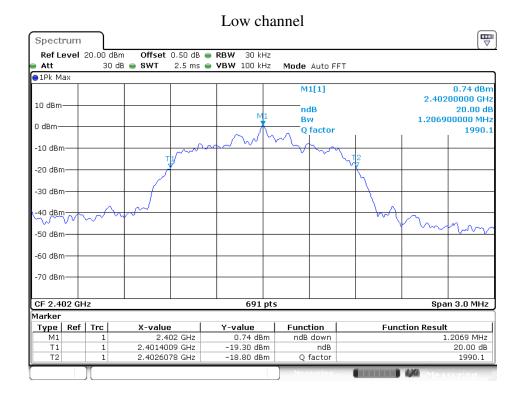
Middle channel

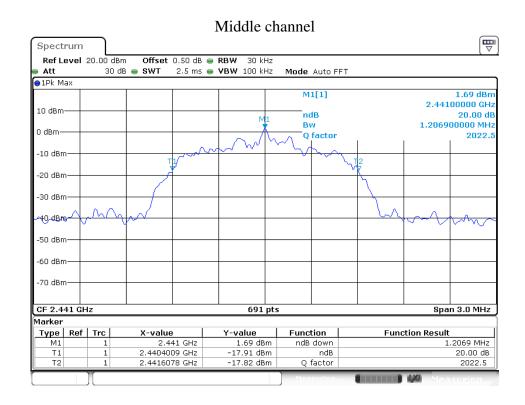


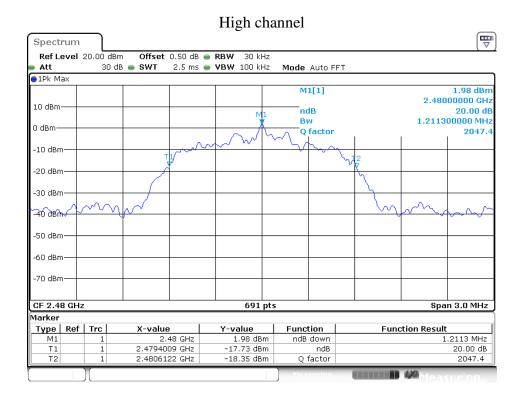

High channel



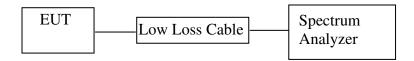
∏/4-DQPSK Mode






8DPSK Mode

Page 16 of 98



Page 17 of 98

6. CARRIER FREQUENCY SEPARATION TEST

6.1.Block Diagram of Test Setup

(EUT: Bluetooth Speaker)

6.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

6.5. Test Procedure

- 6.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- $6.5.2. Set\ RBW$ of spectrum analyzer to 30 kHz and VBW to 100 kHz. Adjust Span to 2 MHz.
- 6.5.3. Set the adjacent channel of the EUT maxhold another trace.
- 6.5.4. Measurement the channel separation

6.6.Test Result

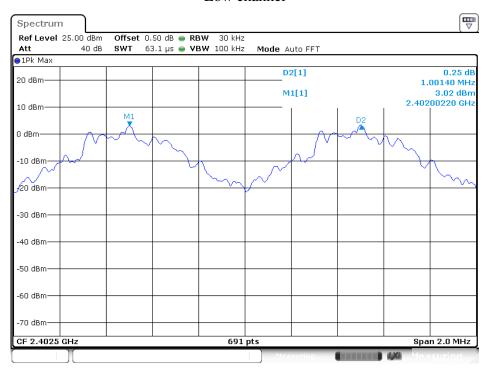
GFSK

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402	1.0014	25KHz or 20dB	PASS
LOW	2403	1.0014	bandwidth	PASS
Middle	2440	1.0014	25KHz or20dB	PASS
Middle	2441	1.0014	bandwidth	TASS
High	2479	1.0014	25KHz or 20dB	PASS
Tilgii	2480	1.0014	bandwidth	1 ASS

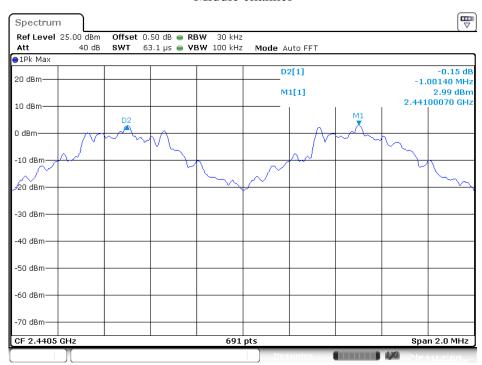
∏/4-DQPSK

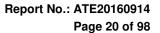
Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402 2403	1.0029	25KHz or 2/3*20dB bandwidth	PASS
Middle	2440 2441	1.0029	25KHz or 2/3*20dB bandwidth	PASS
High	2479 2480	1.0029	25KHz or 2/3*20dB bandwidth	PASS

8DPSK

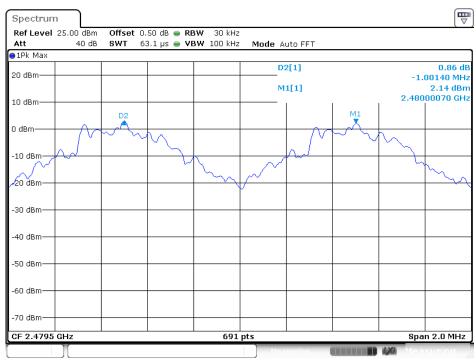

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402	1.0029	25KHz or 2/3*20dB	DACC
LOW	2403	1.0029	bandwidth	PASS
Middle	2440	1.0029	25KHz or 2/3*20dB	PASS
Miladie	2441	1.0029	bandwidth	rass
High	2479	1.0029	25KHz or 2/3*20dB	PASS
Tiigii	2480	1.0029	bandwidth	CCAI

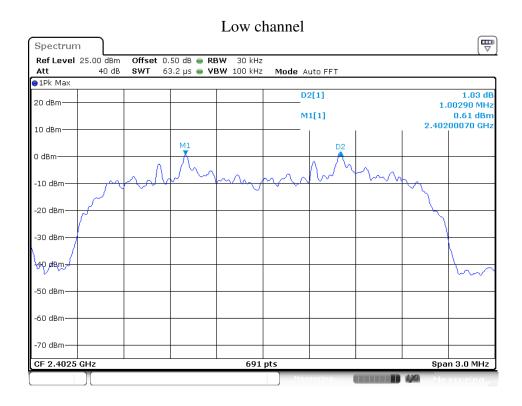
The spectrum analyzer plots are attached as below.

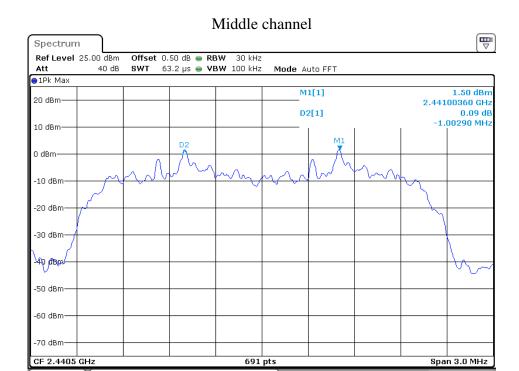


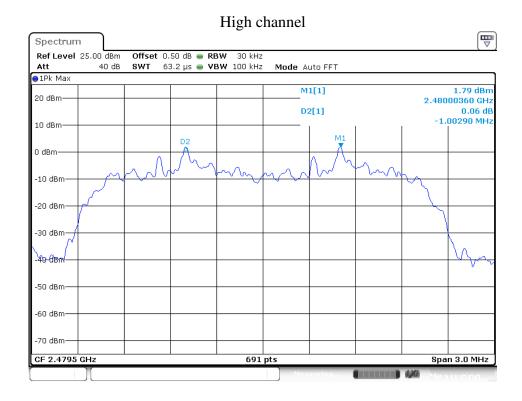

GFSK Mode

Low channel

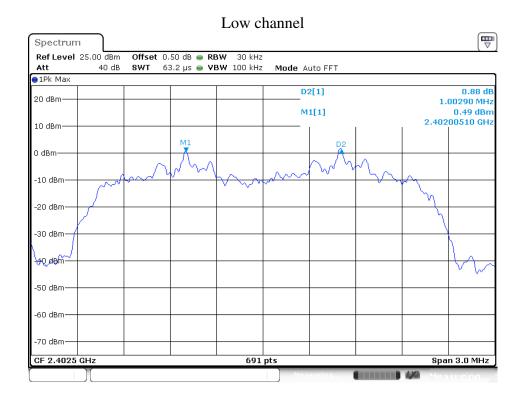

Middle channel

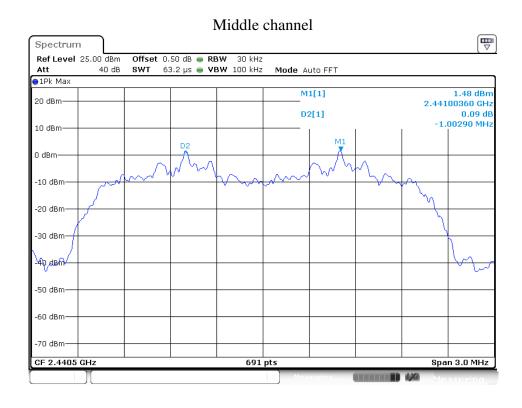


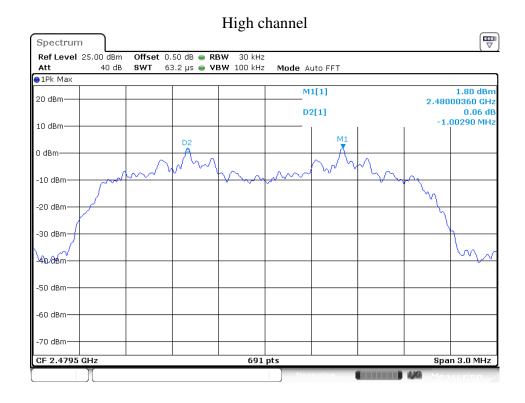

High channel



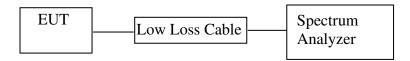
$\Pi/4$ -DQPSK Mode






8DPSK Mode

Page 23 of 98



Page 24 of 98

7. NUMBER OF HOPPING FREQUENCY TEST

7.1.Block Diagram of Test Setup

(EUT: Bluetooth Speaker)

7.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.3.EUT Configuration on Measurement

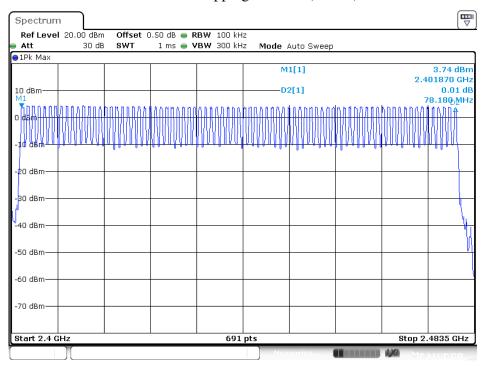
The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it.

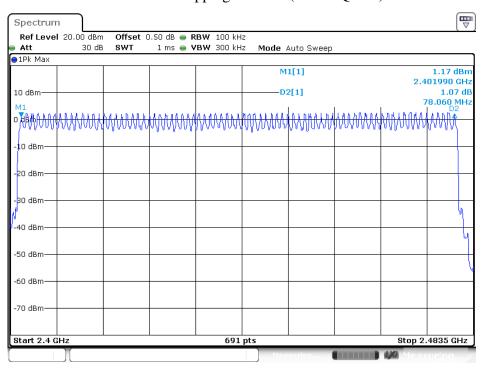
7.5. Test Procedure

- 7.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set the spectrum analyzer as Span=83.5MHz, RBW=100 kHz, VBW=300 kHz.
- 7.5.3.Max hold, view and count how many channel in the band.

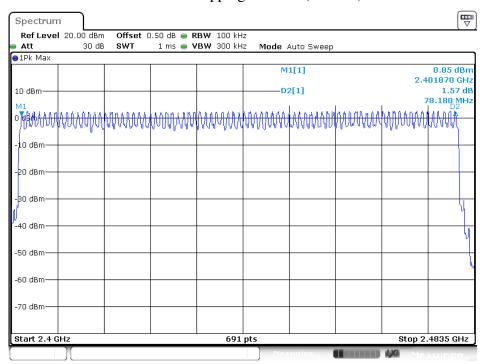


7.6.Test Result

Total number of	Measurement result(CH)	Limit(CH)
hopping channel	79	≥15

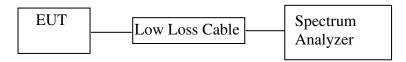

The spectrum analyzer plots are attached as below.

Number of hopping channels(GFSK)



Number of hopping channels $(\Pi/4-DQPSK)$

Number of hopping channels(8DPSK)



Page 27 of 98

8. DWELL TIME TEST

8.1.Block Diagram of Test Setup

(EUT: Bluetooth Speaker)

8.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

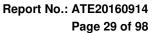
- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

8.5. Test Procedure

- 8.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 8.5.3.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=5ms, 10ms, 15ms. Get the pulse time.

Report No.: ATE20160914 Page 28 of 98

8.5.4.Repeat above procedures until all frequency measured were complete.

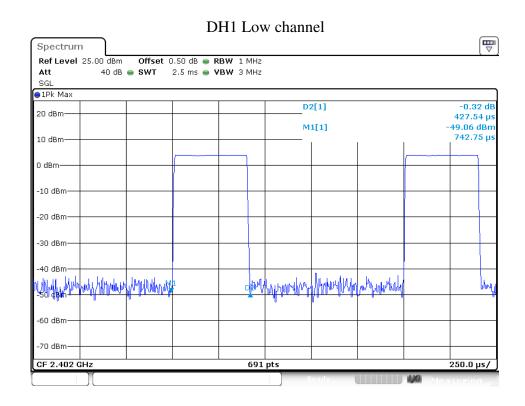

8.6.Test Result

GFSK Mode

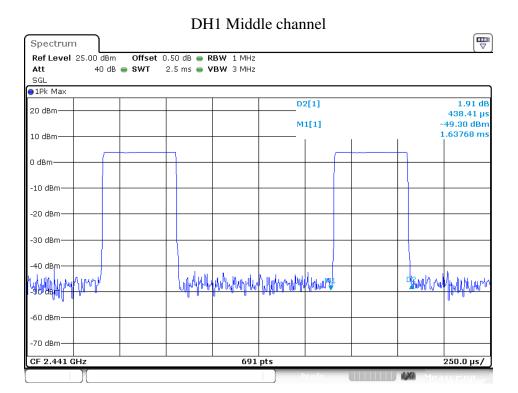
Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)	
	2402	0.428	136.96	400	
DH1	2441	0.438	140.16	400	
	2480	0.442	141.44	400	
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pu	alse time \times (1600/(2*)	79))×31.6	
	2402	1.746	279.36	400	
DH3	2441	1.790	286.40	400	
	2480	1.761	281.76	400	
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pu	ulse time \times (1600/(4*)	79))×31.6	
	2402	2.978	317.65	400	
DH5	2441	2.978	317.65	400	
	2480	3.000	320.00	400	
A period transr	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

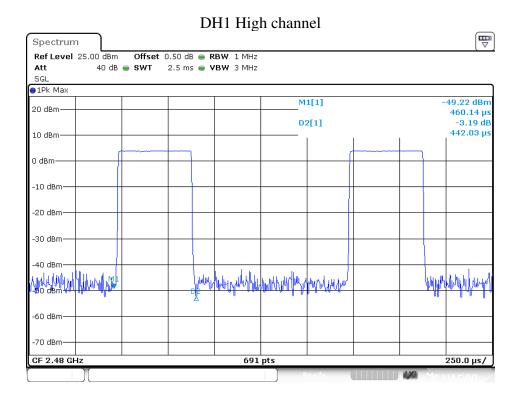
$\Pi/4$ -DQPSK

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)	
	2402	0.446	142.72	400	
DH1	2441	0.442	141.44	400	
	2480	0.438	140.16	400	
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pu	alse time \times (1600/(2*)	79))×31.6	
	2402	1.714	274.24	400	
DH3	2441	1.714	274.24	400	
	2480	1.728	276.48	400	
A period to	ransmit time = 0.4×79 =	31.6 Dwell time = pu	alse time \times (1600/(4*)	79))×31.6	
	2402	3.000	320.00	400	
DH5	2441	3.022	322.35	400	
	2480	2.978	317.65	400	
A period transr	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

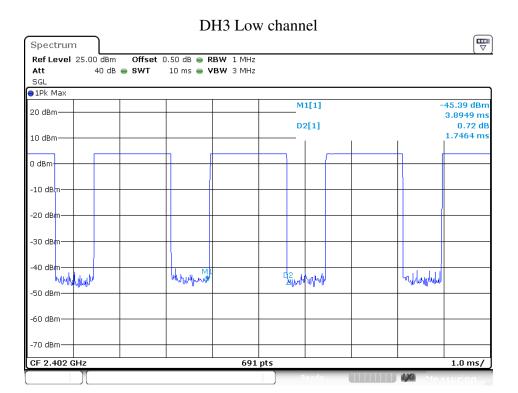


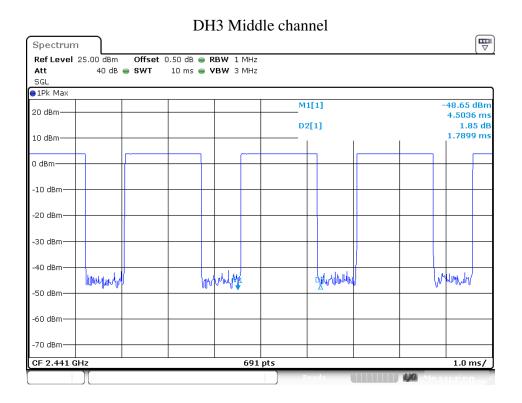
8DPSK Mode

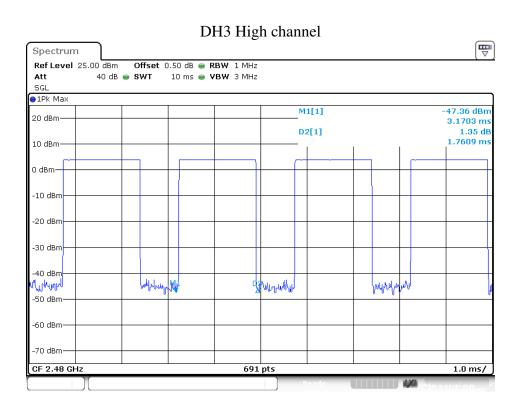

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)
DH1	2402	0.449	143.68	400
	2441	0.446	142.72	400
	2480	0.446	142.72	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$				
DH3	2402	1.736	277.76	400
	2441	1.721	275.36	400
	2480	1.736	277.76	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$				
DH5	2402	3.040	324.27	400
	2441	2.975	317.33	400
	2480	3.062	326.61	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

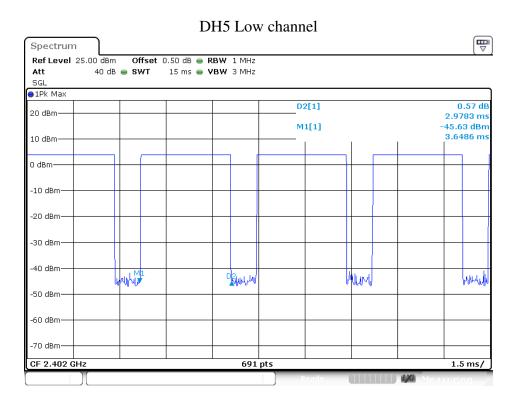

The spectrum analyzer plots are attached as below.

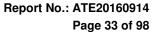
GFSK Mode

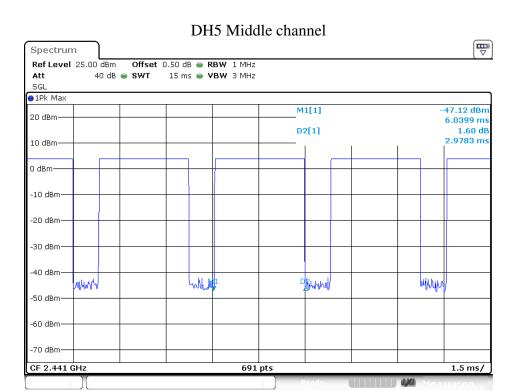


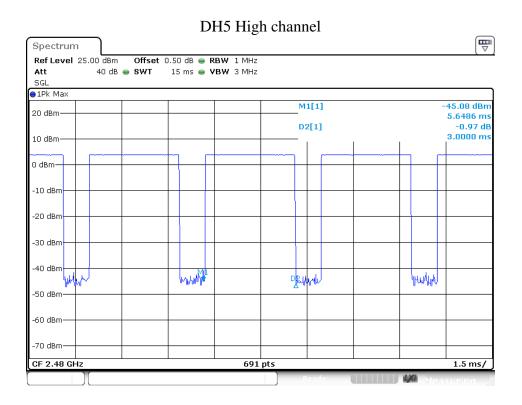


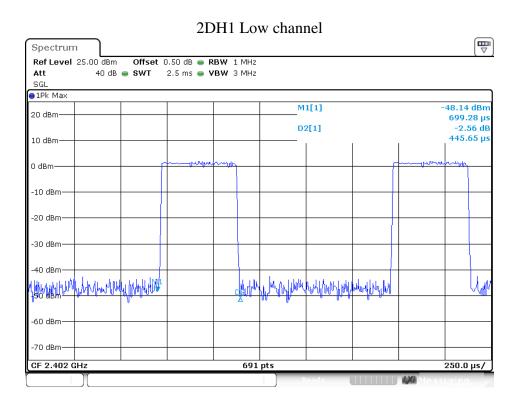


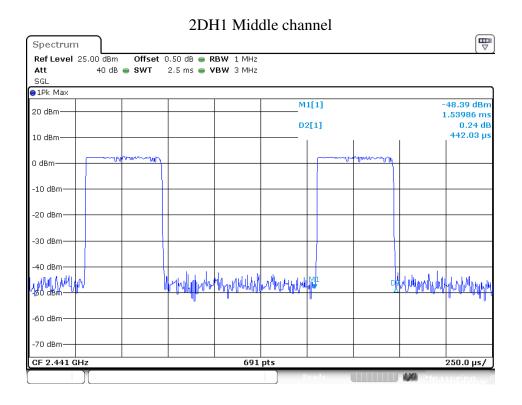


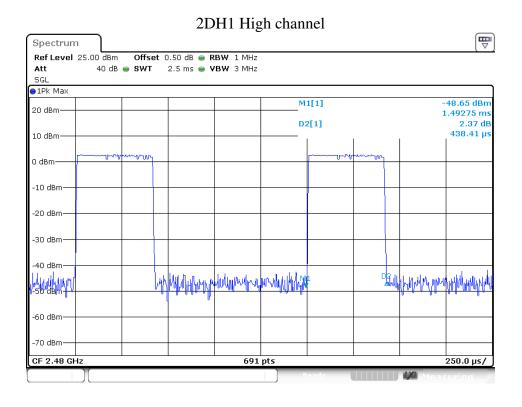


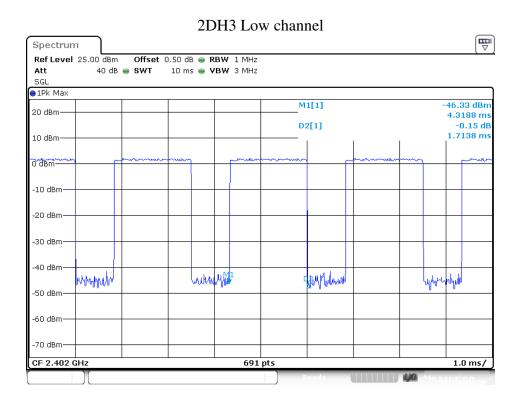






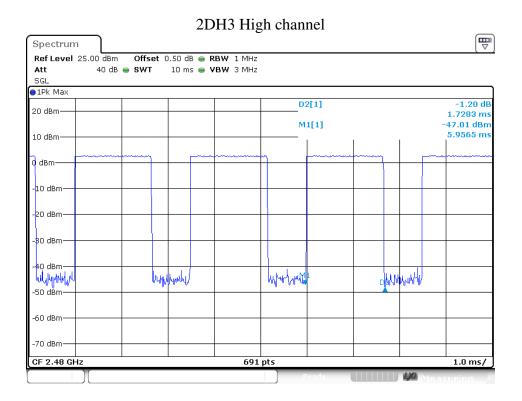



 $\Pi/4$ -DQPSK

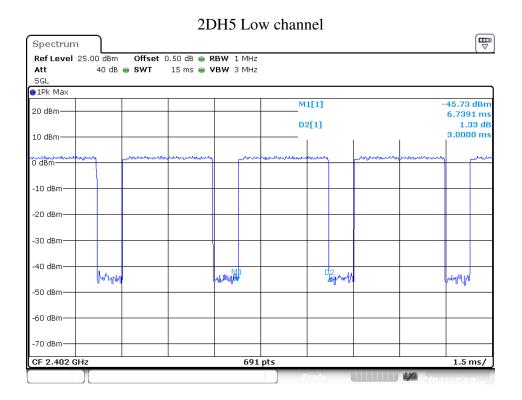


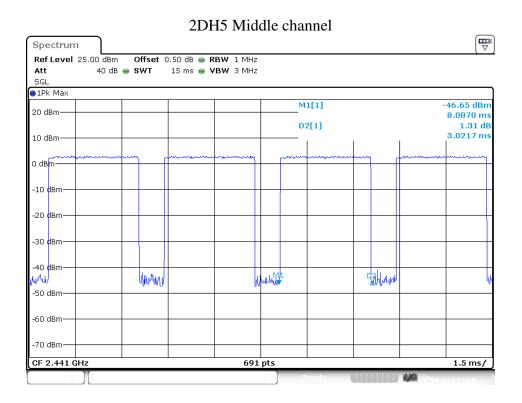
· ·

1.0 ms/

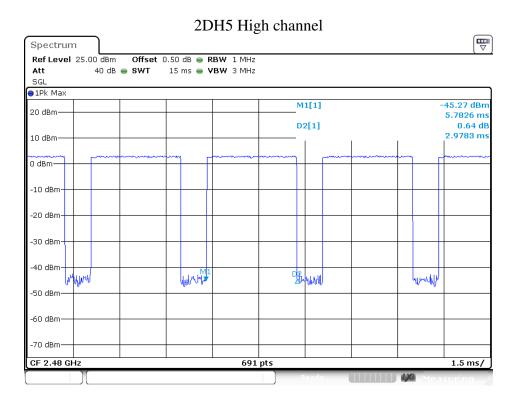


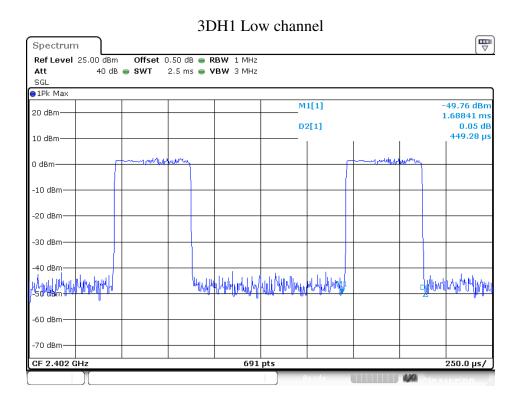
-70 dBm

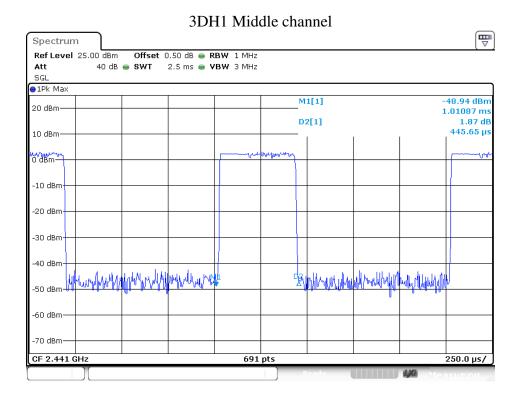

CF 2.441 GHz

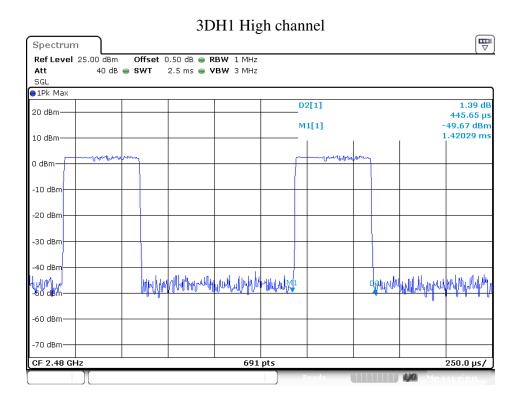

2DH3 Middle channel Spectrum Ref Level 25.00 dBm Offset 0.50 dB 🖷 RBW 1 MHz 40 dB 🅌 SWT Att 10 ms 🁄 **VBW** 3 MHz SGL ●1Pk Max D2[1] 20 dBm 1.7138 ms -45.72 dBm M1[1] 3.5217 ms 10 dBm-0 dBm 10 dBm--20 dBm 30 dBm-40 dBm— Նակեններիկ The Application halphangy! -50 dBm--60 dBm-

691 pts

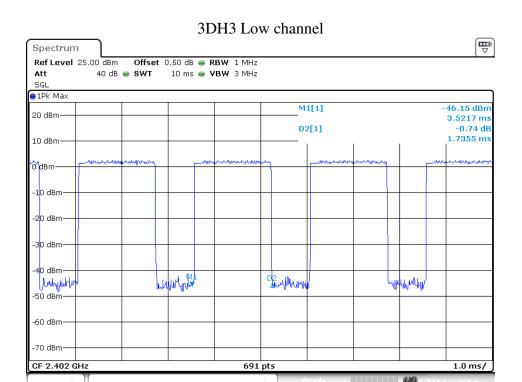


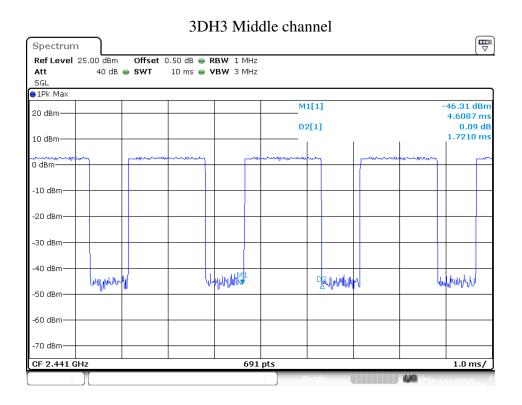


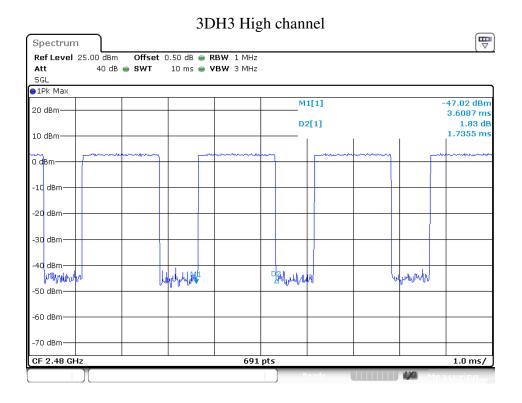


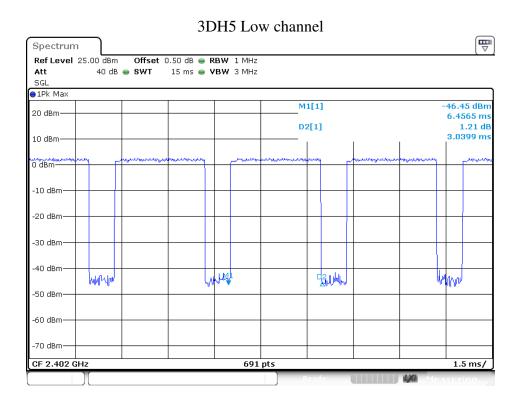


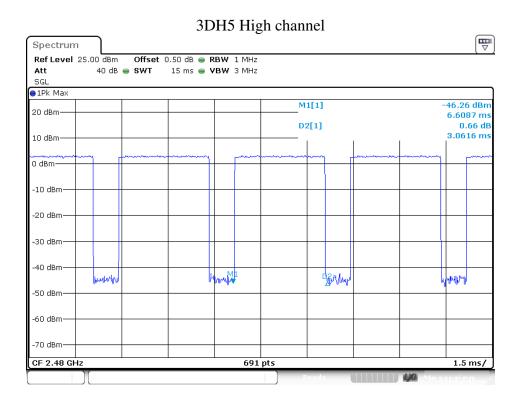
8DPSK Mode



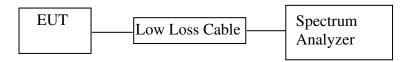








3DH5 Middle channel Spectrum Ref Level 25.00 dBm Offset 0.50 dB 🖷 RBW 1 MHz 40 dB 🅌 SWT Att 15 ms 🁄 **VBW** 3 MHz SGL ●1Pk Max M1[1] 45.06 dBm 20 dBm 5.0217 ms -1.42 dB D2[1] 2.9746 ms 10 dBm--10 dBm -20 dBm -30 dBm -40 dBm-DEMINA hydlad -50 dBm--60 dBm--70 dBm CF 2.441 GHz 691 pts 1.5 ms/



Page 43 of 98

9. MAXIMUM PEAK OUTPUT POWER TEST

9.1.Block Diagram of Test Setup

(EUT: Bluetooth Speaker)

9.2. The Requirement For Section 15.247(b)(1)

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

9.5. Test Procedure

- 9.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz for GFSK mode
- 9.5.3.Set RBW of spectrum analyzer to 3MHz and VBW to 3MHz for other mode
- 9.5.4. Measurement the maximum peak output power.

Page 44 of 98

9.6.Test Result

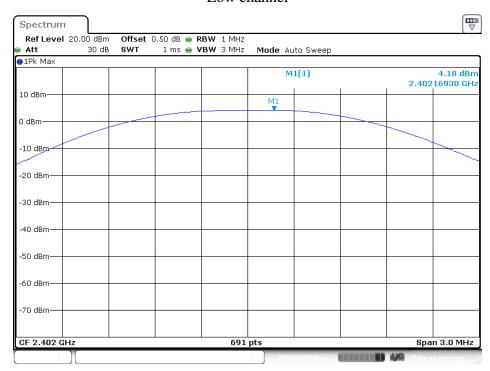
GFSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W
Low	2402	4.18/0.0026	30 / 1.0
Middle	2441	4.10/0.0026	30 / 1.0
High	2480	4.04/0.0025	30 / 1.0

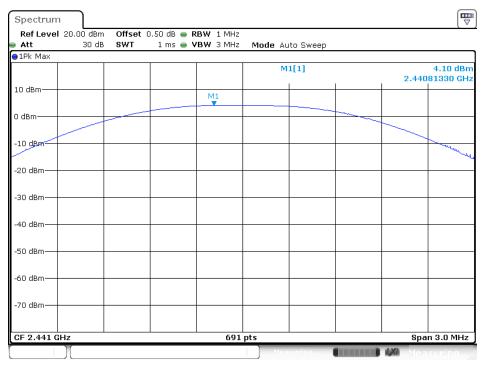
Π /4-DQPSK Mode

•			
Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W
Low	2402	2.42/0.0017	21 / 0.125
Middle	2441	3.07/0.0020	21 / 0.125
High	2480	3.14/0.0021	21 / 0.125

8DPSK Mode

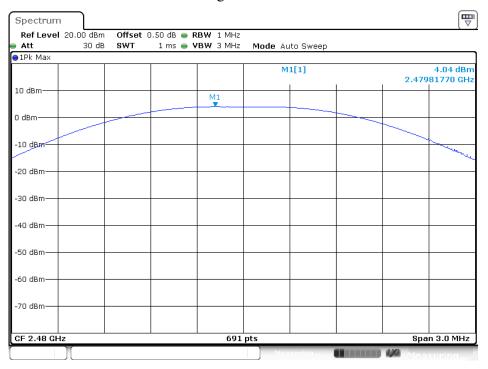

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W
Low	2402	2.62/0.0018	21 / 0.125
Middle	2441	3.18/0.0021	21 / 0.125
High	2480	3.25/0.0021	21 / 0.125

The spectrum analyzer plots are attached as below.

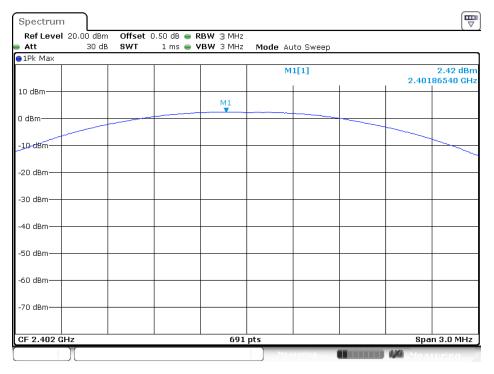


GFSK Mode

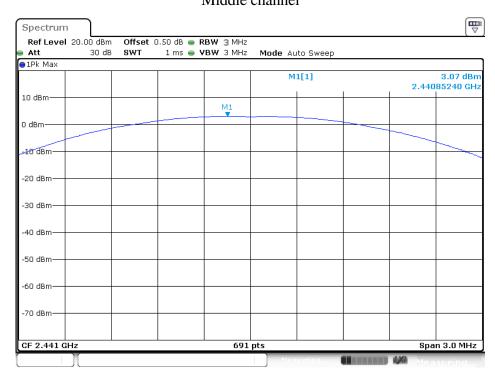
Low channel



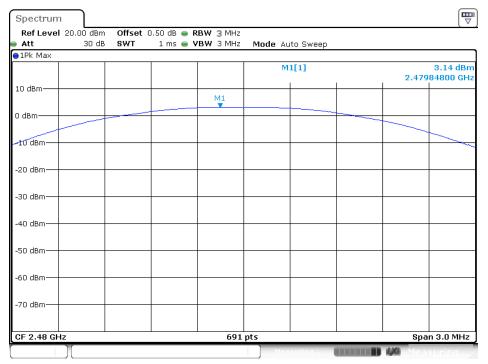
Middle channel



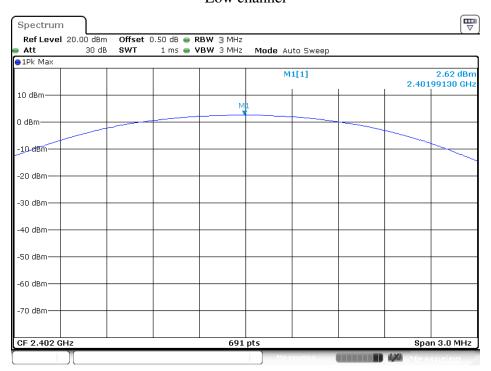
High channel

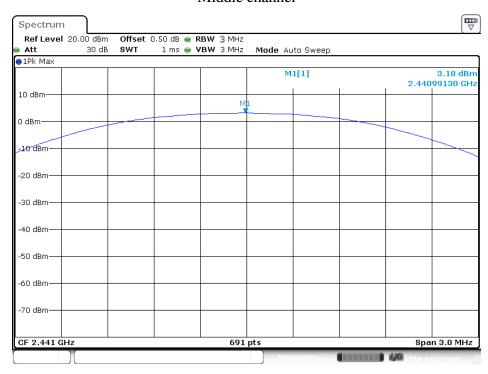

∏/4-DQPSK Mode

Low channel



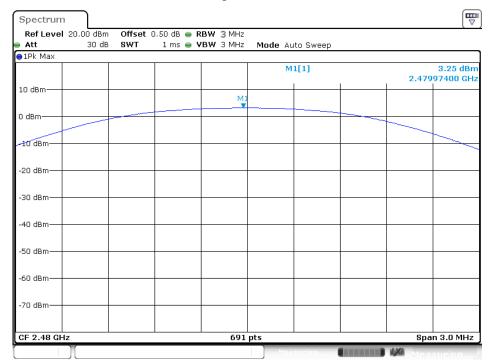
Middle channel


High channel



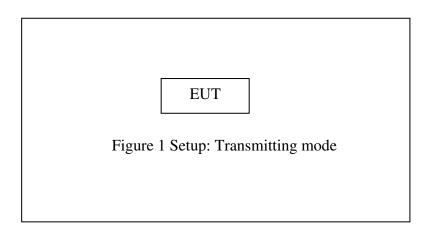
8DPSK Mode

Low channel


Middle channel

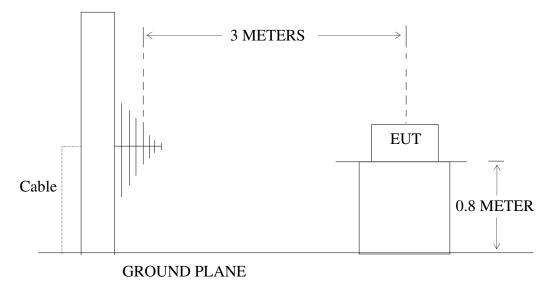
Page 49 of 98

High channel



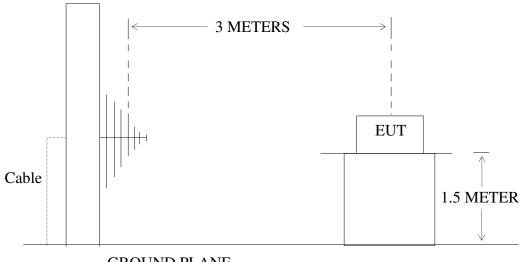
10. RADIATED EMISSION TEST

10.1.Block Diagram of Test Setup


10.1.1.Block diagram of connection between the EUT and peripherals

10.1.2.Semi-Anechoic Chamber Test Setup Diagram

Below 1GHz


ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

Above 1GHz

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

GROUND PLANE

10.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

Report No.: ATE20160914 Page 52 of 98

10.3. Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

perii	itted in any of the freque	ncy bands fisted below.	
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{}$
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4. Configuration of EUT on Measurement

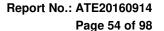
The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6

Page 53 of 98

10.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.


During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

10.6. The Field Strength of Radiation Emission Measurement Results

Note:

- 1.We tested GFSK mode, $\Pi/4$ -DQPSK Mode & 8QPSK mode and recorded the worst case data (GFSK mode) for all test mode.
- 2. The test frequency is from 30MHz to 25GHz, The 18-25GHz emissions are not reported, because the levels are too low against the limit.

Below 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

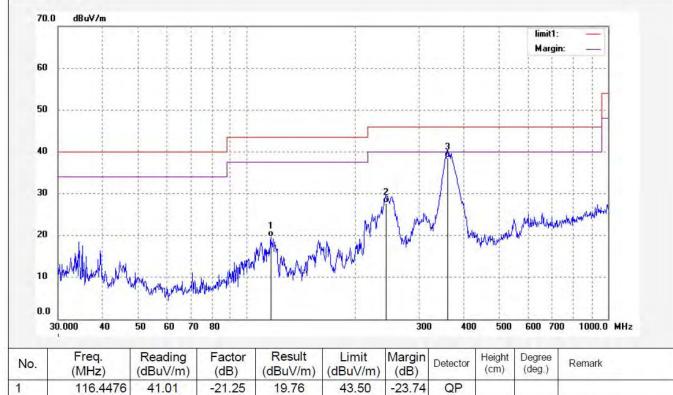
Job No.: ricky 2016 #619

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker


Mode: TX 2402MHz
Model: CR3028U-XX
Manufacturer: TIMSEN

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 15/36/51 Engineer Signature: Distance: 3m

Note: Report NO.:ATE20160914

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	116.4476	41.01	-21.25	19.76	43.50	-23.74	QP				
2	242.6889	45.92	-18.23	27.69	46.00	-18.31	QP				
3	359.7114	52.95	-14.30	38.65	46.00	-7.35	QP				

Report No.: ATE20160914 Page 55 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #620

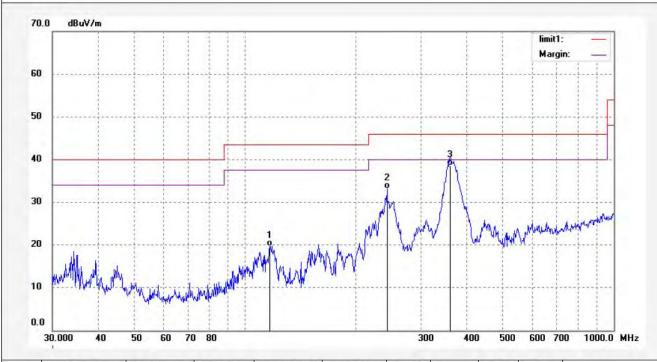
Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker

Mode: TX 2402MHz Model: CR3028U-XX Manufacturer: TIMSEN


Note: Report NO.:ATE20160914

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 15/38/29 Engineer Signature:

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	116.4476	41.01	-21.25	19.76	43.50	-23.74	QP			
2	242.6889	51.36	-18.23	33.13	46.00	-12.87	QP		1111	
3	359.7114	52.95	-14.30	38.65	46.00	-7.35	QP			

Page 56 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1, Bldg, A, Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

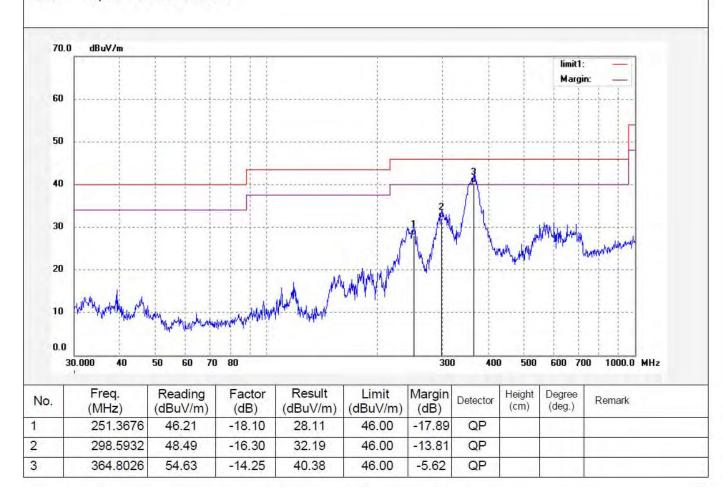
Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #621

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %


EUT: Bluetooth Speaker

Mode: TX 2441MHz Model: CR3028U-XX Manufacturer: TIMSEN

Note: Report NO.:ATE20160914 Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 15/40/23 Engineer Signature: Distance: 3m

Page 57 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #622

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %


EUT: Bluetooth Speaker

Mode: TX 2441MHz Model: CR3028U-XX Manufacturer: TIMSEN Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 15/44/09 Engineer Signature: Distance: 3m

Note: Report NO.:ATE20160914

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	109.3110	42.23	-21.17	21.06	43.50	-22.44	QP			
2	244.4004	48.61	-18.21	30.40	46.00	-15.60	QP			
3	358.4497	52.18	-14.34	37.84	46.00	-8.16	QP			

Report No.: ATE20160914 Page 58 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Tel:+86-0755-26503290 Fax:+86-0755-26503396

Site: 1# Chamber

Job No.: ricky 2016 #623

Standard: FCC Class B 3M Radiated

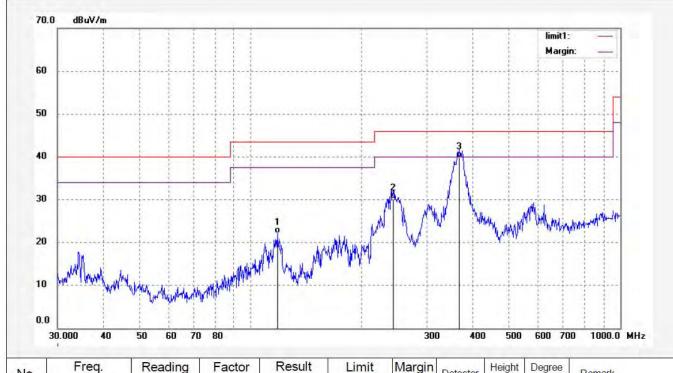
Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker

Mode: TX 2480MHz

Model: CR3028U-XX


Manufacturer: TIMSEN

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 15/57/38 Engineer Signature: Distance: 3m

Note: Report NO.:ATE20160914

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	118.0957	43.33	-21.27	22.06	43.50	-21.44	QP			
2	242.6889	48.41	-18.23	30.18	46.00	-15.82	QP			
3	366.0866	54.03	-14.25	39.78	46.00	-6.22	QP			

Page 59 of 98

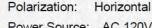
ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #624

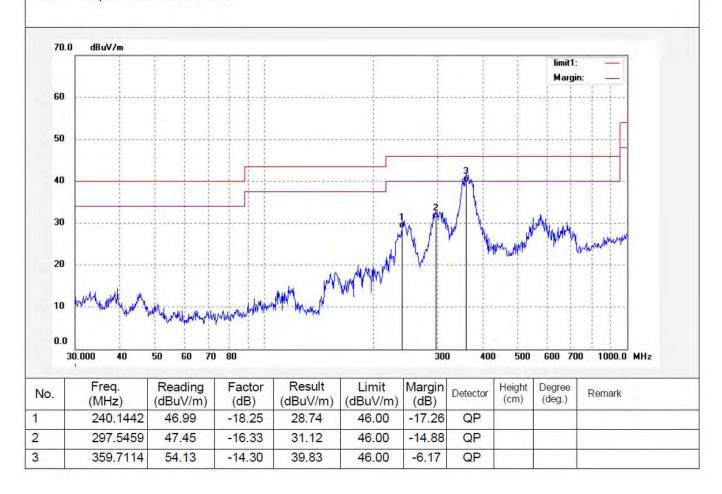
Standard: FCC Class B 3M Radiated

Test item: Radiation Test


Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker

Mode: TX 2480MHz Model: CR3028U-XX


Manufacturer: TIMSEN

Note: Report NO.:ATE20160914

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 15/59/32 Engineer Signature: Distance: 3m

Page 60 of 98

Above 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #595

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

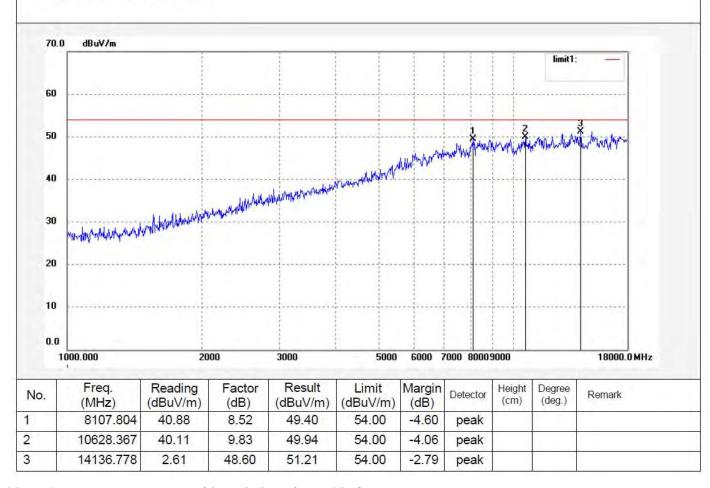
Report NO.:ATE20160914

EUT: Bluetooth Speaker

Mode: TX 2402MHz Model: CR3028U-XX

Manufacturer: TIMSEN

Note:


Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 14/22/16

Engineer Signature: Ricky

Distance: 3m

Report No.: ATE20160914 Page 61 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #596

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker

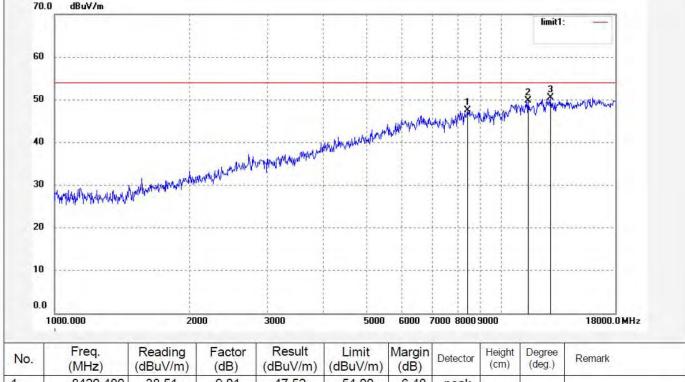
Mode: TX 2402MHz

Model: CR3028U-XX

Manufacturer: TIMSEN

Polarization: Vertical

Power Source: AC 120V/60Hz


Date: 16/05/22/ Time: 14/24/48

Engineer Signature: Ricky

Distance: 3m

Note: Report NO.:ATE20160914

70.0 dBuV/m

1 8420.480 38.51 9.01 47.52 54.00 -6.48peak 11497.352 2 37.99 11.85 49.84 54.00 -4.16peak 3 12879.487 4.44 46.01 50.45 54.00 -3.55peak

Page 62 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #597

Standard: FCC Class B 3M Radiated

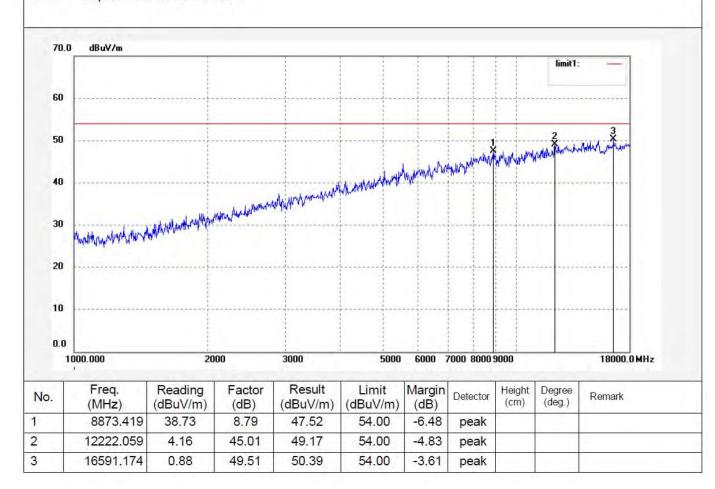
Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker

Mode: TX 2441MHz Model: CR3028U-XX Manufacturer: TIMSEN

Vertical Polarization:


Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 14/26/43

Engineer Signature: Ricky

Distance: 3m

Report NO.:ATE20160914 Note:

Report No.: ATE20160914 Page 63 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #598

Standard: FCC Class B 3M Radiated

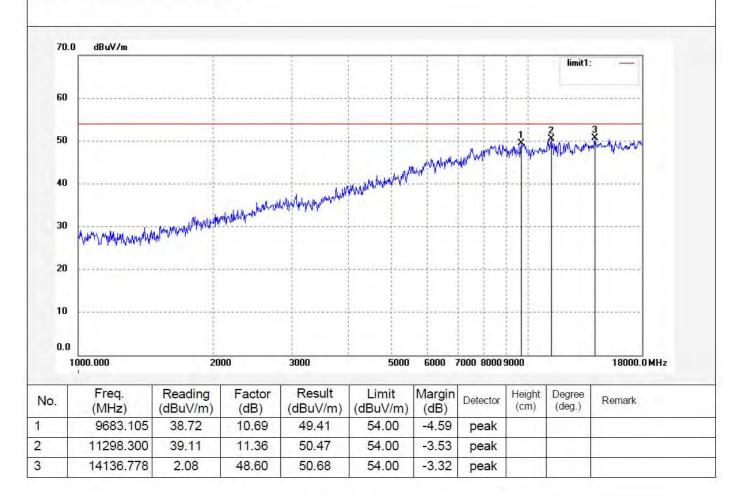
Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker

Mode: TX 2441MHz Model: CR3028U-XX Manufacturer: TIMSEN

Note: Report NO.:ATE20160914


Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 14/29/11

Engineer Signature: Ricky

Distance: 3m

Report No.: ATE20160914 Page 64 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #599

Standard: FCC Class B 3M Radiated

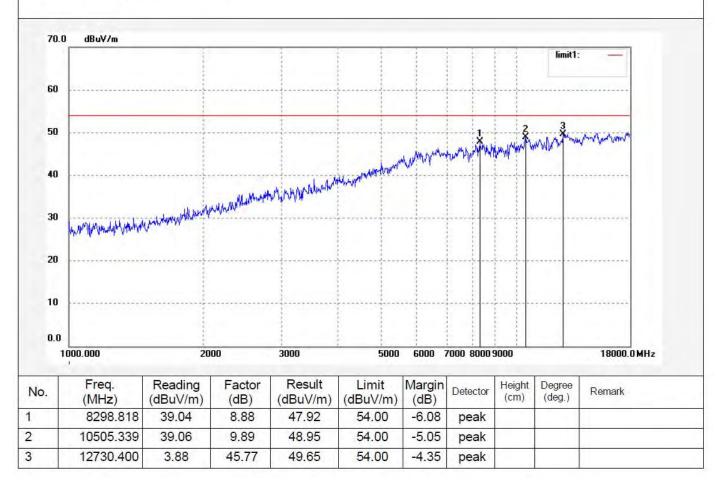
Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker

Mode: TX 2480MHz
Model: CR3028U-XX
Manufacturer: TIMSEN

Note: Report NO.:ATE20160914


Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 14/34/24

Engineer Signature: Ricky

Distance: 3m

Report No.: ATE20160914 Page 65 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #600

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker

Mode: TX 2480MHz Model: CR3028U-XX Manufacturer: TIMSEN Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 14/37/57

Engineer Signature: Ricky

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	9853.701	38.18	10.94	49.12	54.00	-4.88	peak			
2	12080.583	38.63	11.77	50.40	54.00	-3.60	peak			
3	17081.198	-0.52	51.25	50.73	54.00	-3.27	peak			

5000

6000 7000 80009000

Note: Average measurement with peak detection at No.2

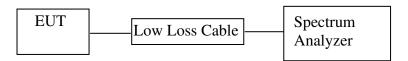
2000

3000

10

0.0

1000,000


18000.0 MHz

Page 66 of 98

11.BAND EDGE COMPLIANCE TEST

11.1.Block Diagram of Test Setup

(EUT: Bluetooth Speaker)

11.2.The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

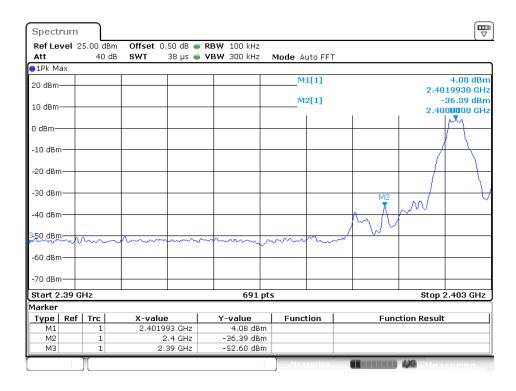
11.4. Operating Condition of EUT

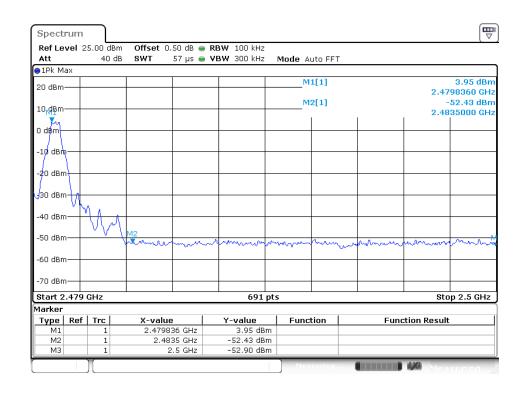
- 11.4.1. Setup the EUT and simulator as shown as Section 11.1.
- 11.4.2. Turn on the power of all equipment.
- 11.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

Report No.: ATE20160914 Page 67 of 98

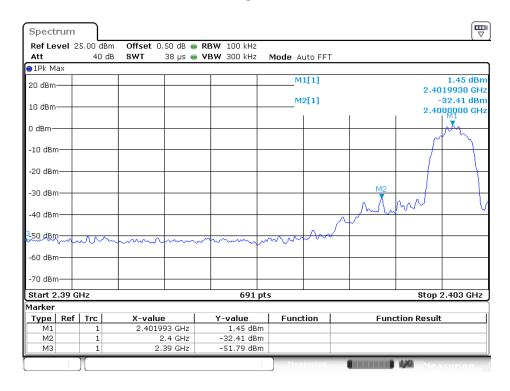
11.5.Test Procedure

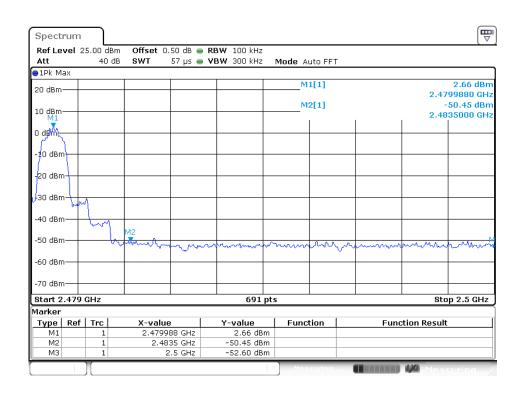
- 11.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 11.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz with convenient frequency span including 100 kHz bandwidth from band edge.
- 11.5.3. The band edges was measured and recorded.

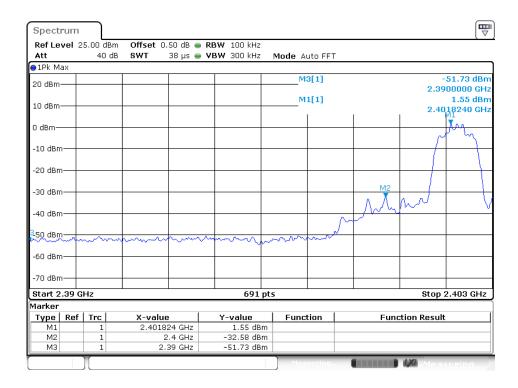

11.6.Test Result

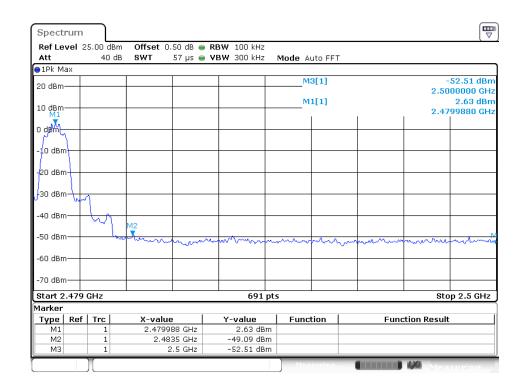

Frequency	Result of Band Edge	Limit of Band Edge
(MHz)	(dBc)	(dBc)
	GFSK	
2400.00	40.47	> 20dBc
2483.50	56.38	> 20dBc
	Π /4-DQPSK Mode	
2400.00	33.86	> 20dBc
2483.50	53.11	> 20dBc
	8DPSK	
2400.00	34.13	> 20dBc
2483.50	51.72	> 20dBc

GFSK






$\Pi/4$ -DQPSK Mode



8DPSK

Report No.: ATE20160914 Page 71 of 98

Radiated Band Edge Result

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:
 - Result = Reading + Corrected Factor
- 3. Display the measurement of peak values.

Test Procedure:

The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

Let the EUT work in TX (Hopping off, Hopping on) modes measure it. We select 2402MHz, 2480MHz TX frequency to transmit(Hopping off mode). We select 2402-2480MHz TX frequency to transmit(Hopping on mode).

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 3. All modes of operation were investigated and the worst-case emissions are reported.

Report No.: ATE20160914 Page 72 of 98

Site: 1# Chamber

Non-hopping mode

ACCURATE TECHNOLOGY CO., LTD.

F1, Bldg, A, Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #614

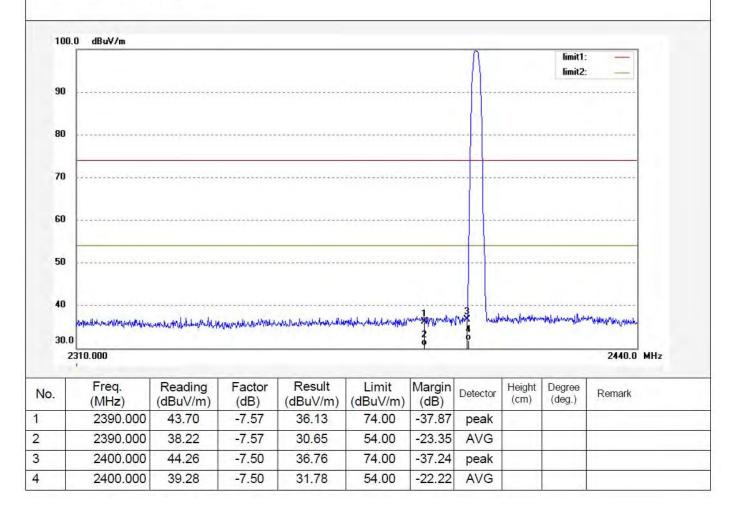
Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker Mode: TX 2402MHz(GFSK)

Model: CR3028U-XX Manufacturer: TIMSEN


Report NO.:ATE20160914 Note:

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 14/54/24 Engineer Signature:

Distance: 3m

Report No.: ATE20160914 Page 73 of 98

Site: 1# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

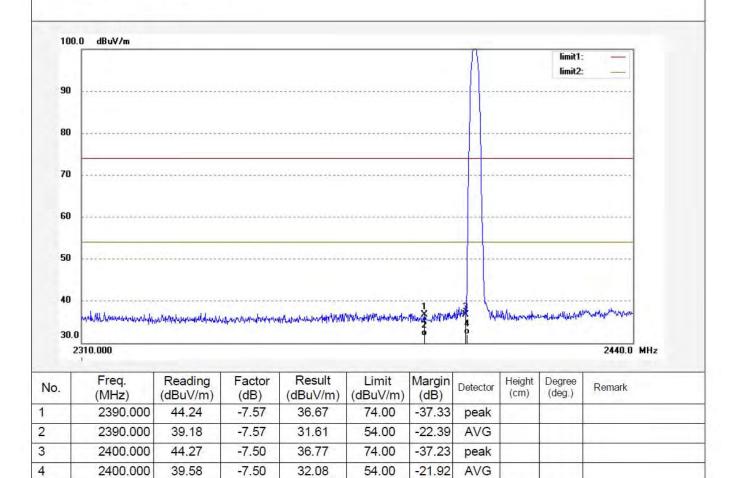
ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

> Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 14/53/37 Engineer Signature:


Distance: 3m

Job No.: ricky 2016 #613 Standard: FCC PK Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: Bluetooth Speaker

TX 2402MHz(GFSK) Mode: Model: CR3028U-XX Manufacturer: TIMSEN

Note: Report NO.:ATE20160914

Report No.: ATE20160914 Page 74 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #612

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker Mode: TX 2480MHz(GFSK)

Model: CR3028U-XX Manufacturer: TIMSEN

60

50

30.0

2470.000

Note: Report NO.:ATE20160914

there beyouthed your group to very application

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 14/52/15 Engineer Signature: Distance: 3m

100.0 dBuV/m limit1: limit2: 90 80 70

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	48.71	-7.38	41.33	74.00	-32.67	peak			
2	2483.500	43.37	-7.38	35.99	54.00	-18.01	AVG			
3	2484.220	49.32	-7.39	41.93	74.00	-32.07	peak			
4	2484.220	44.13	-7.39	36.74	54.00	-17.26	AVG			

Note: Average measurement with peak detection at No.2&4

2500.0 MHz

Report No.: ATE20160914

Page 75 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #611

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker Mode: TX 2480MHz(GFSK)

Model: CR3028U-XX Manufacturer: TIMSEN

70

60

50

40

30.0

Note: Report NO.:ATE20160914 Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 14/51/21 Engineer Signature: Distance: 3m

100.0 dBuV/m limit1: limit2: 90 80

2	2470.000 2500.0 MHz											
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark		
1	2483.500	47.40	-7.38	40.02	74.00	-33.98	peak					
2	2483.500	42.23	-7.38	34.85	54.00	-19.15	AVG					
3	2484.400	49.45	-7.39	42.06	74.00	-31.94	peak					
4	2484.400	44.26	-7.39	36.87	54.00	-17.13	AVG					

Note: Average measurement with peak detection at No.2&4

Report No.: ATE20160914 Page 76 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #610 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: Bluetooth Speaker

Mode: TX 2402MHz(π/4 DQPSK)

Model: CR3028U-XX Manufacturer: TIMSEN

Note: Report NO.:ATE20160914 Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 14/50/30 Engineer Signature:

Distance: 3m

80	
80	
70	
60	
50	
40 hopeild works property has been been been been been been been bee	Interstanting the state of the
30.0	
2310.000	2440.0
Freq. Reading Factor Result Limit Margin (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) Detector (cm) Degree (deg.)	
2390.000 43.70 -7.57 36.13 74.00 -37.87 peak	
2200 000 20 25 7.57 20 70 54 00 22 20 41/0	
2390.000 38.35 -7.57 30.78 54.00 -23.22 AVG	

Report No.: ATE20160914 Page 77 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #609

Standard: FCC PK Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: Bluetooth Speaker

TX 2402MHz(π/4 DQPSK) Mode:

Model: CR3028U-XX Manufacturer: TIMSEN

Note: Report NO.:ATE20160914 Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 14/49/30 Engineer Signature: Distance: 3m

							Λ		limit1:	
							- //		limit2:	
90	************	***********								
80		************		***********						******
70								*******		
60		************		**********						********
			/5000000		turnum rum tu					
50										********
40							3			
40	rank/hk/houseseseseseshale	ya Noffefu saprugaldy was shi	the and in the section of the sectio	applications of applications of a positive for the second	e/vistla-philipsphaphaphapsastlav	The state of the s	w A	hall bedgen out	complete profit polyment	the state of the state of the
40 30.0	The second secon	yatetesfassermentafaasiin	than white the same	estal and action of estal and action	yvisthryddigestryddigestryddigestryddig	- I was	3 W	hillsongochu	u-ol _{ek e} pakkishohoh	2440.0 MH
40 30.0 2	Preq.	Reading (dBuV/m)	Factor	Result (dBuV/m)	Limit	Margin	Detector	Height (cm)	Degree (deg.)	
40 30.0 2	2310.000	Reading	Factor	Result		Margin	Detector	Height	Degree	2440.0 MH
40 30.0 2	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector peak	Height	Degree	2440.0 MH
40 30.0	Freq. (MHz) 2390.000	Reading (dBuV/m) 44.24	Factor (dB) -7.57	Result (dBuV/m) 36.67	Limit (dBuV/m) 74.00	Margin (dB) -37.33	Detector peak AVG	Height	Degree	2440.0 MH

Report No.: ATE20160914 Page 78 of 98

ATC

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #608

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker

Mode: TX 2480MHz(π /4 DQPSK)

Model: CR3028U-XX Manufacturer: TIMSEN

Note: Report NO.:ATE20160914

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 14/48/29 Engineer Signature: Distance: 3m

100.0 dBuV/m limit1 limit2 90 80 70 50 40 30.0 2470.000 2500.0 MHz Freq. Reading Factor Result Limit Margin Height Degree Detector Remark No. (cm) (deg.) (dBuV/m) (dB) (dBuV/m) (MHz) (dBuV/m) (dB) 1 2483.500 48.71 -7.3841.33 74.00 -32.67peak 2 2483,500 43.28 -7.3835.90 54.00 -18.10AVG 3 2484,220 49.32 -7.3941.93 74.00 -32.07peak 44.34 4 2484.220 -7.3936.95 54.00 -17.05AVG

Report No.: ATE20160914 Page 79 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #607

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT:

Bluetooth Speaker

Mode: TX 2480MHz(π/4 DQPSK)

Model: CR3028U-XX Manufacturer: TIMSEN

Note: Report NO.:ATE20160914

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 14/47/00 Engineer Signature: Distance: 3m

			-							
			1	1					limit1:	
			1	1					limit2:	_
90								*******		
				1						
80								******		
70										
-			1							
60			1						124422400	1201254
50										*******
		1		1.		3				
40	tallerykkistictlyndersperse	Agrammy Haven Jardella And		Mary	and produced by the state of th	3 *	abaaaladda.	and the second	u. Abar.	takaa arkiiM
40	ja ^d hashpirjadhadhadaan	strong history history	**********		and property and placed of	Weekler of the second	Apricolative	thered, and has the	Hydrighan	jidhaya jidhaydam
40 30.0		And Market And Company of the Compan	**********	20	re-without-reportation entry	**************************************	Menodolyhen	theretural height	Hypothystran	jjanjakan
30.0		entrange Herrory had being day		2	er all perturbation all francistics	Weekler St.	Apenolishfren	distribution	Hypotherina	2500.0 MHz
30.0	470.000		Factor							2500.0 MHz
30.0		Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)		Height (cm)	Degree (deg.)	
30.0	470.000 Freq.	Reading		Result	Limit	Margin	Detector	Height	Degree	2500.0 MHz
30.0	470.000 Freq. (MHz)	Reading (dBuV/m)	(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector peak	Height	Degree	2500.0 MHz
30.0	Freq. (MHz) 2483.500	Reading (dBuV/m) 47.90	(dB) -7.38	Result (dBuV/m) 40.52	Limit (dBuV/m) 74.00	Margin (dB)	Detector peak AVG	Height	Degree	2500.0 MHz

Report No.: ATE20160914

Page 80 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #618 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: Bluetooth Speaker Mode: TX 2402MHz(8DPSK)

Model: CR3028U-XX Manufacturer: TIMSEN

Note: Report NO.:ATE20160914 Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 14/58/27 Engineer Signature: Distance: 3m

100.0 dBuV/m limit1 limit2: 80

50	40	while the was a superior of the contract of th	Market and a speed after a common of
60	50		
	60	***************************************	

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2390.000	44.24	-7.57	36.67	74.00	-37.33	peak				
2	2390.000	39.02	-7.57	31.45	54.00	-22.55	AVG				
3	2400.000	44.77	-7.50	37.27	74.00	-36.73	peak				
4	2400.000	39.87	-7.50	32.37	54.00	-21.63	AVG				

ATC®

Standard: FCC PK

Job No.: ricky 2016 #617

Test item: Radiation Test

ACCURATE TECHNOLOGY CO., LTD.

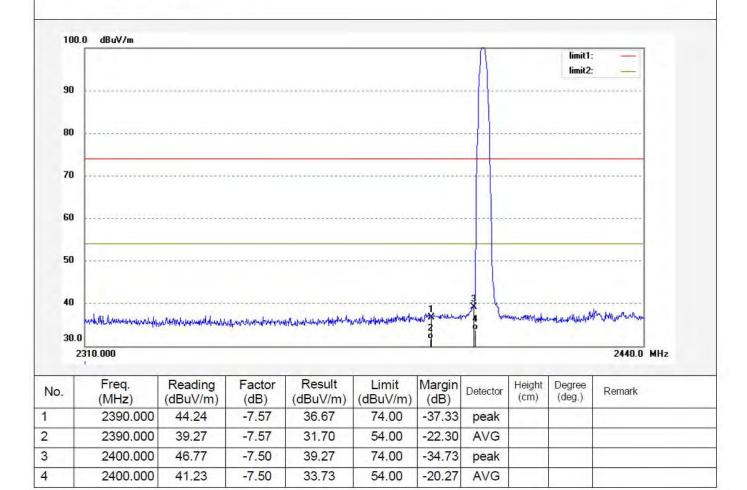
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20160914

Page 81 of 98

Polarization: Vertical

Power Source: AC 120V/60Hz


Date: 16/05/22/ Time: 14/57/41 Engineer Signature:

Distance: 3m

Temp.(C)/Hum.(%) 25 C / 55 %
EUT: Bluetooth Speaker
Mode: TX 2402MHz(8DPSK)

Model: CR3028U-XX Manufacturer: TIMSEN

Note: Report NO.:ATE20160914

Report No.: ATE20160914 Page 82 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #616

Standard: FCC PK
Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker Mode: TX 2480MHz(8DPSK)

Model: CR3028U-XX Manufacturer: TIMSEN

Note: Report NO.:ATE20160914

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 14/56/28 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	48.71	-7.38	41.33	74.00	-32.67	peak			
2	2483.500	43.35	-7.38	35.97	54.00	-18.03	AVG			
3	2486.260	48.13	-7.40	40.73	74.00	-33.27	peak			
4	2486.260	43.10	-7.40	35.70	54.00	-18.30	AVG			

Report No.: ATE20160914 Page 83 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #615

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker Mode: TX 2480MHz(8DPSK)

Model: CR3028U-XX Manufacturer: TIMSEN

Note: Report NO.:ATE20160914

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 14/55/38 Engineer Signature: Distance: 3m

100.0 dBuV/m limit1: limit2: 90 80 70 60 50 Maring high after the single of the single o 40 30.0 2470.000 2500.0 MHz Reading Factor Result Freq. Limit Margin Height Degree Detector Remark No. (deg.) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) (MHz) 1 2483,500 47.40 -7.3840.02 74.00 -33.98 peak -19.19 2 2483.500 42.19 -7.3854.00 34.81 AVG 3 2485.330 49.40 -7.3942.01 74.00 -31.99peak 4 2485.330 44.28 -7.3936.89 54.00 -17.11AVG

Report No.: ATE20160914 Page 84 of 98

Hopping mode

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #603

Standard: FCC PK

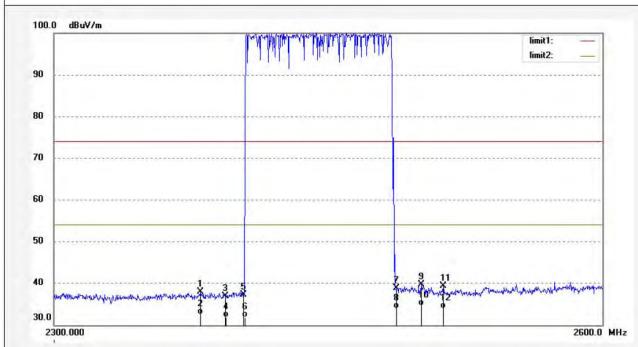
Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker

Mode: HOPPING(GFSK)

Model: CR3028U-XX Manufacturer: TIMSEN


Note: Report NO.:ATE20160914

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 14/43/32 Engineer Signature:

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2376.800	45.59	-7.66	37.93	74.00	-36.07	peak			
2	2376.800	40.12	-7.66	32.46	54.00	-21.54	AVG			
3	2390.000	44.48	-7.57	36.91	74.00	-37.09	peak			
4	2390.000	39.45	-7.57	31.88	54.00	-22.12	AVG			
5	2400.000	44.84	-7.50	37.34	74.00	-36.66	peak]	
6	2400.000	39.28	-7.50	31.78	54.00	-22.22	AVG			
7	2483.500	46.20	-7.38	38.82	74.00	-35.18	peak			
8	2483.500	41.32	-7.38	33.94	54.00	-20.06	AVG			
9	2497.100	47.13	-7.40	39.73	74.00	-34.27	peak			
10	2497.100	42.00	-7.40	34.60	54.00	-19.40	AVG			
11	2509.400	46.62	-7.32	39.30	74.00	-34.70	peak			
12	2509.400	41.33	-7.32	34.01	54.00	-19.99	AVG			

Note: Average measurement with peak detection at No.2, 4, 6, 8

Report No.: ATE20160914 Page 85 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky 2016 #604

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker
Mode: HOPPING(GFSK)

Model: CR3028U-XX Manufacturer: TIMSEN

Note: Report NO.:ATE20160914

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 14/44/28 Engineer Signature:

Distance: 3m

	Il affermet the standard and a standard and a	¹₩ fimit1: —
90		limit2:
30		
80		
70		
70		
60		
50		
30	*****************	***************************************
		Z 9. 11
40 Milystrasional transcription	X 3 8	John be mandered a free francisco de francisco de la company de la compa

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2364.200	45.79	-7.74	38.05	74.00	-35.95	peak	_ = == 1		
2	2364.200	40.25	-7.74	32.51	54.00	-21.49	AVG			
3	2390.000	44.26	-7.57	36.69	74.00	-37.31	peak			
4	2390.000	39.87	-7.57	32.30	54.00	-21.70	AVG			
5	2400.000	44.82	-7.50	37.32	74.00	-36.68	peak			
6	2400.000	39.21	-7.50	31.71	54.00	-22.29	AVG			
7	2483.500	46.34	-7.38	38.96	74.00	-35.04	peak			
8	2483.500	41.24	-7.38	33.86	54.00	-20.14	AVG			
9	2515.400	46.24	-7.29	38.95	74.00	-35.05	peak			
10	2515.400	41.21	-7.29	33.92	54.00	-20.08	AVG			
11	2522.000	46.42	-7.24	39.18	74.00	-34.82	peak			
12	2522.000	41.23	-7.24	33.99	54.00	-20.01	AVG			

Note: Average measurement with peak detection at No.2, 4, 6, 8

ATC[®]

Report No.: ATE20160914 Page 86 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

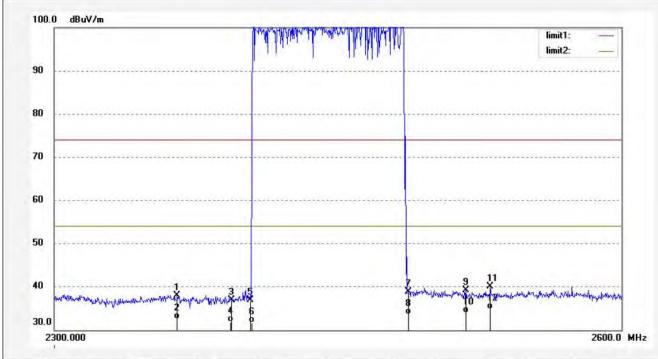
Job No.: ricky 2016 #605

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker
Mode: HOPPING(π/4 DQPSK)


Model: CR3028U-XX Manufacturer: TIMSEN

Note: Report NO.:ATE20160914

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 14/45/25 Engineer Signature: Distance: 3m

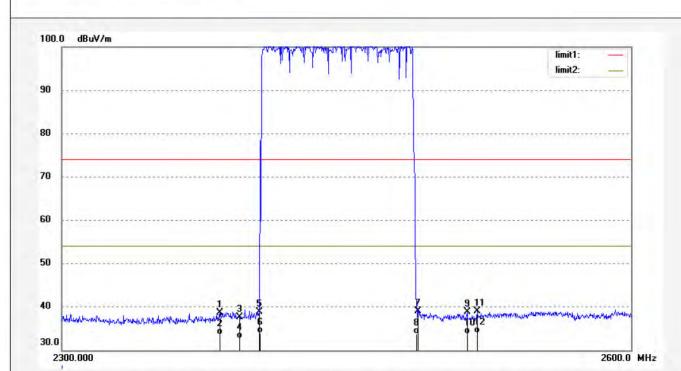
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2362.100	45.79	-7.77	38.02	74.00	-35.98	peak			
2	2362.100	40.28	-7.77	32.51	54.00	-21.49	AVG			
3	2390.000	44.48	-7.57	36.91	74.00	-37.09	peak			
4	2390.000	39.38	-7.57	31.81	54.00	-22.19	AVG			
5	2400.000	44.34	-7.50	36.84	74.00	-37.16	peak			
6	2400.000	39.24	-7.50	31.74	54.00	-22.26	AVG			
7	2483.500	46.20	-7.38	38.82	74.00	-35.18	peak			
8	2483.500	41.04	-7.38	33.66	54.00	-20.34	AVG			
9	2514.200	46.42	-7.29	39.13	74.00	-34.87	peak			
10	2514.200	41.28	-7.29	33.99	54.00	-20.01	AVG			
11	2527.700	47.19	-7.19	40.00	74.00	-34.00	peak			
12	2527.700	41.92	-7.19	34.73	54.00	-19.27	AVG			

Note: Average measurement with peak detection at No.2, 4, 6, 8

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20160914

Page 87 of 98


Job No.: ricky 2016 #606 Polarization: Vertical

Standard: FCC PK Power Source: AC 120V/60Hz

Test item: Radiation Test Date: 16/05/22/ Temp.(C)/Hum.(%) 25 C / 55 % Time: 14/46/52 EUT: Bluetooth Speaker Engineer Signature: Mode: HOPPING($\pi/4$ DQPSK) Distance: 3m

Model: CR3028U-XX Manufacturer: TIMSEN

Note: Report NO.:ATE20160914

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2379.800	46.26	-7.64	38.62	74.00	-35.38	peak			
2	2379.800	41.20	-7.64	33.56	54.00	-20.44	AVG			
3	2390.000	45.26	-7.57	37.69	74.00	-36.31	peak			
4	2390.000	40.31	-7.57	32.74	54.00	-21.26	AVG			
5	2400.000	46.32	-7.50	38.82	74.00	-35.18	peak			
6	2400.000	41.38	-7.50	33.88	54.00	-20.12	AVG	1		
7	2483.500	46.34	-7.38	38.96	74.00	-35.04	peak	1 = 1		
8	2483.500	41.11	-7.38	33.73	54.00	-20.27	AVG			
9	2510.000	46.14	-7.32	38.82	74.00	-35.18	peak			
10	2510.000	41.08	-7.32	33.76	54.00	-20.24	AVG			
11	2515.400	46.24	-7.29	38.95	74.00	-35.05	peak			
12	2515.400	41.29	-7.29	34.00	54.00	-20.00	AVG			

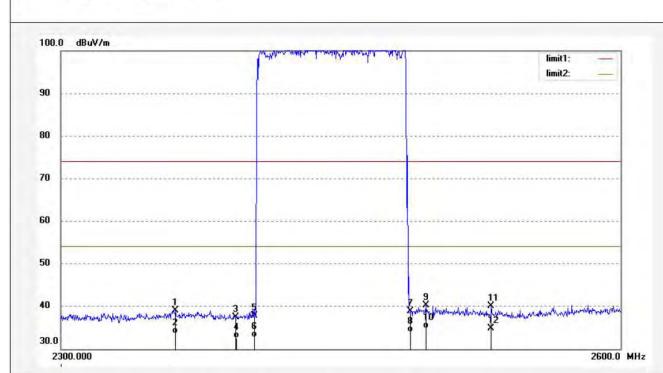
Report No.: ATE20160914 Page 88 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd,
Science & Industry Park Nanshan Shenzhen P. R. China

Fax:+86-0755-26503396

Horizontal


Science & Industry Park, Nanshan Shenzhen, P.R. China
Job No.: ricky 2016 #601
Polarization:

Standard: FCC PK Power Source: AC 120V/60Hz

Test item: Radiation Test Date: 16/05/22/
Temp.(C)/Hum.(%) 25 C / 55 % Time: 14/41/37
EUT: Bluetooth Speaker Engineer Signature:
Mode: HOPPING(8DPSK) Distance: 3m

Model: CR3028U-XX Manufacturer: TIMSEN

Note: Report NO.:ATE20160914

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2358.800	46.78	-7.79	38.99	74.00	-35.01	peak			
2	2358.800	41.38	-7.79	33.59	54.00	-20.41	AVG			
3	2390.000	44.98	-7.57	37.41	74.00	-36.59	peak			
4	2390.000	40.06	-7.57	32.49	54.00	-21.51	AVG			
5	2400.000	45.34	-7.50	37.84	74.00	-36.16	peak			
6	2400.000	40.24	-7.50	32.74	54.00	-21.26	AVG		1 = = 1	
7	2483.500	46.20	-7.38	38.82	74.00	-35.18	peak			
8	2483.500	41.33	-7.38	33.95	54.00	-20.05	AVG			
9	2491.700	47.55	-7.39	40.16	74.00	-33.84	peak			
10	2491.700	42.18	-7.39	34.79	54.00	-19.21	AVG			
11	2527.700	47.19	-7.19	40.00	74.00	-34.00	peak			
12	2527.700	42.09	-7.19	34.90	74.00	-39.10	peak			

ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20160914

Page 89 of 98

Job No.: ricky 2016 #602

Standard: FCC PK

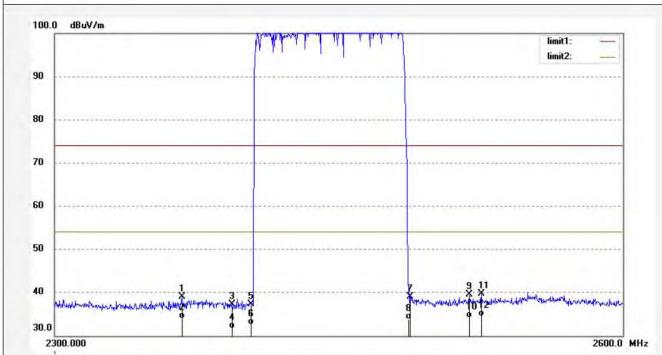
Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Speaker Mode: HOPPING(8DPSK)

Model: CR3028U-XX Manufacturer: TIMSEN

Jum (%) 25 C / 55 %


DPPING(8DPSK) D

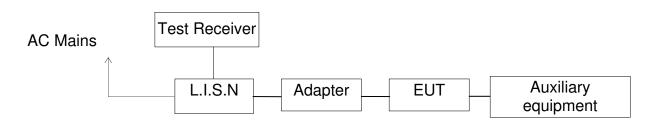
Note: Report NO.:ATE20160914

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 16/05/22/ Time: 14/42/50 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2364.200	46.79	-7.74	39.05	74.00	-34.95	peak			
2	2364.200	41.67	-7.74	33.93	54.00	-20.07	AVG			
3	2390.000	44.76	-7.57	37.19	74.00	-36.81	peak			
4	2390.000	39.21	-7.57	31.64	54.00	-22.36	AVG			
5	2400.000	44.82	-7.50	37.32	74.00	-36.68	peak			
6	2400.000	39.98	-7.50	32.48	54.00	-21.52	AVG			
7	2483.500	46.34	-7.38	38.96	74.00	-35.04	peak			
8	2483.500	41.22	-7.38	33.84	54.00	-20.16	AVG			
9	2515.400	46.74	-7.29	39.45	74.00	-34.55	peak			
10	2515.400	41.38	-7.29	34.09	54.00	-19.91	AVG			
11	2522.000	46.92	-7.24	39.68	74.00	-34.32	peak			
12	2522.000	41.75	-7.24	34.51	54.00	-19.49	AVG			


Note: Average measurement with peak detection at No.2, 4, 6, 8

12.AC POWER LINE CONDUCTED EMISSION FOR FCC PART

15 SECTION 15.207(A)

12.1.Block Diagram of Test Setup

(EUT: Bluetooth Speaker)

12.2. Power Line Conducted Emission Measurement Limits

Frequency	Limit d	lB(μV)
(MHz)	Quasi-peak Level	Average Level
0.15 - 0.50	66.0 – 56.0 *	56.0 – 46.0 *
0.50 - 5.00	56.0	46.0
5.00 - 30.00	60.0	50.0

NOTE1: The lower limit shall apply at the transition frequencies.

NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

12.3. Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

12.4. Operating Condition of EUT

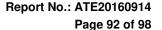
- 12.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 12.4.2. Turn on the power of all equipment.
- 12.4.3.Let the EUT work in test mode and measure it.

Report No.: ATE20160914

Page 91 of 98

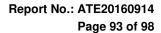
12.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10 on Conducted Emission Measurement.


The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

12.6. Power Line Conducted Emission Measurement Results


PASS.

The frequency range from 150kHz to 30MHz is checked.

Test mode: BT communicating(AC 120V/60Hz) EUT mode: CR3028U-XX MEASUREMENT RESULT: "RY0517-12 fin" 2016-5-17 15:27 Frequency Level Transd Limit Margin Detector Line PF. dBµV MHz dBµV dB dB 41.30 11.5 56 38.30 11.7 56 27.40 12.0 60 0.600000 56 14.7 QP $_{\rm L1}$ GND 1.758000 17.7 QP 22.6 QP L1 GND 23.987000 L1GND MEASUREMENT RESULT: "RY0517-12 fin2" 2016-5-17 15:27 Frequency Level Transd Limit Margin Detector Line dB dB dΒμV dΒμV MHz 0.602000 30.90 11.5 46 15.1 AV GND 24.60 11.7 2.981000 46 21.4 AV L1GND 23.978000 21.40 12.0 50 28.6 AV L1GND MEASUREMENT RESULT: "RY0517-11 fin" 2016-5-17 15:24 Frequency Level Transd Limit Margin Detector Line PE MHz dBµV dB dBµV dΒ 11.5 11.7 12.0 14.9 QP 20.2 QP 23.4 QP 56 0.602000 41.10 GND N 1.830000 35.80 56 N GND 23.960000 36.60 60 N GND MEASUREMENT RESULT: "RY0517-11 fin2" 2016-5-17 15:24 Frequency Level Transd Limit Margin Detector Line PEMHz dΒμV dB dBµV dΒ 30.40 0.598000 11.5 46 15.6 AV Ν GND 4.241000 23.20 11.8 46 22.8 AV N GND 23.964500 12.0 50 28.6 21.40 ΑV Ν GND

Test mode : BT EUT mode : CF			AC 240\	//60Hz)			
MEASUREMENT			17-7_f	in"			
2016-5-17 15: Frequency MHz	Level	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.662000 1.758000 23.978000	39.60 37.60 37.30	11.5 11.7 12.0	56 56 60	16.4 18.4 22.7	QP QP QP	L1 L1 L1	GND GND GND
MEASUREMENT	RESULT	: "RY05	17-7_£	in2"			
2016-5-17 15: Frequency MHz					Detector	Line	PE
0.610000 2.765000 23.982500	29.10 23.50 24.70	11.5 11.7 12.0	46 46 50	16.9 22.5 25.3	AV AV AV	L1 L1 L1	GND GND GND
MEASUREMENT	RESULT	: "RY0	517-8_	fin"			
2016-5-17 15:							
Frequency MHz	Level dBµV					Line	PE
0.602000 1.672000 23.982500	34.60	11.6	56	21.4	QP QP QP	N N N	GND GND GND
MEASUREMENT	RESULT	: "RY0!	517-8_	fin2"			
2016-5-17 15: Frequency		Transd	Limit	Margin	Detector	Line	PE
	dΒμV						
0.610000 4.299500	29.60 23.60			16.4 22.4		N N	GND GND
23.982500	24.70		50		AV	N	GND

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.

CONDUCTED EMISSION STANDARD FCC PART15 B

Bluetooth Speaker M/N:CR3028U-XX

Manufacturer: TIMSEN

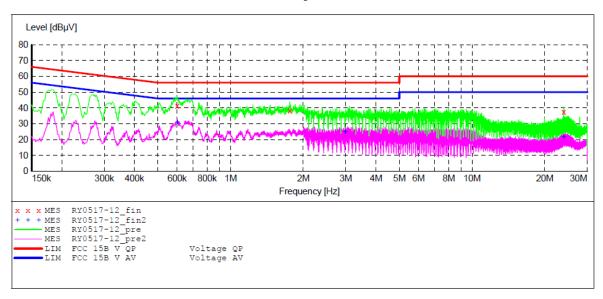
Operating Condition: BT communicating Test Site: 2#Shielding Room

Operator: Ricky

Test Specification: L 120V/60Hz

Report No.:ATE20160914 Comment: Start of Test: 2016-5-17 / 15:25:40

SCAN TABLE: "V 150K-30MHz fin"


_SUB_STD_VTERM2 1.70 Short Description:

Detector Meas. Start Stop Step IF Transducer

Bandw. Time

Frequency Frequency Width 150.0 kHz 30.0 MHz 4.5 kHz QuasiPeak 1.0 s 9 kHz LISN (ESH3-Z5)

Average

MEASUREMENT RESULT: "RY0517-12 fin"

201	.6-5-17 15:	27						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dΒμV	dB	dΒμV	dB			
	0.600000	41.30	11.5	56	14.7	QP	L1	GND
	1.758000	38.30	11.7	56	17.7	QP	L1	GND
	23.987000	37.40	12.0	60	22.6	QP	L1	GND

MEASUREMENT RESULT: "RY0517-12 fin2"

2016-5-17 15:	27						
Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE
0.602000	30.90	11.5				L1	GND
2.981000	24.60	11.7	46	21.4	AV	L1	GND
23.978000	21.40	12.0	50	28.6	AV	L1	GND

CONDUCTED EMISSION STANDARD FCC PART15 B

Bluetooth Speaker M/N:CR3028U-XX

Manufacturer: TIMSEN

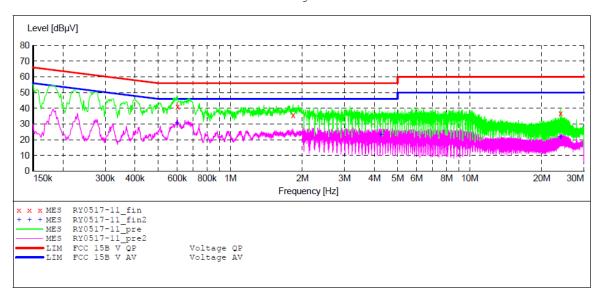
Operating Condition: BT communicating 2#Shielding Room Test Site:

Operator: Ricky

Test Specification: N 120V/60Hz

Report No.:ATE20160914 Comment: Start of Test: 2016-5-17 / 15:22:56

SCAN TABLE: "V 150K-30MHz fin"


_SUB_STD_VTERM2 1.70 Short Description:

Start Step Stop Detector Meas. TF Transducer

Width Time Bandw.

Frequency Frequency 150.0 kHz 30.0 MHz 4.5 kHz LISN (ESH3-Z5) QuasiPeak 1.0 s 9 kHz

Average

MEASUREMENT RESULT: "RY0517-11 fin"

20	016-5-17 15:	24						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PΕ
	MHz	dΒμV	dB	dΒμV	dB			
	0.602000	41.10	11.5	E 6	14 0	OB	N	GND
	1.830000		11.7		20.2	~	N	GND
						~		
	23.960000	30.00	12.0	60	23.4	QP	N	GND

MEASUREMENT RESULT: "RY0517-11 fin2"

2016-5-17 15:	24						
Frequency					Detector	Line	PE
MHz	dΒμV	ав	dBµV	dB			
0.598000	30.40	11.5	46	15.6	AV	N	GND
4.241000	23.20	11.8	46	22.8	AV	N	GND
23.964500	21.40	12.0	50	28.6	AV	N	GND

CONDUCTED EMISSION STANDARD FCC PART15 B

EUT: Bluetooth Speaker M/N:CR3028U-XX

Manufacturer: TIMSEN

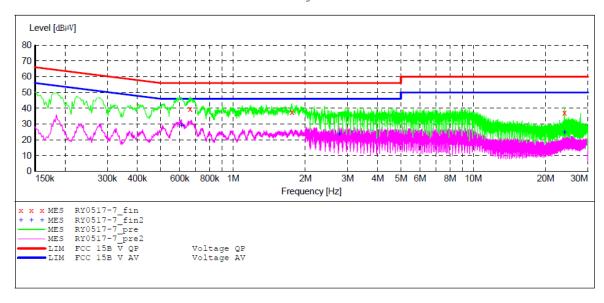
Operating Condition: BT communicating Test Site: 2#Shielding Room

Operator: Ricky

Test Specification: L 240V/60Hz

Comment: Report No.:ATE20160914 Start of Test: 2016-5-17 / 15:04:24

SCAN TABLE: "V 150K-30MHz fin"


Short Description: _SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

150.0 kHz 30.0 MHz 4.5 kHz QuasiPeak 1.0 s 9 kHz LISN(ESH3-Z5)

Average

MEASUREMENT RESULT: "RY0517-7 fin"

2016-5-17 15:	06						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0.662000	30 60	11.5	5.6	16 /	OP	L1	GND
1.758000	37.60	11.7		18.4	~	T.1	
					~	- 1 - 1	GND
23.978000	3/.30	12.0	60	22.7	OP	LL	GND

MEASUREMENT RESULT: "RY0517-7 fin2"

2016-5-17 15:	:06						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0.610000	29.10	11.5	46	16.9	AV	L1	GND
2.765000	23.50	11.7	46	22.5	AV	L1	GND
23.982500	24.70	12.0	50	25.3	AV	L1	GND

CONDUCTED EMISSION STANDARD FCC PART15 B

Bluetooth Speaker M/N:CR3028U-XX

Manufacturer: TIMSEN

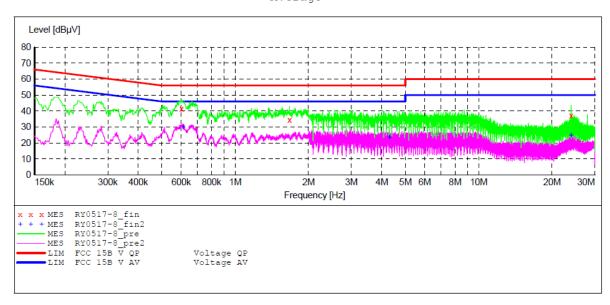
Operating Condition: BT communicating Test Site: 2#Shielding Room

Operator:

Ricky N 240V/60Hz Test Specification: N

Comment: Report No.: ATE20160914 Start of Test: 2016-5-17 / 15:07:04

SCAN TABLE: "V 150K-30MHz fin"


_SUB_STD_VTERM2 1.70 Short Description:

Stop IF Start Step Detector Meas. Transducer

Width Time Bandw.

Frequency Frequency 150.0 kHz 30.0 MHz 4.5 kHz QuasiPeak 1.0 s 9 kHz LISN (ESH3-Z5)

Average

MEASUREMENT RESULT: "RY0517-8 fin"

2016-5-17	7 15:0	8						
Freque	ency	Level	Transd	Limit	Margin	Detector	Line	PΕ
	MHz	dΒμV	dB	dΒμV	dB			
0.000	2000	41 40	11 -	г.с	14 6	0.0	3.7	COLE
0.602	2000	41.40	11.5	56	14.6	QP	N	GND
1.672	2000	34.60	11.6	56	21.4	QP	N	GND
23.982	2500	37.20	12.0	60	22.8	QP	N	GND

MEASUREMENT RESULT: "RY0517-8 fin2"

2016-5-17 15:08							
Frequency	Level	Transd	Limit	Margin	Detector	Line	PΕ
MHz	dΒμV	dB	dΒμV	dB			
0.610000	29.60	11.5	46	16.4	AV	N	GND
4.299500	23.60	11.8	46	22.4	AV	N	GND
23.982500	24.70	12.0	50	25.3	AV	N	GND

13.ANTENNA REQUIREMENT

13.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

13.2. Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Antenna gain of EUT is 0dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

Antenna