TEST REPORT

Report Reference No...... A150A166219-SAR

FCC ID.....: : 2ACWO-MA7

Compiled by

(position+printed name+signature)..: File administrators Tony Li

Supervised by

(position+printed name+signature)..: Technique principal Robin Fang

Approved by

(position+printed name+signature)..: Manager James Wu

Date of issue...... Apr,24, 2015

Representative Laboratory Name: Shenzhen CTL Electron Technology Co., Ltd.

Address...... A0402, Block 1, Kefa Industrial District, Huanguan Nan Rd, Xintian

community, Guanlan, Baoan, Shenzhen, China

Testing Laboratory Name..... The Testing and Technology Center for Industrial Products of

Shenzhen Entry-Exit Inspection and Quarantine Bureau

Applicant's name...... AURA TECHNOLOGY LIMTED

Address...... FLAT/RM810, Star House, 3 Salisbury Road, Tsimshatsui, Hong

Kong

Test specification:

Standard ANSI C95.1–1999

47CFR §2.1093

Master TRF...... Dated 2012-06

Shenzhen CTL Electron Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Electron Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Electron Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Telpad

Trade Mark: /

Manufacturer SHENZHEN KWANG SUNG ELECTRONICS CO.,LTD

Model/Type reference..... MA7

Listed Models /

Rating DC 3.70V/DC 5.0V adapter from AC120V/60Hz

Android Version Android 4.2.2

Result..... PASS

TEST REPORT

Test Report No. :	A150A166219-SAR	Apr,24 2015
rest Keport No	A130A100219-3AN	Date of issue

Equipment under Test : Telpad

Model /Type : MA7

Listed Models : /

Applicant : AURA TECHNOLOGY LIMTED

Address : FLAT/RM810, Star House, 3 Salisbury Road, Tsimshatsui,

Hong Kong

Manufacturer : SHENZHEN KWANG SUNG ELECTRONICS CO.,LTD

Address : Shitoushan Industrial Zone, Shi Yan Town, Baoan District,

Shenzhen, PRC

Test Result PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 60 Report No.: A150A166219-SAR

** Modifited History **

Revison Description		Issued Data	Remark
Revsion 1.0 Initial Test Report Release		2015-04-24	James Wu

Contents

Report No.: A150A166219-SAR

1.	TEST STANDARDS	5
2.	SUMMARY	6
2.1.	General Remarks	6
2.2.	Product Description	6
2.3.	Statement of Compliance	6
2.4.	Equipment under Test	7
2.5.	Short description of the Equipment under Test (EUT)	7
2.6.	EUT configuration	7
2.7.	TEST Configuration	7
2.8.	Note	8
3.	TEST ENVIRONMENT	9
3.1.	Address of the test laboratory	9
3.2.	Test Facility	9
3.3.	Environmental conditions	9
3.4.	SAR Limits	9
3.5.	Equipments Used during the Test	10
4.	SAR Measurements System configuration	11
4.1.	SAR Measurement Set-up	11
4.2.	DASY5 E-field Probe System	12
4.3.	Phantoms	13
4.4.	Device Holder	13
4.5.	Scanning Procedure	13
4.6.	Data Storage and Evaluation	14
4.7.	Tissue Dielectric Parameters for Head and Body Phantoms	16
4.8.	Tissue equivalent liquid properties	16
4.9.	System Check	16
4.10.	SAR measurement procedure	18
4.11.	Power Reduction	21
5.	TEST CONDITIONS AND RESULTS	22
5.1.	Conducted Power Results	22
5.2.	Simultaneous TX SAR Considerations	23
5.3.	SAR Measurement Results	25
5.4.	SAR Measurement Variability	26
5.5.	Measurement Uncertainty (300MHz-3GHz)	27
5.6.	System Check Results	31
5.7.	SAR Test Graph Results	33
6.	Calibration Certificate	35
6.1.	Probe Calibration Ceriticate	35
6.2.	D2450V2 Dipole Calibration Ceriticate	46
6.3.	DAE4 Calibration Ceriticate	54
7.	Test Setup Photos	57
8.	External Photos of the EUT	60

1. TEST STANDARDS

The tests were performed according to following standards:

<u>IEEE Std C95.1, 1999:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

<u>IEEE Std 1528™-2013:</u> IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

<u>KDB 447498 D01 Mobile Portable RF Exposure v05r01:</u> Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r02: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB865664 D02 SAR Reporting v01: RF Exposure Compliance Reporting and Documentation Considerations

KDB248227: SAR measurement procedures for 802.112abg transmitters

FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices

KDB 616217 D04 SAR for laptop and Internet Tablets v01: SAR Evaluation Considerations for Laptop,

Notebook, Netbook and Internet Tablet Computers

Page 6 of 60 Report No.: A150A166219-SAR

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Apr 07, 2015
Testing commenced on	:	Apr 15, 2015
Testing concluded on	:	Apr 15, 2015

2.2. Product Description

The **AURA TECHNOLOGY LIMTED**'s Model: MA7 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	Telpad	
Model Number	MA7	
FCC ID	2ACWO-MA7	
WLAN	Supported 802.11b/802.11g/802.11n	
Bluetooth	Supported BT 4.0+EDR	
Antenna Type	Internal	
	IEEE 802.11b: 2412MHz—2462MHz	
WLAN FCC Operation frequency	IEEE 802.11g: 2412MHz—2462MHz	
WEART GO Operation frequency	IEEE 802.11n HT20: 2412MHz—2462MHz	
	IEEE 802.11n HT40: 2422MHz—2452MHz	
Bluetooth FCC Operation frequency	2402MHz-2480MHz	
	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)	
WLAN Modulation	IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)	
WEAN Modulation	IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)	
	IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)	
Bluetooth Modulation	EDR(GFSK,8DPSK,π/4DQPSK)/BLE(GFSK)	
Android Version	Android 4.2.2	
Exposure category	General population/uncontrolled environment	
EUT Type	Production Unit	

2.3. Statement of Compliance

The maximum of results of SAR found during testing for MA7 are follows:

Head SAR Configuration

		Channal	Limit SAR _{1g} 1.6 W/kg		
Mode	Test Position	Channel /Frequency(MHz)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)	
WiFi(802.11b)	Left/Cheek	6/2437	0.588	0.612	

Body Configuration

		Channal	Limit SAR _{1g} 1.6 W/kg			
Mode	Test Position	Channel /Frequency(MHz)	Measured SAR _{1g}	Reported SAR _{1g}		
			(W/kg)	(W/kg)		
WiFi(802.11b)	Rear Side	6/2437	1.018	1.059		

The SAR values found for the Telpad are below the maximum recommended levels of 1.6W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1999.

For body worn operation, this devices has been tested and meets FCC RF exposure guidelines when used with any accessory that conrtains no metal and which provides a minimum separation distance of 0mm between this devices and the body of the user. User of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain iniform power output.

Page 7 of 60 Report No.: A150A166219-SAR

From above table, we can see the maximum SAR for this tablet is **0.612W/Kg** for Head and **1.059W/Kg** for Body.

For Bluetooth, the Estimated SAR for Body at 5mm.

Estimated stand alone SAR							
Communication System	frequency (GHz)	distance (mm)	P _{pk} (including tune tune-up tolerance (dBm)	P _{pk} (including tune tune-up tolerance (mW)	estimated _{1-g} (W/Kg)		
Bluetoth 2450 body worn	2.45	5	5.00	3.162	0.132		

2.4. Equipment under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow)

DC 3.70 V/DC 5.0V Adapter from AC 120V/60Hz

2.5. Short description of the Equipment under Test (EUT)

2.4GHz (Telpad (M/N: MA7)).

The EUT battery must be fully charged and checked periodically during the test to ascertain maximum power output.

2.6. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- $\ensuremath{\bigcirc}$ supplied by the lab

0	Power Cable	Length (m):	1
		Shield :	1
		Detachable :	1
0	Multimeter	Manufacturer:	1
		Model No.:	1

Battery information:

Capacitance:4100mAh Nominal Voltage:3.70V

Adapter:

MODEL:SA/18PA/05FUS056250 INPUT:100-240V \sim 0.3A 50/60Hz 0.3A

OUTPUT: 5.6V DC 2.5A

♦ Shielded

2.7. TEST Configuration

Accroding to KDB 616217 and KDB447498 for SAR testing as the overall diagonal dimension of the keyboard and/or display section of a laptop or tablet is > 20 cm.

Face-held Configuration

Face-held SAR test is required.

Page 8 of 60 Report No.: A150A166219-SAR

According to KDB616217 section 4.3 for Tablet host platform test requirements."When voice mode is supported on a tablet and it is limited to speaker mode or headset operations only, additional SAR testing for this type of voice use is not required."

The head SAR is required as the product support voice call according to user manual.

Body-worn Configuration

Body-worn SAR test required.

Accoring to KDB616217 section 4.3 for Tablet host platform test requirements "The antennas in tablets are typically located near the back (bottom) surface and/or along the edges of the devices; therefore, SAR evaluation is required for these configurations."

According to KDB616217 section 4.3 for Tablet host platform test requirements "Exposures from antennas through the front (top) surface of the display section of a full-size tablet, away from the edges, are generally limited to the user's hands. Exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are generally not necessary, except for tablets that are designed to require continuous operations with the hand(s) next to the antenna(s)."

2.8. Note

1. The EUT is a Telpad with WLAN and Bluetooth function, The functions of the EUT listed as below:

	Test Standards	Reference Report
WLAN	WLAN FCC Part 15 Subpart C	
Bluetooth-EDR	FCC Part 15 Subpart C	A150A166219-EDR
Bluetooth-BLE	FCC Part 15 Subpart C	A150A166219-BLE
JBP	FCC Part 15 Subpart B	A150A166219-JBP
SAR	FCC Per 47 CFR 2.1093(d)	A150A166219-SAR

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

The Testing and Technology Center for Industrial Products of Shenzhen Entry-Exit Inspection and Quarantine Bureau

No.289, 8th Industry Road, Nanshan District, Shenzhen, Guangdong, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2009) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L2872

The Testing and Technology Center for Industrial Products of Shenzhen Entry-Exit Inspection and Quarantine Bureau has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: May 16, 2014. Valid time is until May 15, 2017.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

3.4. SAR Limits

FCC Limit (1g Tissue)

	SAR (W/kg)					
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)				
Spatial Average (averaged over the whole body)	0.08	0.4				
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0				
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0				

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

3.5. Equipments Used during the Test

				Calib	ration
Test Equipment	Manufacturer	Type/Model	Serial Number	Last Calibration	Calibration Interval
Data Acquisition Electronics DAEx	SPEAG	DAE4	1315	2013/11/25	1
E-field Probe	SPEAG	ES3DV3	3292	2014/08/15	1
System Validation Dipole 2450V2	SPEAG	D2450V2	884	2014/09/01	1
Network analyzer	Agilent	8753E	US37390562	2015/03/20	1
Dielectric Probe Kit	Agilent	85070E	US44020288	/	1
Power meter	Agilent	E4417A	GB41292254	2015/03/20	1
Power sensor	Agilent	8481H	MY41095360	2015/03/20	1
Signal generator	IFR	2032	203002/100	2015/03/20	1
Amplifier	AR	75A250	302205	2014/10/22	1

Report No.: A150A166219-SAR

4. SAR Measurements System configuration

4.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

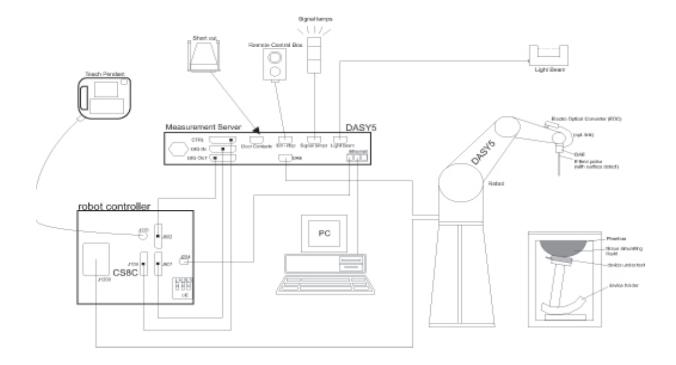
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld mobile phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

4.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available.

Frequency 10 MHz to 4 GHz;

Linearity: ± 0.2 dB (30 MHz to 4 GHz)

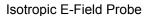
Directivity $\pm 0.2 \text{ dB}$ in HSL (rotation around probe axis)

± 0.3 dB in tissue material (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g;

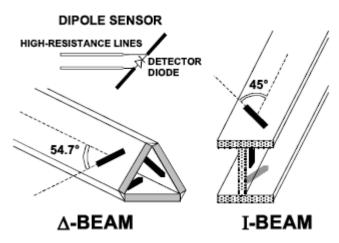
Linearity: ± 0.2 dB

Dimensions Overall length: 337 mm (Tip: 20 mm)


Tip diameter: 3.9 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz


Dosimetry in strong gradient fields Compliance tests of mobile phones

Compatibility DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

Report No.: A150A166219-SAR

Report No.: A150A166219-SAR

4.3. Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

4.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

4.5. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid

definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. \pm 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above \pm 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within \pm 30°.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as: • maximum search • extrapolation • boundary correction • peak search for averaged SAR During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Table 1: Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01

	Table 1174 ou and Econi Count Recolutions por 1 Co 1255 1 abilitation cocco 1501								
	Maximum Area			Minimum Zoom					
Eroguenov	Scan	Scan	Scan Spatial	Scan					
Frequency	Resolution (mm)	Resolution (mm)	Resolution (mm)	Volume (mm)					
	$(\Delta \mathbf{x}_{area}, \Delta \mathbf{y}_{area})$	$(\Delta \mathbf{x}_{zoom}, \Delta \mathbf{y}_{zoom})$	$\Delta \mathbf{z}_{zoom}(\mathbf{n})$	(x,y,z)					
≤ 2 GHz	≤ 15	≥ 8	≤ 5	≥ 30					
2-3 GHz	≤ 12	≤ 5	≤ 5	≥ 30					
3-4 GHz	≤ 12	≤ 5	≤ 4	≥ 28					
4-5 GHz	≤ 10	≤ 4	≤ 3	≥ 25					
5-6 GHz	≤ 10	≤ 4	≤ 2	≥ 22					

4.6. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files

with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

Report No.: A150A166219-SAR

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/q], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity	Normi, ai0, ai1, ai2
- Conversion factor	ConvFi
- Diode compression point	Dcpi
Device parameters: - Frequency	f
- Crest factor	cf
Media parameters: - Conductivity	σ
- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

```
With Vi = compensated signal of channel i (i = x, y, z)
     Ui = input signal of channel i
                                           (i = x, y, z)
                                           (DASY parameter)
     cf = crest factor of exciting field
                                           (DASY parameter)
     dcpi = diode compression point
```

From the compensated input signals the primary field data for each channel can be evaluated:
$$E-\mathrm{fieldprobes}:\qquad E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$H-\mathrm{fieldprobes}:\qquad H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$
 With Vi = compensated signal of channel i (i = x, y, z) Normi = sensor sensitivity of channel i (i = x, y, z)
$$[mV/(V/m)2] \text{ for E-field Probes}$$

$$ConvF = \text{sensitivity enhancement in solution aij} = \text{sensor sensitivity factors for H-field probes}$$

$$f = \text{carrier frequency [GHz]}$$

$$Ei = \text{electric field strength of channel i in V/m}$$

$$Hi = \text{magnetic field strength of channel i in A/m}$$

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units. $SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

= local specific absorption rate in mW/g with SAR

= total field strength in V/m Etot

- σ = conductivity in [mho/m] or [Siemens/m]
- ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

4.7. Tissue Dielectric Parameters for Head and Body Phantoms

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

The composition of the tissue simulating liquid

Ingredient	835MHz		1900MHz		MHz 1750 MHz 2450MHz 2600MHz		2450MHz		MHz	
(% Weight)	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	41.45	52.5	55.242	69.91	55.782	69.82	62.7	73.2	62.3	72.6
Salt	1.45	1.40	0.306	0.13	0.401	0.12	0.50	0.10	0.20	0.10
Sugar	56	45.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Preventol	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HEC	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DGBE	0.00	0.00	44.452	29.96	43.817	30.06	36.8	26.7	37.5	27.3

Target Frequency	He	ad	Во	dy
(MHz)	$\epsilon_{ m r}$	σ(S/m)	$\mathbf{\epsilon}_{\mathrm{r}}$	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

4.8. Tissue equivalent liquid properties

Dielectric performance of Head and Body tissue simulating liquid

Tissue	Measured	Target ⁻	Tissue		Measure	d Tissue		Liquid	
Type	Frequency (MHz)	ϵ_{r}	σ	$\epsilon_{\rm r}$	Dev. %	σ	Dev. %	Temp.	Test Data
	2412	39.27	1.77	39.50	0.59%	1.79	1.13%		
2450H	2437	39.22	1.79	39.45	0.59%	1.82	1.68%	22	2015-04-15
2450П	2450	39.20	1.80	39.36	0.41%	1.84	2.22%	degree	2015-04-15
	2462	39.18	1.81	39.20	0.05%	1.85	2.21%		
	2412	52.75	1.91	53.10	0.66%	1.93	1.05%		
2450B	2437	52.72	1.94	53.03	0.59%	1.96	1.03%	22	2015-04-15
24506	2450	52.70	1.95	52.86	0.30%	1.97	1.03%	degree	2015-04-15
	2462	52.68	1.97	52.50	-0.34%	1.99	1.02%		

4.9. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system $(\pm 10 \%)$.

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

Tuning element

Low

3dB

Att3

Amp>

Spacer

Signal

Generator

PM1

PM2

Att2

Dir.Coupler

Photo of Dipole Setup

System Validation of Head

System validation of Head										
Measurement is made at temperature 22.0 ℃ and relative humidity 55%.										
Liquid tempe	Liquid temperature during the test: 22.0℃									
Measuremer	nt Date: 2450N	1Hz Apr 15 th ;2 th	015							
Verification	Frequency	9	Target value Measured value (W/kg) (W/kg)				ation			
results	(MHz)	10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average			
	2450	24.60	52.10	25.20	54.00	2.44%	3.65%			

Report No.: A150A166219-SAR

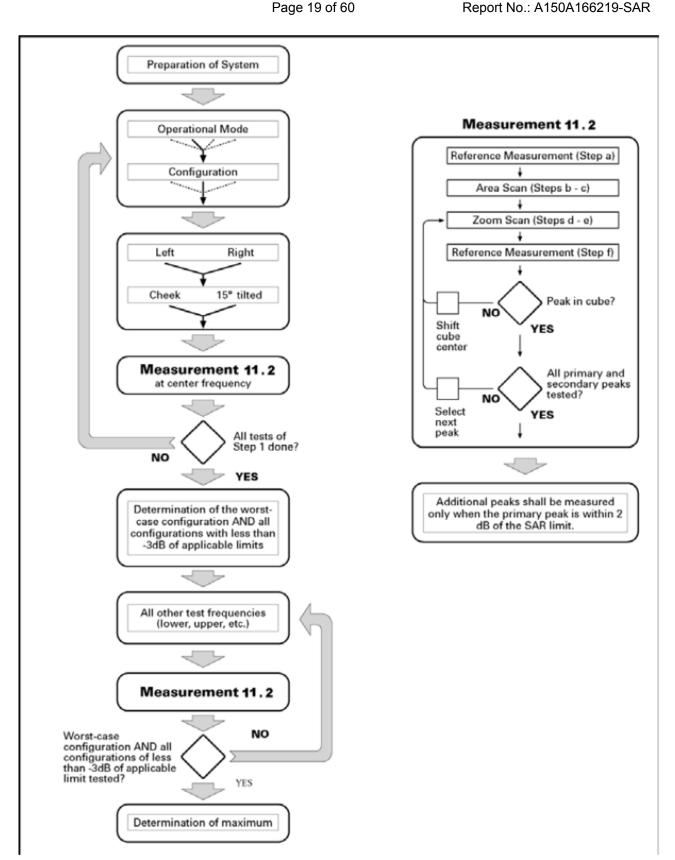
Measuremer	nt is made at te	emperature 22	.0 °C and relat	tive humidity 5	5%.				
Liquid temperature 22.0 °C									
Measuremer	nt Date: 2450N	1Hz Apr 15 th ;2	015						
Varification	Frequency		arget value Measured value (W/kg) (W/kg)			Devi	ation		
Verification results	(MHz)	10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average		
	2450	24.20	51.60	23.10	49.50	-4.55%	-4.07%		

System Validation of Body

4.10. SAR measurement procedure

4.10.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions. configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in Picture 11.1.


Step 1: The tests described in 11.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:

- a). all device positions (cheek and tilt, for both left and right sides of the SAM phantom;
- b). all configurations for each device position in a), e.g., antenna extended and retracted, and
- c). all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 11.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 10.1 Block diagram of the tests to be performed

4.10.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements,

according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			≤ 3 GHz	> 3 GHz		
Maximum distance from (geometric center of pro			5 ± 1 mm ½·δ·ln(2) ± 0.5 m			
Maximum probe angle f normal at the measurem	-	-	30°±1°	20° ± 1°		
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.			
Maximum zoom scan sp	atial resolut	tion: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$			
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
Juliace	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
Minimum zoom scan volume	V V 7		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

4.10.3 WLAN Measurement Procedures for SAR

For WLAN SAR testing, WLAN engineering testing software installed on the DUT can provide continuous transmitting RF signal. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1.

For the 802.11b/g/n SAR tests, a communication link is set up with the test mode software for WIFI mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the highest power rate.

802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel;

SAR is not required for 802.11g/n channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

4.10.4 Power Drift

To control the output power stability during the SAR test, DASY5 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 14.1 to Table 14.11 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

4.10.4 Area Scan Based 1-g SAR

4.10.4.1 Requirement of KDB

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: A150A166219-SAR

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit algorithm as presented at the 29^{th} Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

4.10.4.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

4.11. Power Reduction

The product without any power reduction.

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Power Results

Max Conducted power measurement results and power drift from tune-up tolerance provide by manufacturer:

WiFi2450

Mode	Channel	Frequency (MHz)	Worst case Data rate of	Conducted Output Powe (dBm)		
		(IVITIZ)	worst case	Peak	Average	
	1	2412	1Mbps	18.86	16.38	
802.11b	6	2437	1Mbps	19.24	16.83	
	11	2462	1Mbps	18.95	16.55	
	1	2412	6Mbps	20.81	13.56	
802.11g	6	2437	6Mbps	20.89	13.62	
	11	2462	6Mbps	20.59	13.30	
	1	2412	6.5 Mbps	20.97	13.58	
802.11n(20MHz)	6	2437	6.5 Mbps	20.85	13.65	
	11	2462	6.5 Mbps	20.77	13.25	
802.11n(40MHz)	3	2422	13.5 Mbps	19.78	12.44	
	6	2437	13.5 Mbps	19.87	12.52	
	9	2452	13.5 Mbps	19.54	12.19	

Note: SAR is not required for 802.11g/n channels if the output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels, and for each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 0.25dB higher than those measured at the lowest data rate. According to the above conducted power, the EUT should be tested for "802.11b, 1Mbps".

Bluetooth

Mode	Channel	Frequency (MHz)	Conducted Peak Output Power (dBm)
	00	2402	-3.98
GFSK-BLE	19	2440	-3.28
	39	2480	-3.80
	00	2402	4.20
GFSK	39	2441	3.97
	78	2480	3.71
	00	2402	3.63
8DPSK	39	2441	3.48
	78	2480	3.28
	00	2402	3.64
π/4DQPSK	39	2441	3.47
	78	2480	3.23

Manufacturing tolerance

WiFi2450

VIII 12-100										
802.11b (Average)										
Channel	Channel 1	Channel 6	Channel 11							
Target (dBm)	16.0	16.0	16.0							
Tolerance ±(dB)	1.0	1.0	1.0							
	802.11g (Average)								
Channel	Channel 1	Channel 6	Channel 11							
Target (dBm)	13.0	13.0	13.0							
Tolerance ±(dB)	1.0	1.0	1.0							
	802.11n(20M	Hz) (Average)								
Channel	Channel 1	Channel 6	Channel 11							
Target (dBm)	13.0	13.0	13.0							
Tolerance ±(dB)	1.0	1.0	1.0							
	802.11n(40M	Hz) (Average)								

Channel	Channel 3	Channel 6	Channel 9
Target (dBm)	12.0	12.0	12.0
Tolerance ±(dB)	1.0	1.0	1.0

Report No.: A150A166219-SAR

Bluetooth											
	GFSK-BLE (Peak)										
Channel	Channel Channel 00 Channel										
Target (dBm)	-3.0	-3.0	-3.0								
Tolerance ±(dB)	1.0	1.0	1.0								
	GFSK	(Peak)									
Channel	Channel 00	Channel 39	Channel 78								
Target (dBm)	4.0	4.0	4.0								
Tolerance ±(dB)	1.0	1.0	1.0								
	8PSK	(Peak)									
Channel	Channel 00	Channel 39	Channel 78								
Target (dBm)	3.0	3.0	3.0								
Tolerance ±(dB)	1.0	1.0	1.0								
	π/4DQP	SK (Peak)									
Channel	Channel 00	Channel 39	Channel 78								
Target (dBm)	3.0	3.0	3.0								
Tolerance ±(dB)	1.0	1.0	1.0								

5.2. Simultaneous TX SAR Considerations

5.2.1 Introduction

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. For the DUT, the WiFi and BT module share same antenna and same modular, and so WLAN and BT cannot transmit signal simultaneously.

5.2.2 Transmit Antenna Separation Distances

The product can support WiFi and Bluetooth function,and WiFi and Bluetooth share same antenna, according to following picture 1 showed that the diagonal dimension(21.7cm>20cm) and antenna position of the DUT.So accroding to KDB 616217 and KDB447498 for SAR testing.

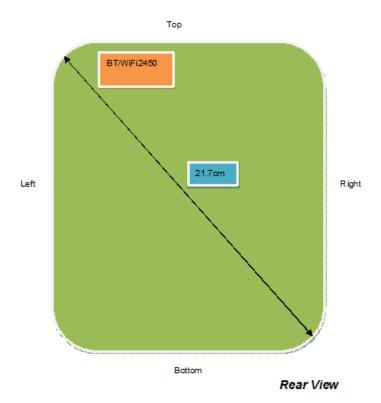


Figure 1:The antenna positions of the EUT

Page 24 of 60 Report No.: A150A166219-SAR

The distance TX antenna and positions (mm)									
TX Type Front Rear Left Right Bottom Top									
WiFi/BT	11	4.5	16	82	175	4.8			

5.2.2 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied.

The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [\sqrt f(GHz)] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Appendix A

SAR Test Exclusion Thresholds for 100 MHz - 6 GHz and ≤ 50 mm

Approximate SAR Test Exclusion Power Thresholds at Selected Frequencies and Test Separation Distances are illustrated in the following Table.

MHz	5	10	15	20	25	mm	
150	39	77	116	155	194		
300	27	55	82	110	137		
450	22	45	67	89	112		
835	16	33	49	66	82		
900	16	32	47	63	79		
1500	12	24	37	49	61	SAR Test Exclusion	
1900	11	22	33	44	54	Threshold (mW)	
2450	10	19	29	38	48	The short (in)	
3600	8	16	24	32	40		
5200	7	13	20	26	33		
5400	6	13	19	26	32		
5800	6	12	19	25	31		

Picture 12.2 Power Thresholds

Table 5.2.3.1 Standalone SAR test exclusion considerations

Band/Mode	f (GHz)	Position	Antenna Distance	(includin	ut power g tune-up ance)	SAR Test Exclusion Threshold	SAR Test Exclusion
			(mm)	dBm	mW	Tillesiloiu	
		Front	11	17.0	50.118	7.1<7.5	Yes ^[1]
		Rear	4.5	17.0	50.118	15.7>3.0	No
WLAN	2.45	Bottom	175	17.0	50.118		Yes ^[2]
WLAN	2.43	Тор	4.8	17.0	50.118	16.3>3.0	No
		Left	16	17.0	50.118	4.9>3.0	No
		Right	82	17.0	50.118		Yes ^[2]
		Front	11	5.0	3.162	0.4<7.5	Yes ^[1]
		Rear	4.5	5.0	3.162	1.0<3.0	Yes
ВТ	2.45	Bottom	175	5.0	3.162		Yes
DI	2.45	Тор	4.8	5.0	3.162	1.0<3.0	Yes ^[2]
		Left	16	5.0	3.162	0.3<3.0	Yes ^[2]
		Right	82	5.0	3.162		Yes

Note:

1. Front side not require test as KDB616227 states "Exposures from antennas through the front (top) surface of the display section of a full-size tablet, away from the edges, are generally limited to the user's hands. Exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are generally not necessary, except for tablets that are designed to require continuous operations with the hand(s) next to the antenna(s) "and for 10-g extremity SAR limit was 7.5 instead of 3.0

Page 25 of 60 Report No.: A150A166219-SAR

2. According to KDB447498 for at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following, and as illustrated in Appendix

Band/Mode	f (GHz)	Position	Antenna Distance (mm)	RF output power (including tune-up tolerance) dBm mW		SAR Test Exclusion Threshold (mW)	SAR Test Exclusion
WiFi2450	2.45	Bottom	175	17.0	50.118	1296	Yes
VVIF12450	2.45	Right	82	17.0	50.118	396	Yes
ВТ	DT 2.45		175	5.0	3.162	1296	Yes
Ы	2.45	Right	82	5.0	3.162	396	Yes

5.2.4 Estimated SAR

When standalone SAR is not required to be measured per FCC KDB 447498 D01, the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=
$$\frac{\text{(max.power of channel,including tune-up tolerance,mW)}}{\text{(min.test separation distance,mm)}} * \frac{\sqrt{f(GHz)}}{7.5}$$

Per FCC KD B447498 D01.simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the transmitting antenna in a specific a physical test configuration is ≤1.6 W/Kg.When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio=
$$\frac{(SAR_1+SAR_2)^{1.5}}{(peak location separation,mm)} < 0.04$$

For Bluetooth, the Estimated SAR for Body at 5mm.

	Estimated stand alone SAR											
Communication System	frequency (GHz)	distance (mm)	P _{pk} (including tune tune-up tolerance (dBm)	P _{pk} (including tune tune-up tolerance (mW)	estimated _{1-g} (W/Kg)							
Bluetoth 2450 body worn	2.45	5	5.00	3.162	0.132							

5.2.5 Evaluation of Simultaneous SAR

As the WiFi2450 and BT share same modular and same antenna cannot transmitter together, so without simultaneous SAR for this sample.

5.3. SAR Measurement Results

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 5mm and just applied to the condition of body worn accessory.

The calculated SAR is obtained by the following formula:

Reported SAR=Measured SAR*10^{(Ptarget-Pmeasured))/10}

Scaling factor=10^{(Ptarget-Pmeasured))/10}

Reported SAR= Measured SAR* Scaling factor

Where P_{target} is the power of manufacturing upper limit;

 P_{measured} is the measured power:

Measured SAR is measured SAR at measured power which including power drift)

Reported SAR which including Power Drift and Scaling factor

Duty Cycle

Test Mode	Duty Cycle
WiFi2450	1:1

Table 1: SAR Values [WiFi 802.11b/g/n]

				Maximum	Conducted		•	SAR _{1-g} res	ults(W/kg)	
Ch.	Freq. (MHz)	Service	Test Position	Allowed Power (dBm)	Power (dBm)	Power drift	Scaling Factor	Measured	Reported	Reported Results
				measured / re	eported SAR no	umbers -	Head			
6	2437	DSSS	Right/Cheek	17.00	16.83	0.03	1.04	0.512	0.532	N/A
6	2437	DSSS	Right/Tilt	17.00	16.83	-0.01	1.04	0.261	0.271	N/A
6	2437	DSSS	Left/Cheek	17.00	16.83	-0.12	1.04	0.588	0.612	Plot 1
6	2437	DSSS	Left/Tilt	17.00	16.83	-0.05	1.04	0.285	0.296	N/A
		m	neasured / repo	orted SAR nui	mbers - Body (hotspot c	pen, dista	nce 10mm)		
1	2412	DSSS	Rear Side	17.00	16.38	-0.05	1.15	0.703	0.808	N/A
6	2437	DSSS	Rear Side	17.00	16.83	-0.00	1.04	1.018	1.059	Plot 2
11	2462	DSSS	Rear Side	17.00	16.55	0.01	1.11	0.822	0.912	N/A
6	2437	DSSS	Left Side	17.00	16.83	-0.12	1.04	0.448	0.466	N/A
1	2412	DSSS	Top Side	17.00	16.38	-0.10	1.15	0.688	0.791	N/A
6	2437	DSSS	Top Side	17.00	16.83	0.08	1.04	0.925	0.962	N/A
11	2462	DSSS	Top Side	17.00	16.55	0.04	1.11	0.757	0.840	N/A

Note:

- 1.According to KDB447498, When the 1-g SAR for the mid-band channel, or the channel with highest output power satisfy the following conditions, testing of the other channels in the band is not required.
 - ≤0.8W/Kg and transmission band ≤100MHz;
 - ≤0.6W/Kg and 100MHz ≤transmission band ≤200MHz;
 - ≤ 0.4W/Kg and transmission band >200MHz
- 2. According to KDB 248227, Each channel should be tested at the lowest data rate in each mode.

Table 2 SAR Measurement Variability Results [WiFi 802.11b/g/n]

Test Position	Channel/ Frequency (MHz)	Measured SAR _{1-g}	1 st Repeated SAR _{1-q}	Ratio	2 nd Repeated SAR _{1-q}	3 rd Repeated SAR _{1-g}
Rear Side	6/2437	1.018	0.990	0.97	N/A	N/A

Note: 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once. 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).

- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Note:

1. According to the FCC KDB 865664, repeated SAR at the highest SAR measurement;

5.4. SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

5.5. Measurement Uncertainty (300MHz-3GHz)

Relative DSAY5 Uncertainty Budget for SAR Tests According to IEEE 1528/2013 and IEC62209-1/2006										
No.	Error Description	Туре	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measurement System										
1	Probe calibration	В	5.50%	N	1	1	1	5.50%	5.50%	∞
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	∞
3	Hemispherical isotropy	В	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	∞
4	Boundary Effects	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	8
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
7	RF ambient conditions-noise	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
8	RF ambient conditions-reflection	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
9	Response time	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	∞
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	8
11	RF ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	8
12	Probe positioned mech. restrictions	В	0.40%	R	$\sqrt{3}$	1	1	0.20%	0.20%	∞
13	Probe positioning with respect to phantom shell	В	2.90%	R	$\sqrt{3}$	1	1	1.70%	1.70%	8
14	Max.SAR evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
Test Sample				•	1	1				
15	Test sample positioning	Α	1.86%	N	1	1	1	1.86%	1.86%	∞
16	Device holder uncertainty	Α	1.70%	N	1	1	1	1.70%	1.70%	∞
17	Drift of output power	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞
Phantom and		ı	Г	T	ı	1	1	T	1	1
18	Phantom uncertainty	В	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
19	Liquid conductivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	∞
20	Liquid conductivity (meas.)	Α	0.50%	N	1	0.64	0.43	0.32%	0.26%	∞
21	Liquid permittivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	8
22	Liquid cpermittivity	Α	0.16%	N	1	0.64	0.43	0.10%	0.07%	8

	(meas.)								
Combined standard uncertainty	$u_{c} = \sqrt{\sum_{i=1}^{22} c_{i}^{2} u_{i}^{2}}$	1	1	/	/	/	10.20%	10.00%	8
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$	1	R	K=2	1	1	20.40%	20.00%	8

		Polati	vo DSAVS IIn	cortainty Ru	dant fo	r SAD	Tosts				
Relative DSAY5 Uncertainty Budget for SAR Tests According to IEC62209-2/2010											
No.	Error Description	Туре	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom	
1	Probe calibration	В	6.20%	N	1	1	1	6.20%	6.20%	∞	
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	∞	
3	Hemispherical isotropy	В	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	∞	
4	Boundary Effects	В	2.00%	R	$\sqrt{3}$	1	1	1.20%	1.20%	∞	
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	∞	
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞	
7	RF ambient conditions-noise	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞	
8	RF ambient conditions-reflection	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞	
9	Response time	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	∞	
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞	
11	RF Ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	∞	
12	Probe positioned mech. restrictions	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	∞	
13	Probe positioning with respect to phantom shell	В	6.70%	R	$\sqrt{3}$	1	1	3.90%	3.90%	∞	
14	Max.SAR Evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞	
15	Modulation Response	В	2.40%	R	$\sqrt{3}$	1	1	1.40%	1.40%	∞	
Test Sample											
16	Test sample positioning	Α	1.86%	N	1	1	1	1.86%	1.86%	∞	
17	Device holder uncertainty	Α	1.70%	N	1	1	1	1.70%	1.70%	∞	
18	Drift of output power	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞	
Phantom an		T	1	T	ı	П	T	Т	1		
19	Phantom uncertainty	В	6.10%	R	$\sqrt{3}$	1	1	3.50%	3.50%	∞	

20	SAR correction	В	1.90%	R	$\sqrt{3}$	1	0.84	1.11%	0.90%	8
21	Liquid conductivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	8
22	Liquid conductivity (meas.)	А	0.50%	N	1	0.64	0.43	0.32%	0.26%	8
23	Liquid permittivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	8
24	Liquid cpermittivity (meas.)	А	0.16%	N	1	0.64	0.43	0.10%	0.07%	8
25	Temp.Unc Conductivity	В	3.40%	R	$\sqrt{3}$	0.78	0.71	1.50%	1.40%	8
26	Temp.Unc Permittivity	В	0.40%	R	$\sqrt{3}$	0.23	0.26	0.10%	0.10%	8
Combined standard uncertainty	$u_c = \sqrt{\sum_{i=1}^{22} c_i^2 \iota}$	ι_i^2	/	1	/	/	/	12.90%	12.70%	8
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$		/	R	K=2	/	/	25.80%	25.40%	8

Uncertainty of a System Performance Check with DASY5 System											
According to IEC62209-2/2010											
No.	Error Description	Туре	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom	
Measureme											
1	Probe calibration	В	6.00%	N	1	1	1	6.00%	6.00%	∞	
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	∞	
3	Hemispherical isotropy	В	0.00%	R	$\sqrt{3}$	0.7	0.7	0.00%	0.00%	∞	
4	Boundary Effects	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞	
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	∞	
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞	
7	RF ambient conditions-noise	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	8	
8	RF ambient conditions-reflection	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	8	
9	Response time	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	8	
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	8	
11	RF Ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	8	
12	Probe positioned mech. restrictions	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	∞	
13	Probe positioning with respect	В	6.70%	R	$\sqrt{3}$	1	1	3.90%	3.90%	∞	

Report No.: A150A166219-SAR

	to phantom shell									
14	Max.SAR Evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
15	Modulation Response	В	2.40%	R	$\sqrt{3}$	1	1	1.40%	1.40%	8
Test Sample	Related									
16	Test sample positioning	А	0.00%	N	1	1	1	0.00%	0.00%	8
17	Device holder uncertainty	Α	2.00%	N	1	1	1	2.00%	2.00%	8
18	Drift of output power	В	3.40%	R	$\sqrt{3}$	1	1	2.00%	2.00%	8
Phantom and	d Set-up									
19	Phantom uncertainty	В	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
20	SAR correction	В	1.90%	R	$\sqrt{3}$	1	0.84	1.11%	0.90%	∞
21	Liquid conductivity (meas.)	А	0.50%	N	1	0.64	0.43	0.32%	0.26%	&
22	Liquid cpermittivity (meas.)	А	0.16%	N	1	0.64	0.43	0.10%	0.07%	&
23	Temp.Unc Conductivity	В	1.70%	R	$\sqrt{3}$	0.78	0.71	0.80%	0.80%	8
24	Temp.Unc Permittivity	В	0.40%	R	$\sqrt{3}$	0.23	0.26	0.10%	0.10%	8
Combined standard uncertainty	$u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i}$	ι_i^2	1	1	/	1	1	12.90%	12.70%	&
Expanded uncertainty (confidence interval of	$u_e = 2u_c$		1	R	K=2	/	/	18.80%	18.40%	8

5.6. System Check Results

System Performance Check at 2450 MHz Head

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 884

Date/Time: 04/15/2015 AM

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.84 \text{ S/m}$; $\epsilon_r = 39.36$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 – SN3292; ConvF(4.43,4.43, 4.43); Calibrated: 08/15/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

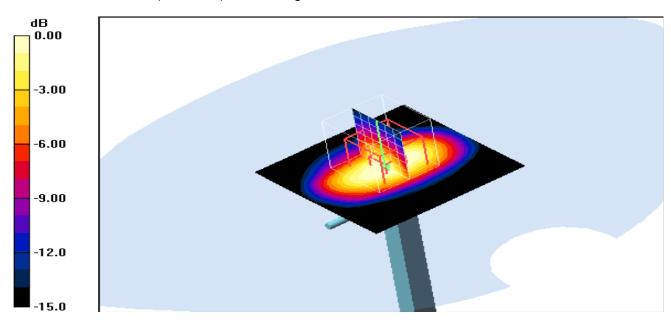
Electronics: DAE4 Sn1315; Calibrated: 07/22/2014;

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (91x91x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 81.2 W/Kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 192.56 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 94.2 W/Kg

SAR(1 g) = 54.0 W/Kg; SAR(10 g) = 25.2 W/Kg

Maximum value of SAR (measured) = 62.0 W/Kg

0 dB = 62.0 W/Kg = 17.92 dB W/Kg

Page 32 of 60 Report No.: A150A166219-SAR

System Performance Check at 2450 MHz Body

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 884

Date/Time: 04/15//2015 PM

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.97 \text{ S/m}$; $\varepsilon_r = 52.86$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(4.23,4.23, 4.23); Calibrated: 08/15/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

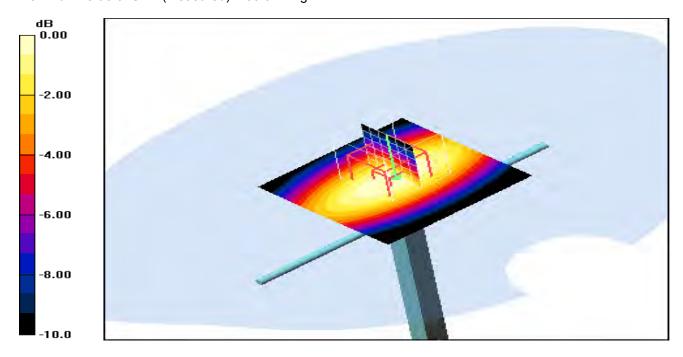
Electronics: DAE4 Sn1315; Calibrated: 07/22/2014;

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (81x81x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 71.5 W/Kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 181.40 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 92.6 W/Kg

SAR(1 g) = 49.50 W/Kg; SAR(10 g) = 23.10 W/Kg

Maximum value of SAR (measured) = 60.0 W/Kg

0 dB = 60.0 W/Kg = 17.78 dB W/Kg

5.7. SAR Test Graph Results

SAR plots for the **highest measured SAR** in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02

WiFi2450 Right Head Cheek Middle Channel (WiFi2450 Middle Channel-Channel 6-2437MHz (1Mbps))

Communication System: Customer System; Frequency: 2437.0 MHz;Duty Cycle:1:1

Medium parameters used (interpolated): f = 2437.0 MHz; $\sigma = 1.82 \text{ S/m}$; $\epsilon_r = 39.45$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Probe: ES3DV3 – SN3292; ConvF(4.43,4.43, 4.43); Calibrated: 08/15/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

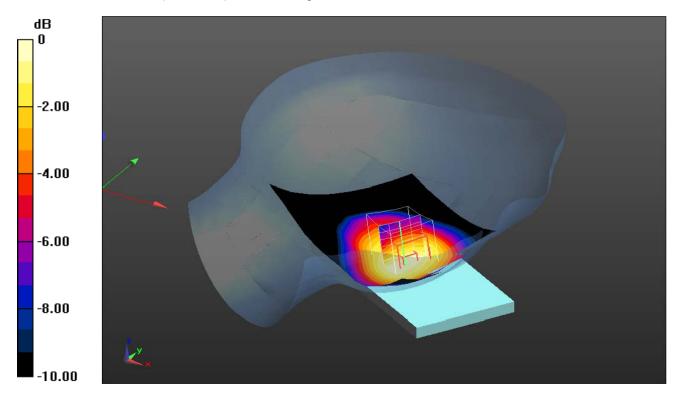
Electronics: DAE4 Sn1315; Calibrated: 07/22/2014;

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (101x91x1): Measurement grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) =0.860 W/Kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.122 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.982 W/Kg

SAR(1 g) = 0.588 W/Kg; SAR(10 g) = 0.312 W/Kg

Maximum value of SAR (measured) = 0.720 W/Kg

0 dB = 0.720 W/Kg = -1.43 dB W/Kg

Page 34 of 60 Report No.: A150A166219-SAR

WiFi2450 Body Middle Channel (WiFi2450 Middle Channel-Channel 6-2437MHz (1Mbps))

Communication System: Customer System; Frequency: 2437 MHz;Duty Cycle:1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.96$ S/m; $\epsilon_r = 53.03$; $\rho = 1000$ kg/m³

Phantom section: Body- worn

Probe: ES3DV3 - SN3109 ConvF(4.35, 4.35, 4.35); Calibrated: 29/11/2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

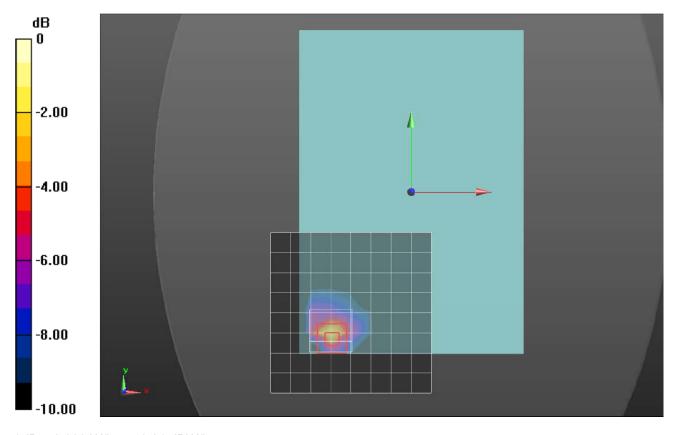
Electronics: DAE4 Sn1315; Calibrated: 11/25/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (121x111x1): Measurement grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 1.22 W/kg

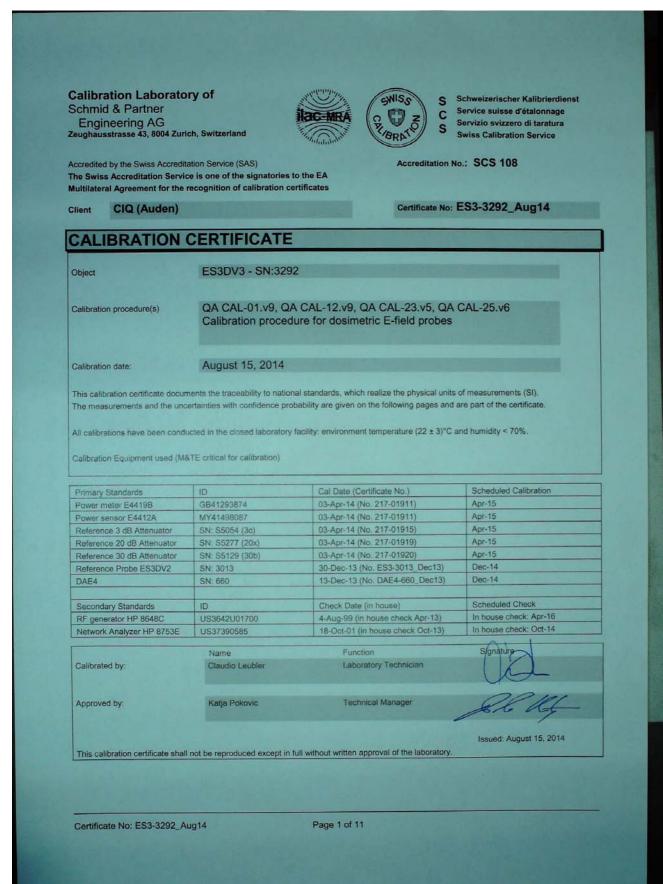

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 41.25 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 1.62 W/Kg

SAR(1 g) = 1.018 W/Kg; SAR(10 g) = 0.639 W/Kg

Maximum value of SAR (measured) = 1.20 W/Kg


0dB = 0.829 W/kg = -0.81 dBW/kg

Plot 2: Body Rear Side (WiFi2450 Middle Channel-Channel 6-2437MHz (1Mbps))

Page 35 of 60 Report No.: A150A166219-SAR

6. Calibration Certificate

6.1. Probe Calibration Ceriticate

Page 36 of 60 Report No.: A150A166219-SAR

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Page 37 of 60 Report No.: A150A166219-SAR

ES3DV3 - SN:3292 August 15, 2014

Probe ES3DV3

SN:3292

Manufactured: July 6, 2010 Repaired: July 28, 2014 Calibrated: August 15, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3292_Aug14

Page 3 of 11

Page 38 of 60 Report No.: A150A166219-SAR

ES3DV3-SN:3292 August 15, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.89	0.95	1.46	± 10.1 %
DCP (mV) ^B	107.1	106.1	103.9	2.011.70

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)	
0	CW	CW X	X	0.0	0.0	1.0	0.00	209.7	±3.8 %
		Y	0.0	0.0	1.0		218.8		
	A PROPERTY OF THE PERSON NAMED IN COLUMN 1	Z	0.0	0.0	1.0		198.5		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3292_Aug14

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ES3DV3-SN:3292

August 15, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	43.5	0.87	6.71	6.71	6.71	0.18	1.80	± 13.3 %
835	41.5	0.90	6.23	6.23	6.23	0.80	1.11	± 12.0 %
900	41.5	0.97	6.71	6.71	6.71	0.71	1.17	± 12.0 %
1810	40.0	1.40	5.07	5.07	5.07	0.61	1.36	± 12.0 %
1900	40.0	1.40	5.03	5.03	5.03	0.45	1.55	± 12.0 %
2100	39.8	1.49	5.04	5.04	5.04	0.77	1.17	± 12.0 %
2450	39.2	1.80	4.43	4.43	4.43	0.73	1.23	± 12.0 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

*At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

*Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Page 40 of 60 Report No.: A150A166219-SAR

ES3DV3-SN:3292 August 15, 2014

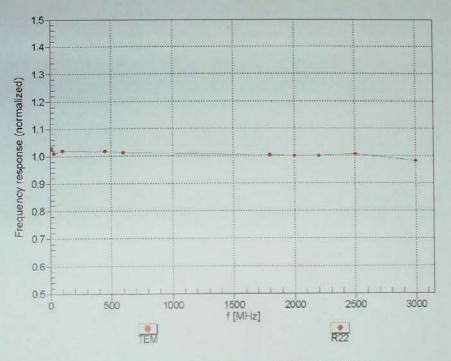
DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	56.7	0.94	7.10	7.10	7.10	0.13	1.00	± 13.3 %
835	55.2	0.97	6.11	6.11	6.11	0.36	1.78	± 12.0 %
900	55.0	1.05	5.97	5.97	5.97	0.73	1.22	± 12.0 %
1810	53.3	1.52	4.79	4.79	4.79	0.59	1.45	± 12.0 %
1900	53.3	1.52	4.66	4.66	4.66	0.41	1.79	± 12.0 %
2100	53.2	1.62	4.77	4.77	4.77	0.63	1.42	± 12.0 %
2450	52.7	1.95	4.23	4.23	4.23	0.66	0.98	± 12.0 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

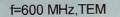

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: ES3-3292_Aug14 Page 6 of 11

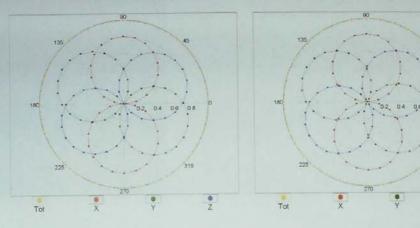
Page 41 of 60 Report No.: A150A166219-SAR

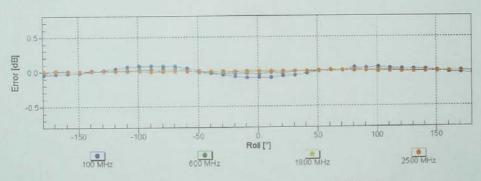
ES3DV3-SN:3292 August 15, 2014

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

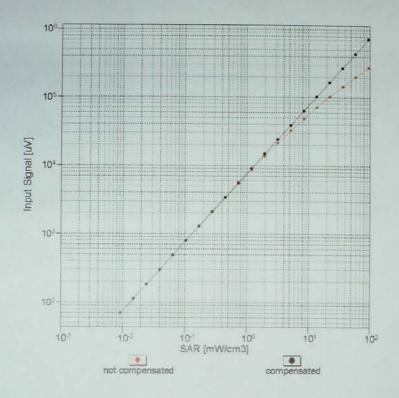
Certificate No: ES3-3292_Aug14

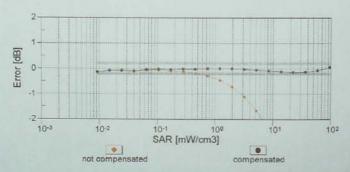

Page 7 of 11


August 15, 2014 ES3DV3-SN:3292

Receiving Pattern (ϕ), $9 = 0^{\circ}$

f=1800 MHz,R22

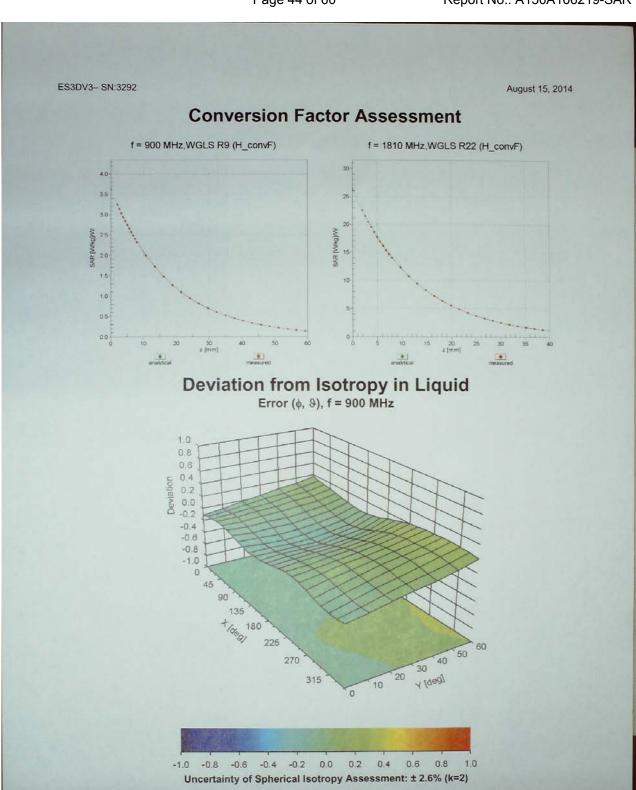




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

ES3DV3-SN:3292 August 15, 2014

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

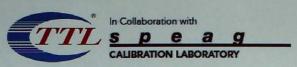


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3292_Aug14

Page 9 of 11

ES3DV3- SN:3292 August 15, 2014


DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-8.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Page 46 of 60 Report No.: A150A166219-SAR

6.2. D2450V2 Dipole Calibration Ceriticate

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Client

CIQ-SZ(Auden)

Certificate No: Z14-97070

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 884

Calibration Procedure(s) TMC-OS-E-02-194

Calibration procedure for dipole validation kits

Calibration date: September 1, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

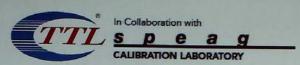
Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration

Power Meter NRVD	102083	11-Sep-13 (TMC, No.JZ13-443)	Sep-14
Power sensor NRV-Z5	100595	11-Sep-13 (TMC, No. JZ13-443)	Sep -14
Reference Probe ES3DV3	SN 3149	5- Sep-13 (SPEAG, No.ES3-3149_Sep13)	Sep-14
DAE3	SN 536	23-Jan-14 (SPEAG, DAE3-536_Jan14)	Jan -15
Signal Generator E4438C	MY49070393	13-Nov-13 (TMC, No.JZ13-394)	Nov-14
Network Analyzer E8362B	MY43021135	19-Oct-13 (TMC, No.JZ13-278)	Oct-14

Name Function Calibrated by: Zhao Jing SAR Test Engineer

Reviewed by: Qi Dianyuan SAR Project Leader


Deputy Director of the laboratory Approved by: Lu Bingsong

Issued: September 4, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z14-97070

Page 1 of 8

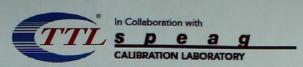
Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NO

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz


Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms
 oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the
 dipole positioned under the liquid filled phantom. The impedance stated is transformed
 from the measurement at the SMA connector to the feed point. The Return Loss
 ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	PLE TOTAL
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	THE STREET

Head TSL parameters

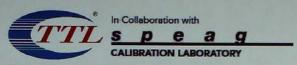
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.2 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	-	(1111)

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.1 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.17 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.6 mW /g ± 20.4 % (k=2)

Body TSL parameters
The following parameters and calculations were applied


	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.3 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	51.6 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.11 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	24.2 mW /g ± 20.4 % (k=2)

Certificate No: Z14-97070

Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	58.3Ω- 0.76jΩ	
Return Loss	- 22.3dB	

Antenna Parameters with Body TSL

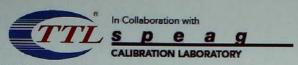
Impedance, transformed to feed point	58.1Ω+ 2.61jΩ	
Return Loss	- 22.1dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.224 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.


No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: Z14-97070

Page 4 of 8

Date: 01.09.2014

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 884

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ S/m; $\epsilon_r = 40.2$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(4.48, 4.48, 4.48); Calibrated: 2013-09-05;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

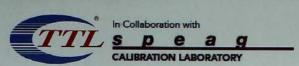
System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

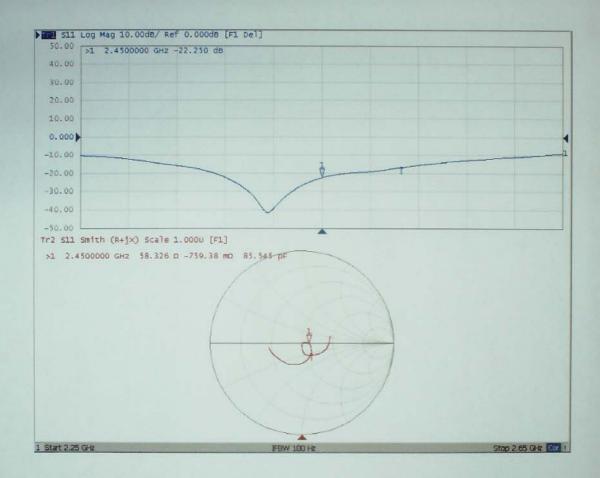
Reference Value = 99.491 V/m; Power Drift = -0.03 dB

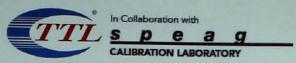
Peak SAR (extrapolated) = 26.6 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.17 W/kg


Maximum value of SAR (measured) = 17.1 W/kg

0 dB = 17.1 W/kg = 12.33 dBW/kg


Certificate No: Z14-97070


Page 5 of 8

Impedance Measurement Plot for Head TSL

Date: 01.09.2014

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 884

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; σ = 1.988 S/m; ϵ_r = 51.25; ρ = 1000 kg/m³

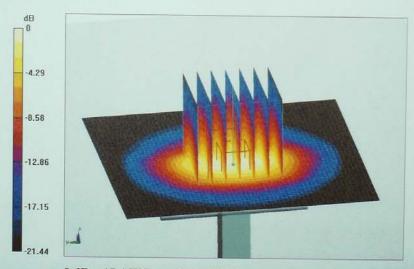
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

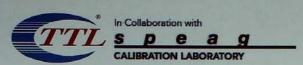
DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(4.21, 4.21, 4.21); Calibrated: 2013-09-03;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/2
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

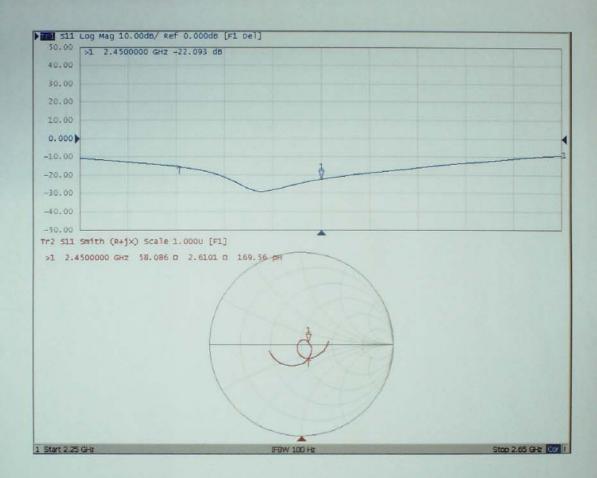

dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.180 V/m; Power Drift = -0.05 dB

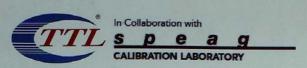

Peak SAR (extrapolated) = 27.6 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.11 W/kg

Maximum value of SAR (measured) = 17.4 W/kg



0 dB = 17.4 W/kg = 12.41 dBW/kg



Impedance Measurement Plot for Body TSL

Page 54 of 60 Report No.: A150A166219-SAR

6.3. DAE4 Calibration Ceriticate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Client:

CIQ-SZ(Auden)

Certificate No: Z14-97066

CALIBRATION CERTIFICATE

Object

DAE4 - SN: 1315

Calibration Procedure(s)

TMC-OS-E-01-198

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date:

July 22, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Documenting

Process Calibrator 753 1971018 01-July-14 (CTTL, No:J14X02147)

July-15

Calibrated by:

Name

Function

Yu Zongying

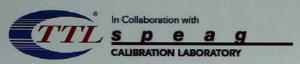
SAR Test Engineer

Reviewed by:

Qi Dianyuan

SAR Project Leader

Approved by:


Lu Bingsong

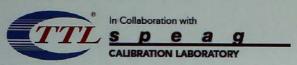
Deputy Director of the laboratory

Issued: July 23, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratoty.

Certificate No: Z14-97066

Page 1 of 3

Glossary:


DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

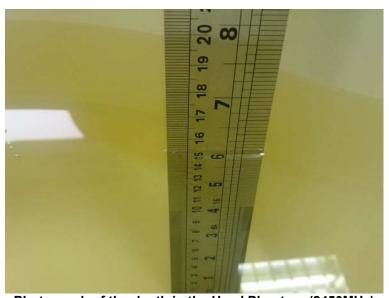
to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

DC Voltage Measurement A/D - Converter Resolution nominal

 $\begin{array}{lll} \mbox{High Range:} & \mbox{1LSB} = & \mbox{6.1} \mu\mbox{V} \; , \\ \mbox{Low Range:} & \mbox{1LSB} = & \mbox{61nV} \; , \\ \end{array}$ -100...+300 mV


Calibration Factors	х	Υ	Z
High Range	405.162 ± 0.15% (k=2)	405.006 ± 0.15% (k=2)	404.963 ± 0.15% (k=2)
Low Range	3.99072 ± 0.7% (k=2)	3.98481 ± 0.7% (k=2)	3.98836 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	22° ± 1 °
Connector Angle to be used in DASY system	22° ± 1 °

Report No.: A150A166219-SAR

7. Test Setup Photos

Photograph of the depth in the Head Phantom (2450MHz)

Photograph of the depth in the Body Phantom (2450MHz)

Left Head Tilt Setup Photo

Left Head Cheek Setup Photo

Right Head Cheek Setup Photo

0mm Body-worn Rear Side Setup Photo

0mm Body-worn Left SideSetup Photo

10mm Body-worn Top Side Setup Photo

Report No.: A150A166219-SAR

8. External Photos of the EUT

External Photos

.....End of Report.....