

FCC 47 CFR PART 15 SUBPART C

CERTIFICATION TEST REPORT

For

LED TV

MODEL No.:SE32FXC4TA, SE32HS, 7251302, SE32HY27, LE-32GCL-C, LE-32GCL-A, LE-32GCL-B, 6223759,ELEFW328B,ELEFW329,ELEFW328, ELEFT321,ELEFT328,ELEFW321,DW32F1W1,DW32H1G1,LE-32GY13Q, SE32FXC4TA, 7787679, LE-32GCLxxxxxxx, ELEFW32xxxxxxx, ELEFT32xxxxxxxx, DW32xxxxxxxx, LE-32GYxxxxxxxx,(where X would be any Arabian number or English letter or blank)

FCC ID: 2ACWI32FXC4TA

Trade Mark: THTF, Fluid, Westinghouse, Seiki, Element, SHARP, ONN, ELEMENT ELECTRONICS

REPORT NO: ES160325011E

ISSUE DATE: May 06, 2016

Prepared for

Shenyang Tongfang Multimedia Technology Co., Limited No.10 Nanping East Road HunNan New District Shenyang, LiaoNing Province P.R .China

Prepared by

EMTEK(SHENZHEN) CO., LTD. Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China TEL: 86-755-26954280 FAX: 86-755-26954282

TABLE OF CONTENTS

TES	T RESULT CERTIFICATION	3
EUT	TECHNICAL DESCRIPTION	4
SUN	IMARY OF TEST RESULT	5
TES	T METHODOLOGY	6
4.1 4.2 4.3	GENERAL DESCRIPTION OF APPLIED STANDARDS MEASUREMENT EQUIPMENT USED DESCRIPTION OF TEST MODES	6
FAC	CILITIES AND ACCREDITATIONS	8
5.1 5.2	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS	8 8
TES	ST SYSTEM UNCERTAINTY	9
SET	UP OF EQUIPMENT UNDER TEST	.10
7.1 7.2 7.3 7.4 7.5	RADIO FREQUENCY TEST SETUP 1 RADIO FREQUENCY TEST SETUP 2 CONDUCTED EMISSION TEST SETUP BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT	. 10 . 11 . 12 . 12
TES		
8.1 8.2 8.3 8.4	MAXIMUM PEAK CONDUCTED OUTPUT POWER	.20 .21
	EUT SUM TES 4.1 4.2 4.3 FAC 5.1 5.2 TES SET 7.1 7.2 7.3 7.4 7.5 TES 8.1 8.2	 4.2 MEASUREMENT EQUIPMENT USED

1 TEST RESULT CERTIFICATION

Applicant:	Shenyang Tongfang Multimedia Technology Co., Limited				
Manufacturer:	Shenyang Tongfang Multimedia Technology Co., Limited				
EUT Description:	LED TV				
Model Number:	SE32FXC4TA, SE32HS, 7251302, SE32HY27, LE-32GCL-C, LE-32GCL-A,				
	LE-32GCL-B, 6223759, ELEFW328B, ELEFW329, ELEFW328, ELEFT321,				
	ELEFT328,ELEFW321, DW32F1W1, DW32H1G1, LE-32GY13Q, SE32FXC4TA,				
	7787679, LE-32GCLxxxxxxxx, ELEFW32xxxxxxxx, ELEFT32xxxxxxxx,				
	DW32xxxxxxxx, LE-32GYxxxxxxx, (where X would be any Arabian number or				
	English letter or blank).				
	(Note:These models are identical except for decorative parts in front panels, color of				
	enclosures and design of signal input/output terminals in secondary circuits. We				
	prepare ELEFT321 for test, and the worst result recorded in the report)				
File Number:	ES160325011E				
Date of Test:	April 07, 2016 to May 06, 2016				

Measurement Procedure Used:

APPLICABLE STANDARDS				
STANDARD	TEST RESULT			
FCC 47 CFR Part 2 2015, Subpart J	PASS			
FCC 47 CFR Part 15 2015, Subpart C	FA33			

The above equipment was tested by EMTEK(SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 2015 and Part 15.247 2015 The test results of this report relate only to the tested sample identified in this report.

Date of Test :	April 07, 2016 to May 06, 2016
tested by :	king being
	King Kong/Tester
Prepared by :	Yaping Shen
	YapingShen/Editor
Approve & Authorized Signer :	the
	Lisa Wang/Manager

2 EUT TECHNICAL DESCRIPTION

Characteristics	Description
IEEE 802.11 WLAN Mode Supported	 ⊠802.11b ⊠802.11g ⊠802.11n(20MHz channel bandwidth) ⊠802.11n(40MHz channel bandwidth)
Data Rate	WIFI: 802.11 b:1,2,5.5,11Mbps; 802.11 g:6,9,12,18,24,36,48,54Mbps; 802.11n(HT20):MCS0-MCS7; 802.11n(HT40):MCS0-MCS7;
Modulation	WIFI: DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;
Operating Frequency Range	WIFI: 2412-2462MHz for 802.11b/g/n(HT20); 2422-2452MHz for 802.11n(HT40);
Number of Channels	WIFI: 11 channels for 802.11b/g n(HT20); 7 channels for 802.11n(HT40);
Transmit Power Max	WIFI: 23.25dBm for 802.11b; 24.81dBm for 802.11g; 25.04dBm for 802.11/n(HT20); 24.66dBm for 802.11/n(HT40);
Antenna Type/Gain	Metal antenna/2.0dBi
Power supply	□DC supply: ⊠Adapter supply: 100V-240~ 50/60Hz 60W
Temperature Range	0°C ~35°C

3	SUMMARY OF TEST RESULT

FCC PartClause	Test Parameter	Verdict	Remark			
15.247(a)(2)	DTS (6dB) Bandwidth	PASS				
15.247(b)(3)	Maximum Peak Conducted Output Power	PASS				
15.247(e)	Maximum Power Spectral Density Level	PASS				
15.247(d)	Unwanted Emission Into Non-Restricted	PASS				
	Frequency Bands					
15.247(d)	Unwanted Emission Into Restricted Frequency	PASS				
15.209	Bands (conducted)					
15.247(d)	Radiated Spurious Emission	PASS				
15.209						
15.207	Conducted EmissionTest	PASS				
15.247(b)	Antenna Application	PASS				
	NOTE1:N/A (Not Applicable)					
	NOTE2: According to FCC OET KDB 558074, the report use radiated					
	measurements in the restricted frequency bands. In addition, the radiated					
	test is also performed to ensure the emissions emanating from the device					
	cabinet also comply with the applicable limits.					

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: 2ACWI32FXC4TA filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C FCC KDB 558074 D01 DTS Meas Guidance v03r05 FCC KDB 662911 D01 Multiple Transmitter Output v02r01 FCC KDB 662911 D02MIMO With Cross Polarized Antenna V01

4.2 MEASUREMENT EQUIPMENT USED

4.2.1 Conducted Emission Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LASTCAL.	DUE CAL.
Test Receiver	Rohde & Schwarz	ESCS30	828985/018	05/16/2015	05/15/2016
L.I.S.N.	Schwarzbeck	NNLK8129	8129203	05/16/2015	05/15/2016
50Ω Coaxial Switch	Anritsu	MP59B	M20531	N/A	05/15/2016
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100006	05/16/2015	05/15/2016
Voltage Probe	Rohde & Schwarz	TK9416	N/A	05/16/2015	05/15/2016
I.S.N	Rohde & Schwarz	ENY22	1109.9508.02	05/16/2015	05/15/2016

4.2.2 Radiated Emission Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	DUE CAL.
EMI Test Receiver	Rohde & Schwarz	ESU	1302.6005.26	05/16/2015	05/15/2016
Pre-Amplifier	HP	8447D	2944A07999	05/16/2015	05/15/2016
Bilog Antenna	Schwarzbeck	VULB9163	142	05/16/2015	05/15/2016
Loop Antenna	ARA	PLA-1030/B	1029	05/16/2015	05/15/2016
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170399	05/16/2015	05/15/2016
Horn Antenna	Schwarzbeck	BBHA 9120	D143	05/16/2015	05/15/2016
Cable	Schwarzbeck	AK9513	ACRX1	05/16/2015	05/15/2016
Cable	Rosenberger	N/A	FP2RX2	05/16/2015	05/15/2016
Cable	Schwarzbeck	AK9513	CRPX1	05/16/2015	05/15/2016
Cable	Schwarzbeck	AK9513	CRRX2	05/16/2015	05/15/2016

4.2.3 Radio Frequency Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LASTCAL.	DUE CAL.
Spectrum Analyzer	Agilent	E4407B	88156318	05/16/2015	05/15/2016
Signal Analyzer	Agilent	N9010A	My53470879	05/16/2015	05/15/2016
Power meter	Anritsu	ML2495A	0824006	05/16/2015	05/15/2016
Power sensor	Anritsu	MA2411B	0738172	05/16/2015	05/15/2016

Remark: Each piece of equipment is scheduled for calibration once a year.

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps;802.11g: 6 Mbps;802.11n(HT20): MCS0;802.11n(HT40): MCS0) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
1	2412	5	2432	9	2452		
2	2417	6	2437	10	2457		
3	2422	7	2442	11	2462		
4	2427	8	2447				

Frequency and Channel list for 802.11 b/g/n(HT20):

Frequency and Channel list for 802.11n (ht40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	5	2432	8	2447
4	2427	6	2437	9	2452
		7	2442		

Test Frequency and Channel for 802.11 b/g/n(HT20):

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	6	2437	11	2462

Test Frequency and channel for 802.11n (ht40):

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	6	2437	9	2452

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Bldg 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description EMC Lab.

- : Accredited by CNAS, 2013.10.28 The certificate is valid until 2016.10.29 The Laboratory has been assessed and proved to be in compliance with CNAS-CL01: 2006(identical to ISO/IEC17025: 2005) The Certificate Registration Number is L229
 - : Accredited by TUV Rheinland Shenzhen, 2010.5.25 The Laboratory has been assessed according to the requirements ISO/IEC 17025.
 - : Accredited by FCC, July 24, 2013 The Certificate Registration Number is 406365.
 - : Accredited by FCC, April 17, 2013 The Certificate Registration Number is 709623.
 - : Accredited by Industry Canada, November 24, 2015 The Certificate Registration Number is 4480A-2.

6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5℃
Humidity	±3%

Measurement Uncertainty for a level of Confidence of 95%

7 SETUP OF EQUIPMENT UNDER TEST

7.1 RADIO FREQUENCY TEST SETUP 1

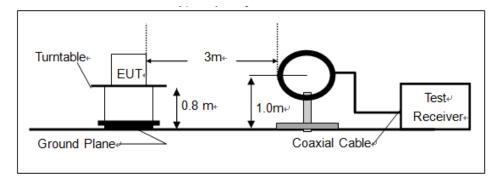
The WLAN component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

7.2 RADIO FREQUENCY TEST SETUP 2

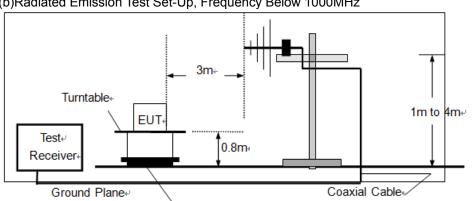
The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

Below 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT androtated about its vertical axis formaximum response at each azimuth about the EUT. The center of the loopshall be 1 m above the ground.For certain applications, the loop antennaplane may also need to be positioned horizontally at the specified distance from the EUT.

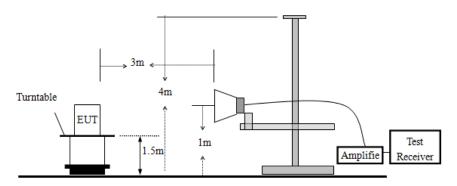

30MHz-1GHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).


Above 1GHz:

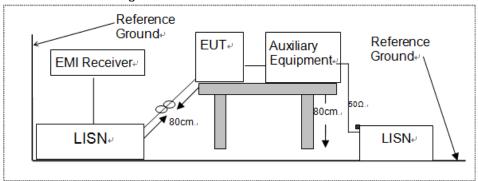
The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

(a) Radiated Emission Test Set-Up, Frequency Below 30MHz



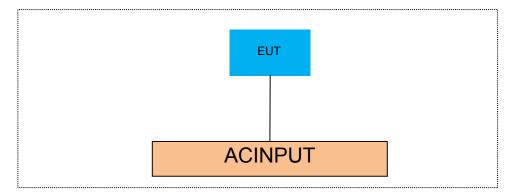
(b)Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz



CONDUCTED EMISSION TEST SETUP 7.3

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.


Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

7.5 SUPPORT EQUIPMENT

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.	Note
1.	N/A	N/A	N/A	N/A	N/A	N/A

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

8 TEST REQUIREMENTS

8.1 DTS(6DB)BANDWIDTH

8.1.1 Applicable Standard

According to FCC Part15.247(a)(2) and KDB558074 DTS 01 Meas. Guidance v03r05

8.1.2 Conformance Limit

The minimum -6 dB bandwidth shall be at least 500 kHz.

8.1.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.1.4 Test Procedure

The EUT was operating in IEEE 802.11b/g/n mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 100 kHz.

Set the video bandwidth (VBW) =300kHz.

Set Span=2 times OBW

Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

Allow the trace to stabilize.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Measure and record the results in the test report.

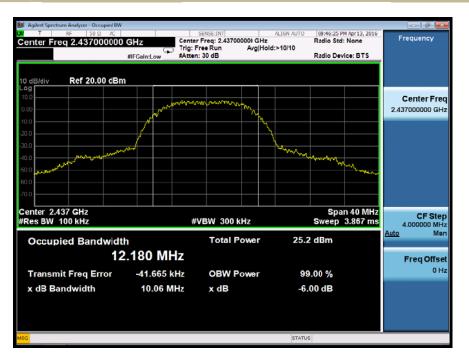
8.1.5 Test Results

Temperature : Humidity :		26℃ 60 %	Test Date Test By:	9:	April13, 201 King Kong	
Operation	Channel	Channel	Frequency	Measurement	Limit	

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Limit Bandwidth (MHz) (kHz)		Verdict
	1	2412	10.08	>500	PASS
802.11b	6	2437	10.06	>500	PASS
	11	2462	10.06	>500	PASS
	1	2412	16.47	>500	PASS
802.11g	6	2437	16.46	>500	PASS
	11	2462	16.47	>500	PASS
802.11n	1	2412	16.40	>500	PASS
	6	2437	16.40	>500	PASS
(HT20)	11	2462	16.40	>500	PASS
802.11n	3	2422	36.38	>500	PASS
(HT40)	6	2437	36.14	>500	PASS
(1140)	9	2452	36.10	>500	PASS

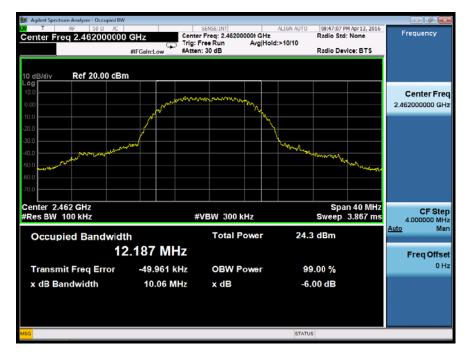
Channel 1: 2412MHz GHZ Center Freq: 2.412000000 GHz Trig: Free Run AvgiHold:>10/10 #IFGain:Low AvgiHold:>10/10 09:44:56 PM Apr 13, 2016 Radio Std: None Radio Device: BTS

DTS (6dB) Bandwidth


802.11b

Test Model

Frequency Center Freq 2.412000000 GHz Ref 20.00 dBm 0 dB/di Center Freq 2.412000000 GHz Span 40 MHz Sweep 3.867 ms Center 2.412 GHz #Res BW 100 kHz CF Step 4.000000 MHz #VBW 300 kHz Man Auto Total Power 25.1 dBm **Occupied Bandwidth** 12.180 MHz Freq Offset 0 Hz Transmit Freq Error -15.632 kHz **OBW Power** 99.00 % x dB Bandwidth 10.08 MHz x dB -6.00 dB STATUS


Test Model

DTS (6dB) Bandwidth 802.11b Channel 6: 2437MHz

DTS (6dB) Bandwidth 802.11b Channel 11: 2462MHz

Test Model

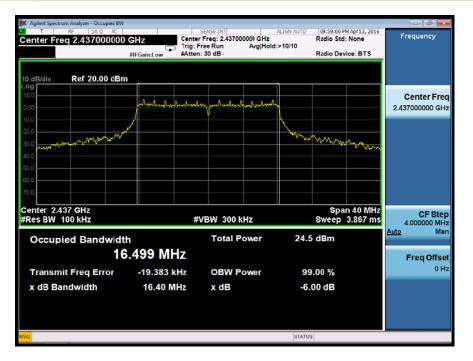
DTS (6dB) Bandwidth 802.11g Channel 1: 2412MHz

Test Model

DTS (6dB) Bandwidth 802.11g Channel 6: 2437MHz

Test Model

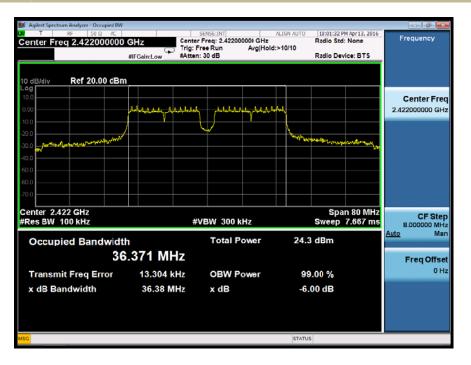

DTS (6dB) Bandwidth 802.11g Channel 11: 2462MHz


Test Model

DTS (6dB) Bandwidth 802.11n (HT20) Channel 1: 2412MHz

Test Model

DTS (6dB) Bandwidth 802.11n (HT20) Channel 6: 2437MHz



Channel 11: 2462MHz SENSE:INT ALIGN AUTO Center Freq: 2.462000000 GHz Trig: Free Run Avg|Hold:>10/10 #Atten: 30 dB 09:59:54 PM Apr 13, 2016 Radio Std: None Frequency Center Freq 2.462000000 GHz #IFGain:Lov Radio Device: BTS Ref 20.00 dBm Bidi Center Freq 2.462000000 GHz m MMM. march M Center 2.462 GHz #Res BW 100 kHz Span 40 MHz Sweep 3.867 ms CF Step 4.000000 MHz Man #VBW 300 kHz Auto Total Power 23.7 dBm **Occupied Bandwidth** 16.499 MHz Freq Offset 0 Hz Transmit Freq Error -20.546 kHz **OBW Power** 99.00 % x dB Bandwidth 16.40 MHz x dB -6.00 dB STATUS

Test Model

DTS (6dB) Bandwidth 802.11n (HT40) Channel 3: 2422MHz

DTS (6dB) Bandwidth 802.11n (HT20)

Test Model


SENSE:INT ALIGN AUTO Center Freq: 2.437000000 GHz Trig: Free Run Avg|Hold:>10/10 #Atten: 30 dB 10:03:43 PM Apr 13, 2016 Radio Std: None Frequency Center Freq 2.437000000 GHz #IFGain:Lov Radio Device: BTS Ref 20.00 dBm 0 dB/di Center Freq - Anderlander الملحا والمراجر ممليل 2.437000000 GHz Andreho Mark Center 2.437 GHz #Res BW 100 kHz Span 80 MHz Sweep 7.667 ms CF Step 8.000000 MHz #VBW 300 kHz MHZ Auto Total Power 24.2 dBm Occupied Bandwidth 36.342 MHz Freq Offset 0 Hz Transmit Freq Error -16.548 kHz **OBW** Power 99.00 % x dB Bandwidth 36.14 MHz x dB -6.00 dB STATUS

Test Model

DTS (6dB) Bandwidth 802.11n (HT40) Channel 9: 2452MHz

DTS (6dB) Bandwidth 802.11n (HT40)

Channel 6: 2437MHz

Test Model

8.2 MAXIMUM PEAK CONDUCTED OUTPUT POWER

8.2.1 Applicable Standard

According to FCC Part15.247(b)(3) and KDB558074 DTS 01 Meas. Guidance v03r05

8.2.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm).

8.2.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.2.4 Test Procedure

■ According to FCC Part15.247(b)(3)

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

The testing follows FCC public Notice DA 00-705 Measurement Guidelines.

The RF output of EUT was connected to the power meter by RF cable and attnuator. The path loss was compensated to the results for each measurement.

Set to the maximum output power setting and enable the EUT transmit continuously.

Measure the conducted output power with cable loss and record the results in the test report.

Measure and record the results in the report.

According to FCC Part 15.247(b)(4):

Conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note: If antenna Gain exceeds 6 dBi, then Output power Limit=30-(Gain- 6)

8.2.5 Test Results

Temperature : Humidity :		200	est Date : est By:	April13, King K	
Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm)	Limit (dBm)	Verdict
	1	2412	23.07	30	PASS
802.11b	6	2437	23.25	30	PASS
	11	2462	22.35	30	PASS
	1	2412	24.71	30	PASS
802.11g	6	2437	24.81	30	PASS
	11	2462	24.20	30	PASS
802.11n	1	2412	25.01	30	PASS
(HT20)	6	2437	25.04	30	PASS
(1120)	11	2462	24.23	30	PASS
902 11p	3	2422	24.66	30	PASS
802.11n (HT40)	6	2437	24.51	30	PASS
(1140)	9	2452	24.17	30	PASS

8.3 MAXIMUM POWER SPECTRAL DENSITY

8.3.1 Applicable Standard

According to FCC Part15.247(e) and KDB558074 DTS 01 Meas. Guidance v03r05

8.3.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.3.4 Test Procedure

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance The transmitter output (antenna port) was connected to the spectrum analyzer Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz

Set the VBW to:10 kHz.

Set Detector = peak.

Set Sweep time = auto couple.

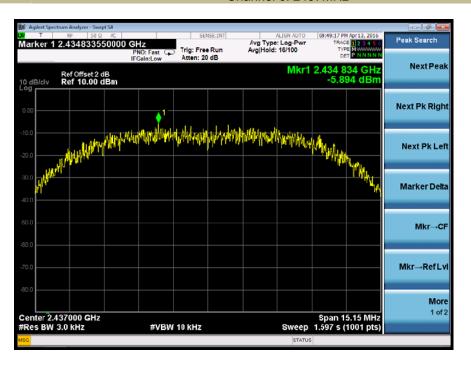
Set Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level within the RBW. Note: If antenna Gain exceeds 6 dBi, then PSD Limit=8-(Gain- 6)

8.3.5 Test Results

Temperature : Humidity :		200	: Date : : By:	April13, 2 King Kor	
Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
	1	2412	-6.328	8	PASS
802.11b	6	2437	-5.894	8	PASS
	11	2462	-7.081	8	PASS
	1	2412	-9.848	8	PASS
802.11g	6	2437	-9.633	8	PASS
	11	2462	-10.365	8	PASS
802.11n	1	2412	-10.212	8	PASS
(HT20)	6	2437	-9.740	8	PASS
(1120)	11	2462	-11.161	8	PASS
000 11p	3	2422	-13.251	8	PASS
802.11n (HT40)	6	2437	-13.042	8	PASS
(1140)	9	2452	-13.539	8	PASS


Channel 1: 2412MHz TYPE M Peak Search Marker 1 2.409833550000 GHz PNO: Fast IFGein:Low Atten: 20 dB Avg Type: Log-Pwr Avg|Hold: 5/100 Next Peak Mkr1 2.409 834 GH -6.328 dBn Ref Offset 2 dB Ref 10.00 dBm 10 dB/di Next Pk Right ٠ Matur May Martin AN ALL MARKAN AND AN ANALYMAN where we are Next Pk Left **M** Marker Delta Mkr→CF Mkr→RefLvl More 1 of 2 Center 2.412000 GHz #Res BW 3.0 kHz Span 15.15 MHz Sweep 1.597 s (1001 pts) #VBW 10 kHz

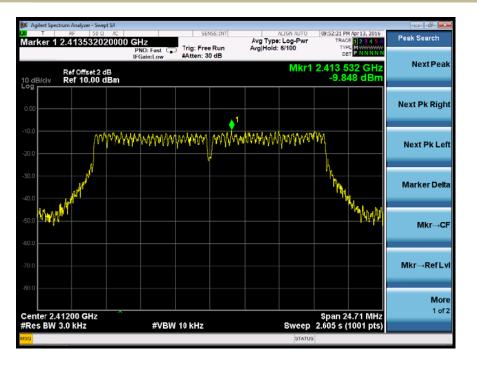
Test Model

Test Model

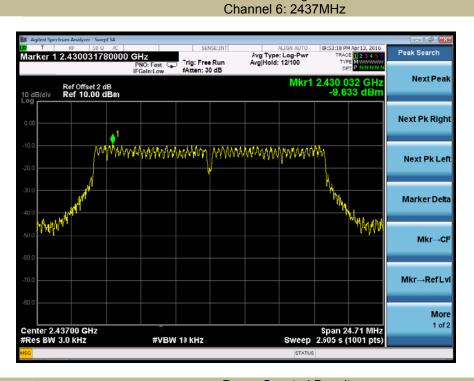
Power Spectral Density 802.11b Channel 6: 2437MHz

Power Spectral Density 802.11b

T RF 50.0 AC rker 1 2.459833550000 GHz PNO: Fast Fraint ow Fraint ow Atten: 20 dB 17 PM Apr 13, 2016 TRACE 1 2 3 4 5 6 TYPE M Peak Search Avg Type: Log-Pwr Avg|Hold: 6/100 Next Peak Mkr1 2.459 834 GHz -7.081 dBm Ref Offset 2 dB Ref 10.00 dBm 10 dB/div Log Next Pk Right ٠ Mary Minhai an partition of the state of the second PTT APPT Next Pk Left WHAT WIT Marker Delta Mkr→CF Mkr→RefLvl More 1 of 2 Center 2.462000 GHz #Res BW 3.0 kHz Span 15.15 MHz Sweep 1.597 s (1001 pts) #VBW 10 kHz


Test Model

Test Model


Power Spectral Density 802.11g Channel 1: 2412MHz

Power Spectral Density

802.11b Channel 11: 2462MHz

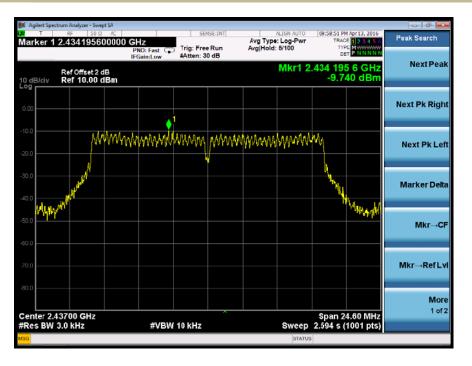


Test Model

Test Model


Power Spectral Density 802.11g Channel 11: 2462MHz

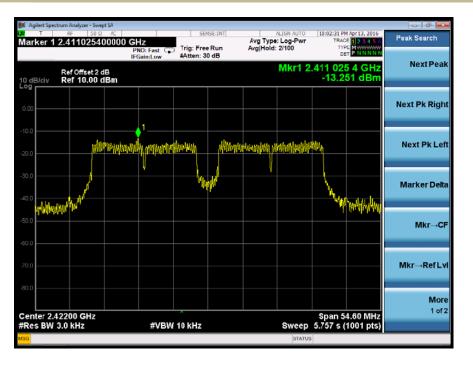
Power Spectral Density 802.11g

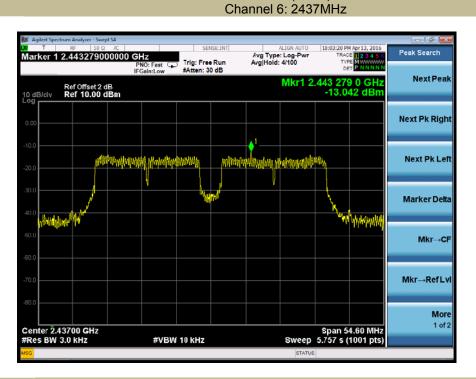

Power Spectral Density 802.11n (HT20) Channel 1: 2412MHz

Test Model

Test Model

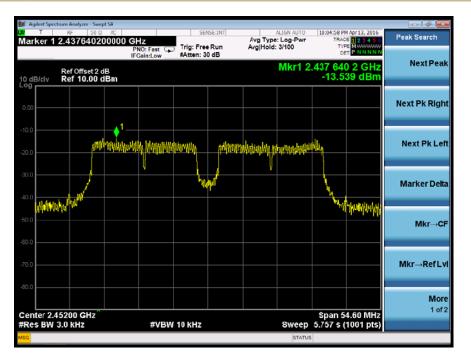
Power Spectral Density 802.11n (HT20) Channel 6: 2437MHz


Power Spectral Density 802.11n (HT20) Channel 11: 2462MHz


Test Model

Test Model

Power Spectral Density 802.11n (HT40) Channel 3: 2422MHz



Test Model

Test Model

Power Spectral Density 802.11n (HT20) Channel 9: 2452MHz

Power Spectral Density 802.11n (HT20)

8.4 UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS

8.4.1 Applicable Standard

According to FCC Part15.247(d) and KDB558074 DTS 01 Meas. Guidance v03r05

8.4.2 Conformance Limit

According to FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

8.4.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.4.4 Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer

■ Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DTS channel center frequency.

Set the span to \geq 1.5 times the DTS bandwidth.

Set the RBW = 100 kHz.

Set the VBW \ge 3 x RBW.

Set Detector = peak.

Set Sweep time = auto couple.

Set Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Set the center frequency and span to encompass frequency range to be measured.

Set the RBW = 100 kHz.

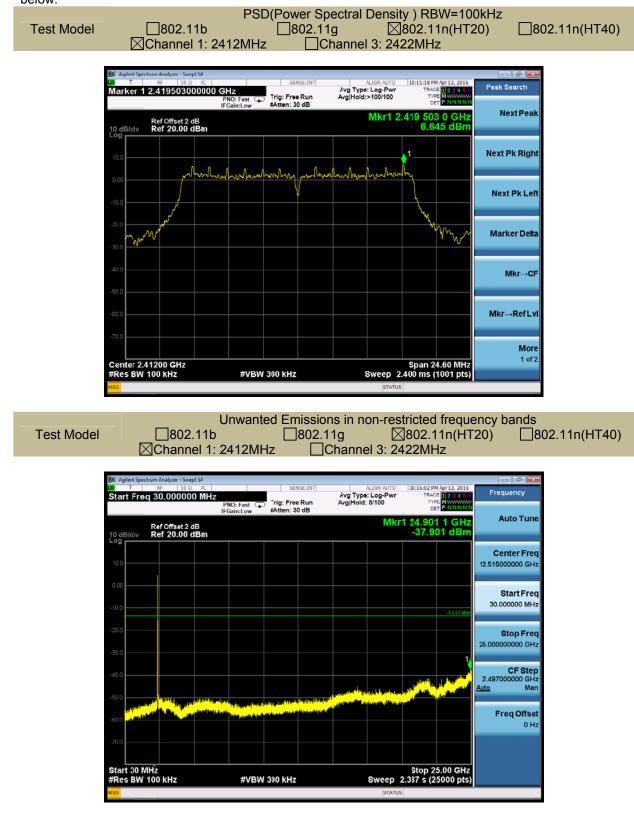
Set the VBW =300 kHz.

Set Detector = peak

Sweep time = auto couple.

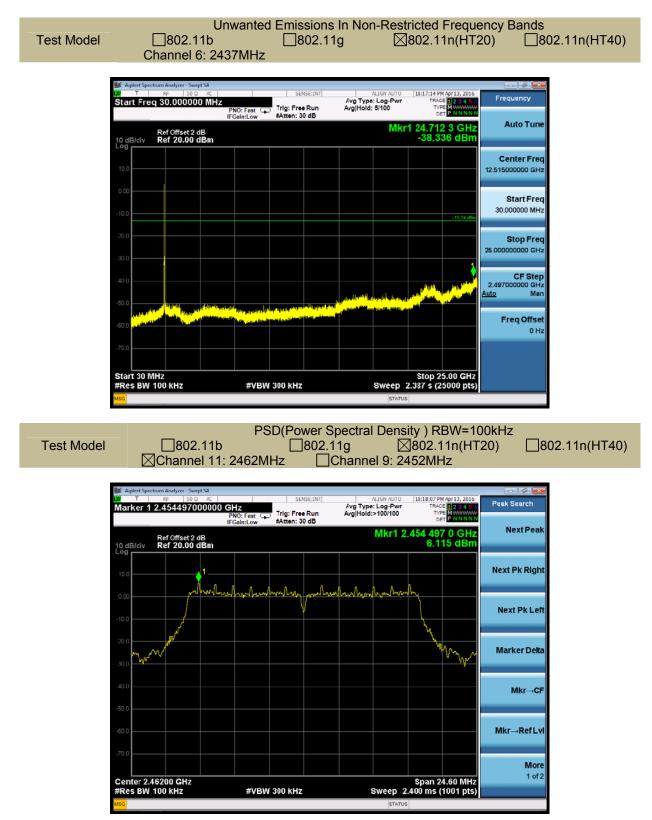
Trace mode = max hold.

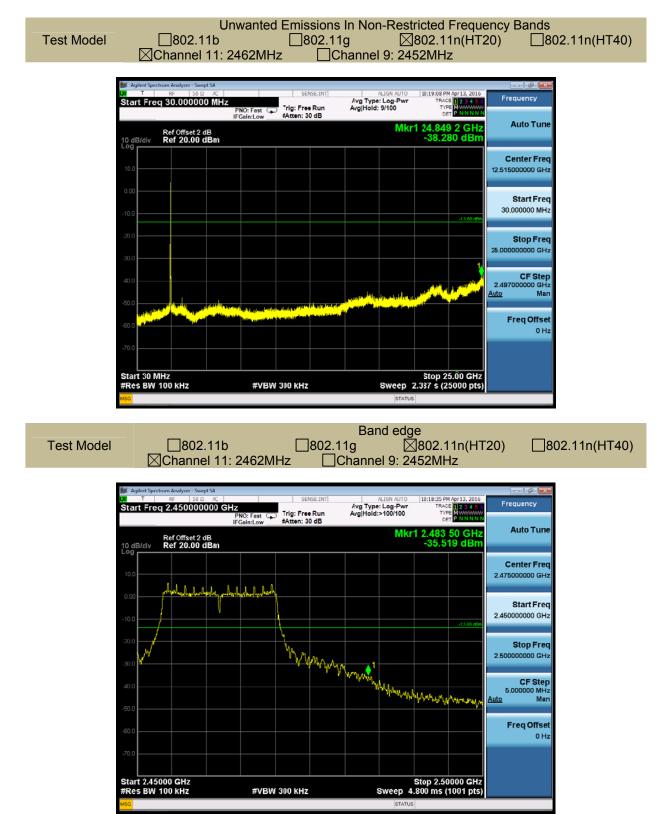
Allow trace to fully stabilize.


Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements. Report the three highest emissions relative to the limit.

8.4.5 Test Results


All modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11nHT20 recorded was report as below:



8.5 RADIATED SPURIOUS EMISSION

8.5.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and KDB558074 DTS 01 Meas. Guidance v03r05

8.5.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205. Restricted bands

MHz	MHz	MHz	GHz				
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5				
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
6.26775-6.26825	123-138	2200-2300	14.47-14.5				
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4				
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
12.57675-12.57725	322-335.4	3600-4400	(2)				
13.36-13.41							

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	2400/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

8.5.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

8.5.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

 $\label{eq:RBW} \texttt{RBW} \texttt{=} 1 \ \texttt{MHz} \ \texttt{for} \ \texttt{f} \ge 1 \ \texttt{GHz}(\texttt{1}\texttt{GHz} \ \texttt{to} \ \texttt{2}\texttt{5}\texttt{GHz}), \ \texttt{100} \ \texttt{kHz} \ \texttt{for} \ \texttt{f} < \texttt{1} \ \texttt{GHz}(\texttt{3}\texttt{0}\texttt{MHz} \ \texttt{to} \ \texttt{1}\texttt{GHz}), \ \texttt{200Hz} \ \texttt{for} \ \texttt{f} < \texttt{15}\texttt{0}\texttt{KHz}(\texttt{9}\texttt{KHz} \ \texttt{to} \ \texttt{15}\texttt{0}\texttt{KHz}), \ \texttt{9}\texttt{KHz} \ \texttt{for} \ \texttt{f} < \texttt{30}\texttt{MHz}(\texttt{15}\texttt{0}\texttt{KHz} \ \texttt{to} \ \texttt{30}\texttt{KHz})$

 $\mathsf{VBW} \geq \mathsf{RBW}$

Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the

measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data. Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

8.5.5 Test Results

Spurious Emission below 30MHz(9KHz to 30MHz)

Temperature:	24 ℃	Test Date:	N/A
Humidity:	53 %	Test By:	N/A
Test mode:	TX Mode	-	

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK È	ÁV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor

■ Spurious Emission Above 1GHz(1GHz to 25GHz)

All modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11nHT20 recorded was report as below:

Temperature :	26 ℃	Test Date :	May 06, 2016
Humidity : Test mode:	60 % 802.11nHT20	Test By: Frequency:	King Kong Channel 1: 2412MHz
lest mode.	002.1111120	riequency.	

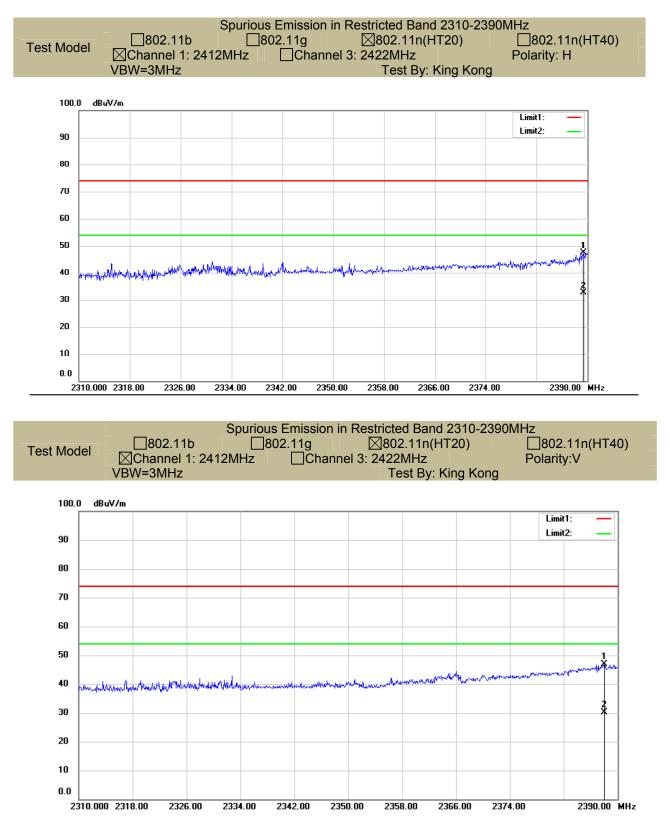
Freq.	Ant.P ol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz) H/V		PK	AV	PK	AV	PK	AV
7001.000	V	44.58	29.40	74	54	-29.42	-24.60
8837.000	V	46.34	31.20	74	54	-27.66	-22.80
10996.000	V	48.66	33.50	74	54	-25.34	-20.50
7222.000	Н	43.97	28.60	74	54	-30.03	-25.40
9721.000	Н	46.26	31.40	74	54	-27.74	-22.60
11710.000	Н	48.28	33.20	74	54	-25.72	-20.80

Temperature : 26°C		Test Date :		May 06, 2016				
Humidity :	Humidity : 60 %		Test By:		King Kong			
Test mode:	802	2.11nHT20	Frequency:		Channel 6: 2437MHz			
Freq. A	Ant.Pol.	Emission Lev	vel(dBuV/m) Limit 3m(d		(dBuV/m)	BuV/m) Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
7171.000	V	44.56	29.60	74	54	-29.44	-24.40	
9279.000	V	46.74	31.40	74	54	-27.26	-22.60	
12577.000	V	49.90	33.60	74	54	-24.10	-20.40	
5947.000	Н	43.96	27.80	74	54	-30.04	-26.20	
6933.000	Н	45.56	30.10	74	54	-28.44	-23.90	
8599.000	Н	46.34	31.40	74	54	-27.66	-22.60	
Temperature	:	26 °C	Test Date :			May 06, 2016		
Humidity :		60 %	Test B		King Kong			
Test mode:		802.11nHT20 Freque		ency: C		hannel 11: 2462MHz		
Freq.	Ant.P ol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
4944.000	V	43.77	36.90	74	54	-30.23	-17.10	
8038.000	V	47.16	31.40	74	54	-26.84	-22.60	
11319.000	V	49.39	33.50	74	54	-24.61	-20.50	
6032.000	Н	41.75	25.10	74	54	-32.25	-28.90	
7460.000	Н	43.81	27.60	74	54	-30.19	-26.40	
10333.000	Н	46.48	30.40	74	54	-27.52	-23.60	

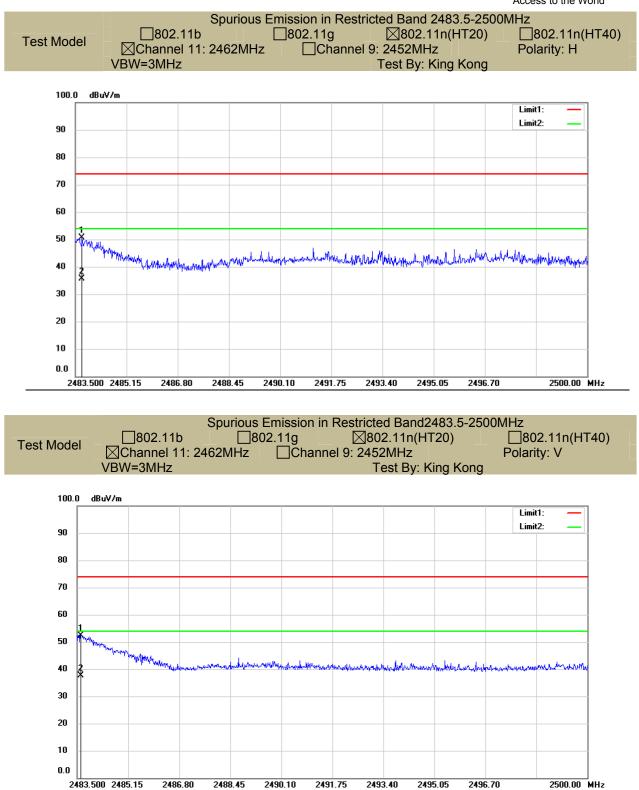
Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).
(2) Emission Level= Reading Level+Probe Factor +Cable Loss.
(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the Salded and the reading of emissions are attenuated more than 20dB below the permissible limits or the salded and the reading the reading of emissions are attenuated more than 20dB below the permissible limits or the salded and the s field strength is too small to be measured.

■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

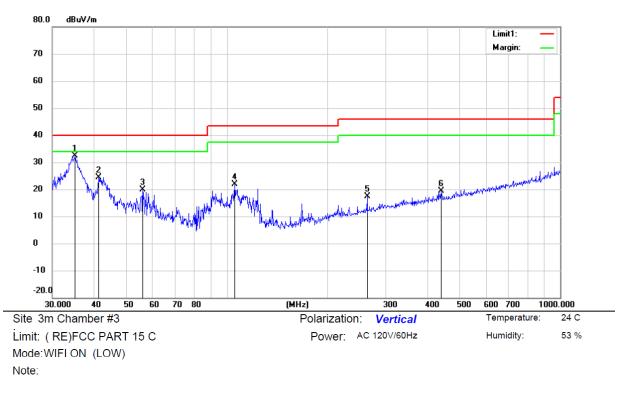
All modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11nHT20 recorded was report as below:


Temperature : Humidity : Test mode:	lumidity : 60 %		est Date : est By: requency:	May 06, 2016 King Kong Channel 1: 2412MHz			
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Over(dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Over(dB)
2389.360	Н	47.28	74	-26.72	32.60	54	-21.4
2388.000	V	46.95	74	-27.05	30.20	54	-23.8
Temperature : Humidity : Test mode:	dity: 60 % Test		est Date : est By: requency:	May 06, 2016 King Kong Channel 11: 2462MHz			
Frequency	Polarity	PK(dBuV/m)	Limit 3m	Over(dB)	AV(dBuV/m)	Limit 3m	Over(dB)

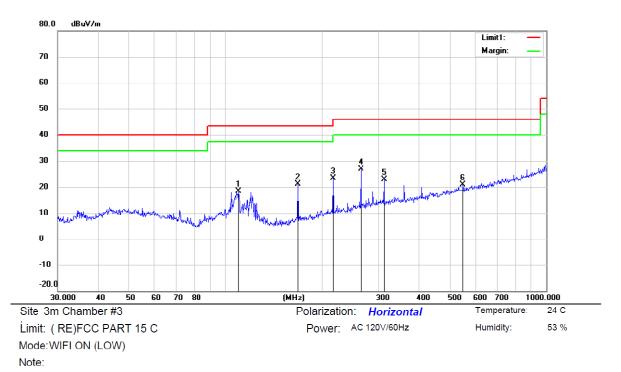
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Over(dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Over(dB)
2483.715	Н	50.63	74	-23.37	35.60	54	-18.4
2483.615	V	52.45	74	-21.55	37.60	54	-16.4

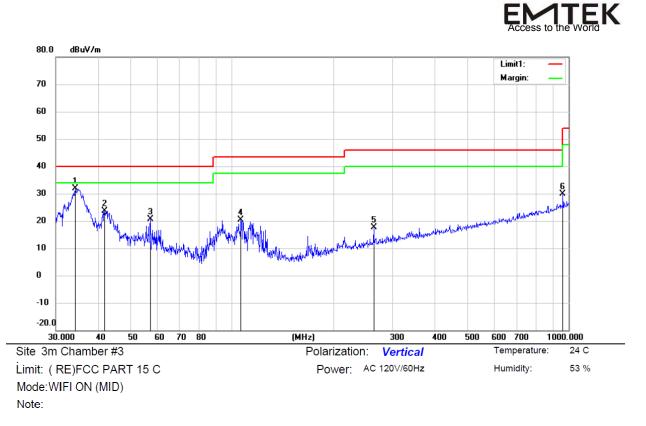

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz). (2) Emission Level= Reading Level+Probe Factor +Cable Loss.

(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

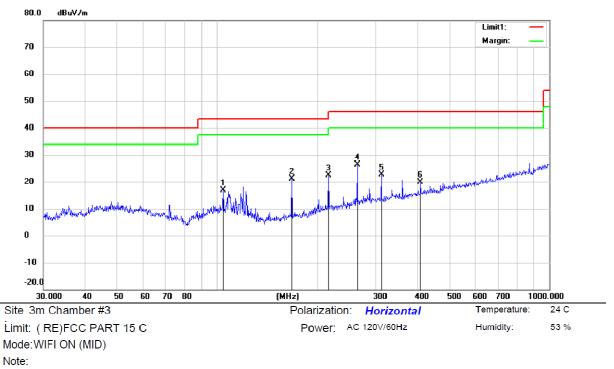


■ Spurious Emission below 1GHz (30MHz to 1GHz)

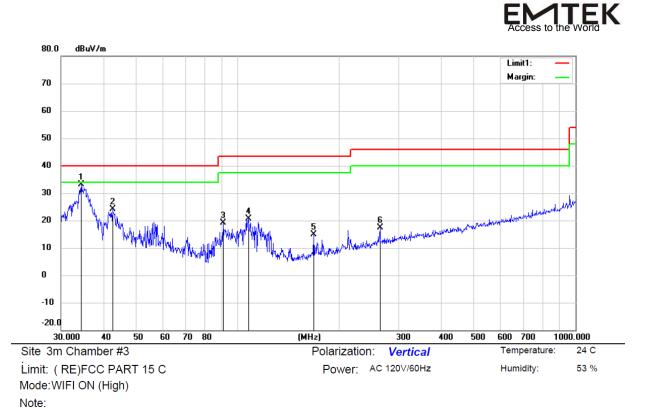

All modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11nHT20 recorded was report as below:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	35.1278	49.17	-16.87	32.30	40.00	-7.70	QP			
2		41.2765	39.57	-15.20	24.37	40.00	-15.63	QP			
3		56.0007	35.01	-15.22	19.79	40.00	-20.21	QP			
4		105.6415	37.08	-15.32	21.76	43.50	-21.74	QP			
5		263.8190	30.27	-12.89	17.38	46.00	-28.62	QP			
6	4	440.1963	28.06	-8.65	19.41	46.00	-26.59	QP			

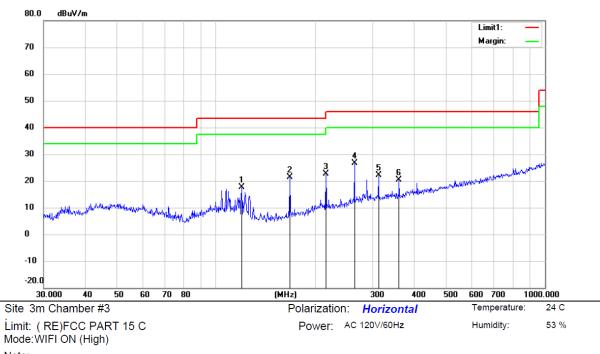
*:Maximum data x:Over limit !:over margin



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		109.7960	33.84	-15.39	18.45	43.50	-25.05	QP			
2		167.8243	38.62	-17.47	21.15	43.50	-22.35	QP			
3		216.0240	37.96	-14.70	23.26	46.00	-22.74	QP			
4	*	263.8190	39.88	-12.89	26.99	46.00	-19.01	QP			
5		312.1794	34.30	-11.45	22.85	46.00	-23.15	QP			
6		549.0195	27.44	-6.67	20.77	46.00	-25.23	QP			



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	34.2760	48.78	- 1 6.97	31.81	40.00	-8.19	QP			
2		41.8 5 95	38.73	-15.08	23.65	40.00	-16.35	QP			
3		57.1914	35.90	-15.37	20.53	40.00	-19.47	QP			
4		106.3850	35.82	-15.34	20.48	43.50	-23. <mark>0</mark> 2	QP			
5		263.8190	30.54	-12.89	17.65	46.00	-28.35	QP			
6	1	962.1622	30.51	-0.63	29.88	54.00	-24.12	QP			



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		104.1701	32.30	-15.31	16.99	43.50	-26.51	QP			
2		167.8242	38.48	-17.47	21.01	43.50	-22.49	QP			
3		216.0240	37.02	-14.70	22.32	46.00	-23.68	QP			
4	* 4	263.8190	39.34	-12.89	26.45	46.00	-19.55	QP			
5		312.1794	33.97	-11.45	22.52	46.00	-23.48	QP			
6	4	408.9460	29.37	-9.39	19.98	46.00	-26.02	QP			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	34.3964	50.11	-16.95	33.16	40.00	-6.84	QP			
2		42.6000	38.94	-14.83	24.11	40.00	-15.89	QP			
3		90.5374	36.79	-17.66	19.13	43.50	-24.37	QP			
4		107.5100	35.92	-15.35	20.57	43.50	-22.93	QP			
5		167.8242	32.46	-17.47	14.99	43.50	-28.51	QP			
6	:	263.8190	30.38	-12.89	17.49	46.00	-28.51	QP			

NI	0	t		•
I N	U	L	J	•

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		119.8556	34.59	-17.01	17.58	43.50	-25.92	QP			
2		167.8242	38.93	-17.47	21.46	43.50	-22.04	QP			
3		216.0240	37.45	-14.70	22.75	46.00	-23.25	QP			
4	*	263.8190	39.64	-12.89	26.75	46.00	-19.25	QP			
5		312.1794	33.63	-11.45	22.18	46.00	-23.82	QP			
6		360.4476	31.09	-10.62	20.47	46.00	-25.53	QP			

Operator: CSL

Access to the World

8.6 CONDUCTED EMISSIONS TEST

8.6.1 Applicable Standard

According to FCC Part 15.207(a)

8.6.2 Conformance Limit

Co	nducted Emission Limit	
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

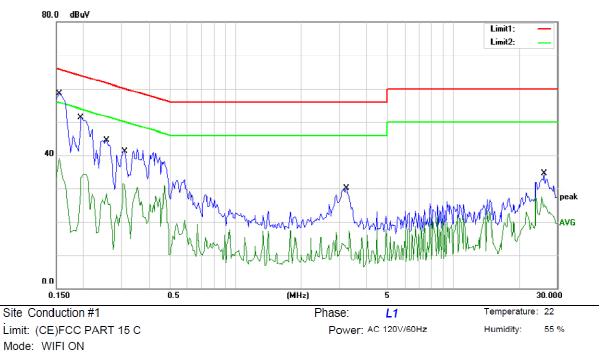
Note: 1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

8.6.3 Test Configuration

Test according to clause 7.3 conducted emission test setup

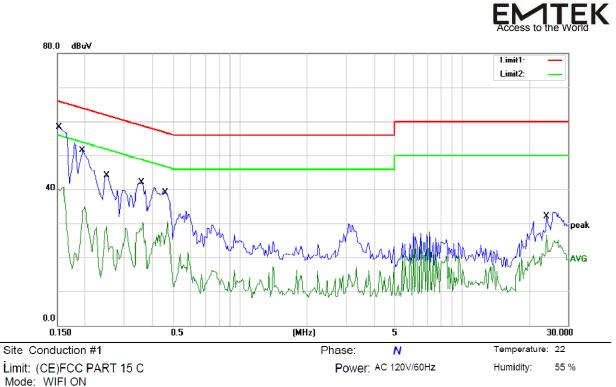
8.6.4 Test Procedure


The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.

8.6.5 Test Results

Pass

All modes 2.4G 802.11b/g/nhave been tested, and the worst result recorded was report as below:


Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBuV	dB	Detector	Comment
1	*	0.1550	58.53	0.00	58.53	65.73	-7.20	QP	
2		0.1550	39.10	0.00	39.10	55.73	-16.63	AVG	
3		0.1950	51.37	0.00	51.37	63.82	-12.45	QP	
4		0.1950	34.36	0.00	34.36	53.82	-19.46	AVG	
5		0.2550	44.60	0.00	44.60	61.59	-16.99	QP	
6		0.2550	27.77	0.00	27.77	51.59	-23.82	AVG	
7		0.3051	41.07	0.00	41.07	60.10	-19.03	QP	
8		0.3051	31.41	0.00	31.41	50.10	-18.69	AVG	
9		3.2300	30.18	0.00	30.18	56.00	-25.82	QP	
10		3.2300	17.28	0.00	17.28	46.00	-28.72	AVG	
11		26.2500	34.50	0.00	34.50	60.00	-25.50	QP	
12		26.2500	27.48	0.00	27.48	50.00	-22.52	AVG	

*:Maximum data x:Over limit I:over margin

rgin Comment: Factor build in receiver.

Operator: WQG

mouc
Note:

No. M	/lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1 *	0.1540	58.01	0.00	58.01	65.78	-7.77	QP	
2	0.1540	40.24	0.00	40.24	55.78	-15.54	AVG	
3	0.1950	51.55	0.00	51.55	63.82	-12.27	QP	
4	0.1950	34.87	0.00	34.87	53.82	-18.95	AVG	
5	0.2500	44.08	0.00	44.08	61.76	-17.68	QP	
6	0.2500	29.03	0.00	29.03	51.76	-22.73	AVG	
7	0.3600	42.07	0.00	42.07	58.73	-16.66	QP	
8	0.3600	30.27	0.00	30.27	48.73	-18.46	AVG	
9	0.4600	39.11	0.00	39.11	56.69	-17.58	QP	
10	0.4600	30.43	0.00	30.43	46.69	-16.26	AVG	
11	24.0250	32.08	0.00	32.08	60.00	-27.92	QP	
12	24.0250	26.55	0.00	26.55	50.00	-23.45	AVG	

*:Maximum data x:Over limit

x:Over limit I:over margin

Comment: Factor build in receiver.

Operator: WQG

8.7 ANTENNA APPLICATION

8.7.1 Antenna Requirement

Standard	Requirement
FCC CRF Part15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217,§15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

8.7.2 Result

The EUT'S antenna is Metal antenna. The antenna's gain is 2.0dBi, and the antenna can't be replaced by the userwhich in accordance to section 15.203, please refer to the photos.