

TESTING CENTRE TEC	TEST REPOR	Т				
FCC ID:	2ACVFK-15					
Test Report No::	TCT240726E009					
Date of issue::	Aug. 16, 2024					
Testing laboratory:	SHENZHEN TONGCE TESTING	G LAB				
Testing location/ address:	2101 & 2201, Zhenchang Factor Subdistrict, Bao'an District, Sher People's Republic of China					
Applicant's name::	Shenzhen ChangTaiWei Electro	nic CO., LTD				
Address::	5/F., 6 Block, XinGu Industrial zo Town, BaoAn District, Shenzher		ge, XiXiang			
Manufacturer's name:	Shenzhen ChangTaiWei Electro	Shenzhen ChangTaiWei Electronic CO., LTD				
Address::	5/F., 6 Block, XinGu Industrial zone, GuShu Village, XiXiang Town, BaoAn District, Shenzhen City, China					
Standard(s):	FCC CFR Title 47 Part 2 FCC CFR Title 47 Part95					
Product Name::	Walkie Talkie	Walkie Talkie				
Trade Mark:	N/A					
Model/Type reference:	K15 (C)		(6)			
Rating(s):	Adapter Information: Model: SJL608 Input: AC 100-220V, 50/60Hz, 0. Output: DC 5V, 2.1A Rechargeable NIMH Batteries D					
Date of receipt of test item:	Jul. 26, 2024					
Date (s) of performance of test:	Jul. 26, 2024 ~ Aug. 16, 2024	~				
Tested by (+signature):	Brews XU	frent on	KEZ (S)			
Check by (+signature):	Beryl ZHAO	Boy Comp	CT) or TING			
Approved by (+signature):	Tomsin	Tomsies	84			

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

1.	General Product Information	
	1.1. EUT description	3
	1.2. Model(s) list	3
	1.3. Operation Frequency	4
2.	Test Result Summary	5
3.	General Information	
	3.1. Test environment and mode	6
	3.2. Description of Support Units	7
	3.3. Configuration of Tested System	8
	3.4. Measurement Results Explanation Example	8
4.	Facilities and Accreditations	9
	4.1. Facilities	9
	4.2. Location	9
	4.3. Measurement Uncertainty	9
5.	Test Results and Measurement Data	10
	5.1. FRS frequency accuracy	10
	5.2. FRS transmit power	14
	5.3. FRS authorized bandwidth	16
	5.4. FRS modulation limits	20
	5.5. Emission Mask and Radiated Spurious Emission	24
Аp	ppendix A: Photographs of Test Setup	
Αp	ppendix B: Photographs of EUT	
_		

General Product Information

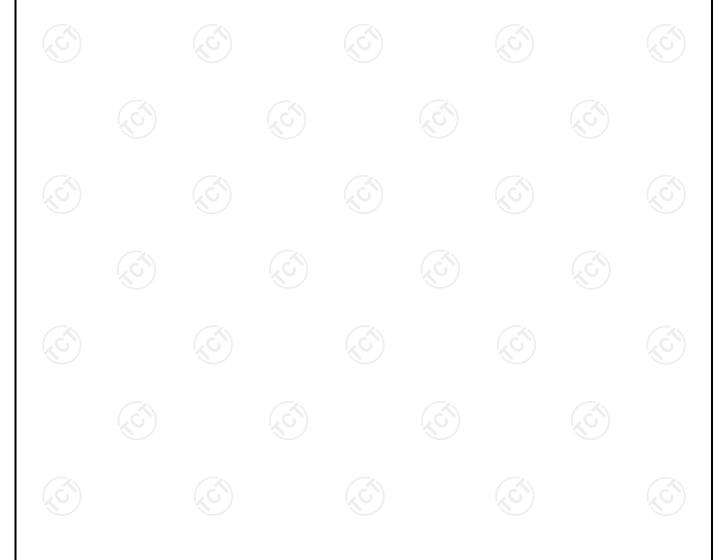
1.1. EUT description

Product Name:	Walkie Talkie		
Model/Type reference:	K15		
Sample Number:	TCT240726E009-0101		
Operation Frequency:	462.5626MHz - 462.7125MHz 467.5626MHz - 467.7125MHz 462.5500MHz - 462.7250MHz	(8-14 channel)	
Channel Separation:	12.5KHz		
Maximum Output Power to Antenna:	31.37dBm		
99% Occupied Bandwidth:	9.77KHz		
Emission Designator:	10K0F3E		
Type of Modulation:	FM (C)	(c ¹)	(C_{i})
Antenna Type:	Internal Antenna		
Antenna Gain:	-2.97dBi		
Rating(s):	Adapter Information: Model: SJL608 Input: AC 100-220V, 50/60Hz, Output: DC 5V, 2.1A Rechargeable NIMH Batteries		(c ¹)

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

Model(s) list 1.2.

None.


Page 3 of 31

Report No.: TCT240726E009

1.3. Operation Frequency

Channel:	Frequency (KHz)	Channel:	Frequency (MHz)
1	462.5625	12	467.6625
2	462.5875	13	467.6875
3	462.6125	14	467.7125
4	462.6375	15	462.5500
5	462.6625	16	462.5750
6	462.6875	17	462.6000
7	462.7125	18	462.6250
8	467.5625	19	462.6500
9	467.5875	20	462.6750
10	467.6125	21	462.7000
11	467.6375	22	462.7250

2. Test Result Summary

Requirement	CFR 47 Section	Result
FRS frequency accuracy	§2.1055; §95.565	PASS
FRS transmit power	§2.1046; §95.567	PASS
FRS emission types	§95.571	PASS
FRS authorized bandwidth	§2.1049; §95.573	PASS
Emission Mask	§95.579	PASS
FRS modulation limits	§2.1047; §95.575	PASS
FRS unwanted emissions limits	§2.1053; §95.579	PASS
FRS additional requirements	§95.587	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar

Remark: This product has a rechargeable battery, so in an independent test, the EUT battery was fully-charged.

Test Mode

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Page 6 of 31

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
		160	/	(6) 1

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 7 of 31

3.3. Configuration of Tested System

Report No.: TCT240726E009

3.4. Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between RF conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level will be exactly the RF output level. The spectrum analyzer offset is derived from RF cable loss and attenuator factor. Offset = RF cable loss + attenuator factor.

The following shows an offset computation example with RF cable loss 3 dB and a 5dB attenuator.

Example: Offset (dB) = RF cable loss (dB) + attenuator factor (dB). = 8(dB)

Page 8 of 31

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

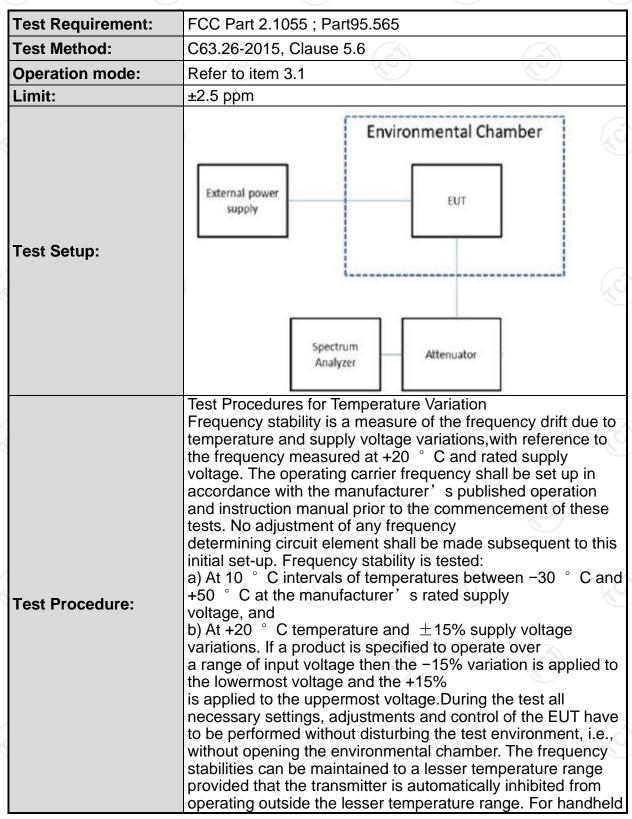
Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB
7	Temperature	± 0.1°C
8	Humidity	± 1.0%


Report No.: TCT240726E009

5. Test Results and Measurement Data

5.1. FRS frequency accuracy

5.1.1. Test Specification

equipment that is only capable of operating from internal batteries and the supply voltage cannot be varied, the

		from batter batt	atteries and equency statery voltage manufacter at the integratery operage the equiport available obtained an approperage of value of valu	ability tests ge and the turer. An exernal batter ating end pend pend ment manuly, the mean by using a riately largen the requi	s shall be p battery en- cternal sup- ry nominal oint voltage ifacturer. If frequency frequency e multiple of red accura	erformed a d point volt ply voltage, voltage, ar e which sha an unmode of a modu counter wit of bit period cy). Full de	t the nomir age specifican be used again at all be specipulated carriesth gating tires (gating the stalls on the	ed by ed and the fied er is er can ne set ime
Test	Result:	P	ASS					

Fax: 86-755-27673332

Hotline: 400-6611-140 Tel: 86-755-27673339

http://www.tct-lab.com

5.1.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Programable temperature and humidity chamber	JQ	JQ-2000	510101234	Jun. 26, 2025
DC power supply	Kingrang	KR3005K		Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	/

5.1.3. Test Data

Test conditions		Test Frequency (MHz)				
rest	CONDITIONS	Frequ	uency error	(ppm)	Limit	Result
Voltage(V)	Temperature(°C)	462.6375	467.6375	462.6250	(ppm)	
	-30	0.108	0.053	0.102		
	-20	0.096	0.062	0.105	(ES)	
, and the second	-10	0.126	0.060	0.116		
	0	0.103	0.055	0.099		
3.6	10	0.109	0.067	0.097		
	20	0.101	0.051	0.110	±2.5	PASS
	30	0.112	0.068	0.113		
	40	0.098	0.032	0.118		
K	50	0.102	0.036	0.115		
4.2	20	0.101	0.044	0.109		
3.0	20	0.100	0.050	0.108		

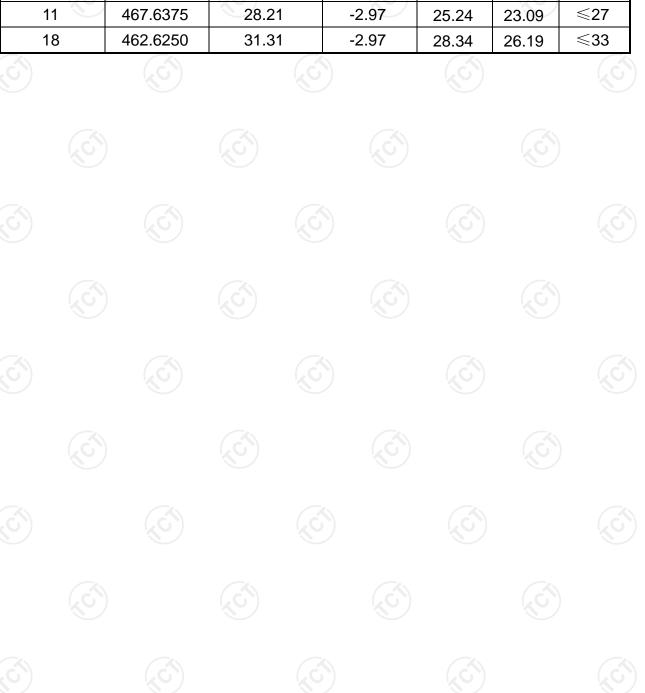
5.2. FRS transmit power

5.2.1. Test Specification

Test Method: Operation mode:	C63.26-2015, Clause 5.2.3.3 Refer to item 3.1 Each FRS transmitter type must be designed such that the effective radiated power (ERP) on channels 8
Operation mode:	Each FRS transmitter type must be designed such that the effective radiated power (ERP) on channels 8
	the effective radiated power (ERP) on channels 8
Limits:	through 14 does not exceed 0.5 Watts(27dBm) and the ERP on channels 1 through 7 and 15 through 22 does not exceed 2.0 Watts(33dBm).
Test Setup:	Spectrum Analyzer Attenuator EUT Communication Test Set
Test Procedure:	This procedure can be used to measure the peak power in either a CW-like or noise-like narrowband RF signal. The measurement instrument must have a RBW that is greater than or equal to the OBW of the signal to be measured and a VBW ≥ 3 × RBW. a) Set the RBW ≥ OBW. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 2 × OBW. d) Sweep time ≥ 10 × (number of points in sweep) × (transmission symbol period). e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use the peak marker function to determine the peak amplitude level.
Test Result:	PASS

5.2.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
RF Communications Tester	HP	8920A	348A05658	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	/



TESTING CENTRE TECHNOLOGY

Report No.: TCT240726E009

5.2.3. Test data

Channel No.	Frequency (MHz)	Conducted Output power (dBm)	Antenna Gain (dBi)	EIRP (dBm)	ERP (dBm)	ERP Limit (dBm)
4	462.6375	31.37	-2.97	28.40	26.25	≤33
11	467.6375	28.21	-2.97	25.24	23.09	≤27

5.3. FRS authorized bandwidth

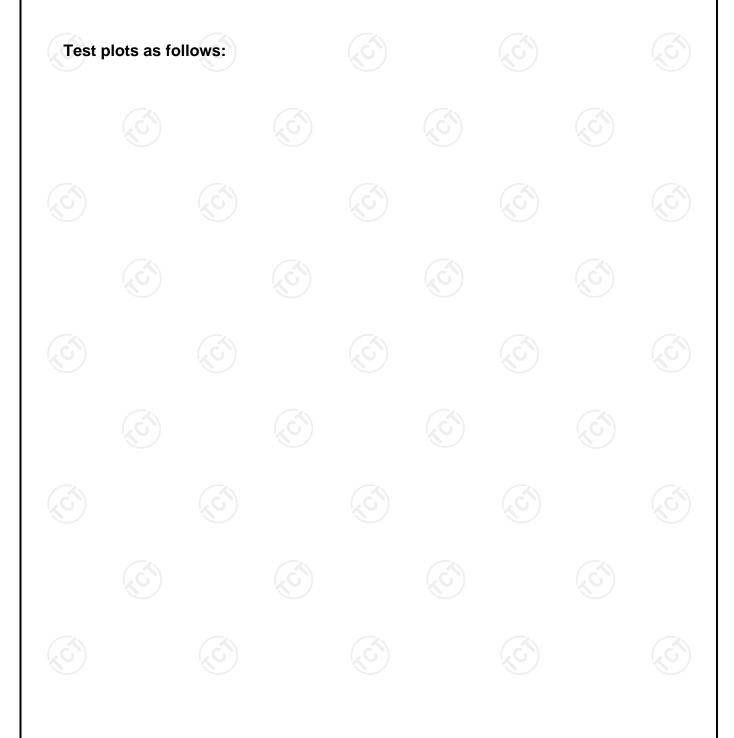
5.3.1. Test Specification

Test Requirement:	FCC part 65.573
Test Method:	C63.26-2015, Clause 5.4.4
Operation mode:	Refer to item 3.1
Limit:	Each FRS transmitter type must be designed such that the occupied bandwidth does not exceed 12.5 kHz.
Test Setup:	Spectrum Analyzer Attenuator EUT Communication Test Set
Test Procedure:	The OBW is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring (99%) power bandwidth:31 a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (typically a span of 1.5 × OBW is sufficient). b) The nominal IF filter 3 dB bandwidth (RBW) shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set ≥ 3 × RBW. c) Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation. See guidance provided in 4.2.3. NOTE—Step a), step b), and step c) may require iteration to adjust within the specified tolerances. d) Set the detection mode to peak, and the trace mode to max-hold. e) If the instrument does not have a 99% OBW function, recover the trace data points and sum directly in linear power terms. Place the recovered amplitude data points, beginning at the lowest frequency, in a running sum until 0.5% of the total is reached. Record that frequency as the lower OBW frequency. Repeat the process until 99.5% of the total is reached. Record that frequency as the lower OBW frequency. Repeat the process until 99.5% of the total is reached and record that frequency as the upper OBW frequency. The 99% power OBW can be determined by computing the difference

CT通测检测 TESTING CENTRE TECHNOLOGY	Report No.: TCT240726E00
	these two frequencies. f) The OBW shall be reported and plot(s) of the measuring instrument display shall be provided with the test report. The frequency and amplitude axis and scale shall be clearly labeled. Tabular data can be reported in addition to the plot(s).
Test Result:	PASS

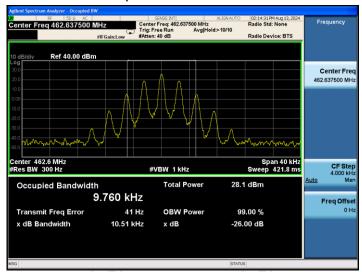
5.3.2. Test Instruments

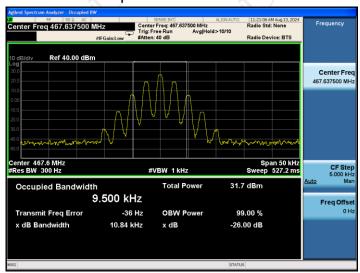
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
RF Communications Tester	HP	8920A	348A05658	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	(6)	(C)



TESTING CENTRE TECHNOLOGY Report No.: TCT240726E009

5.3.3. Test data


Channel	4	8	18
Frequency (MHz)	462.6375	467.6375	462.6250
99% OBW (kHz)	9.76	9.50	9.768
26dB BW (kHz)	10.51	10.84	10.51



26dB&99% Occupied Bandwidth Plot of Channel 4

26dB&99% Occupied Bandwidth Plot of Channel 11

26dB&99% Occupied Bandwidth Plot of Channel 18

5.4. FRS modulation limits

5.4.1. Test Specification

Test Requirement:	FCC part95.575		
Test Method:	C63.26-2015, Clause 5.3.2		
Operation mode:	Refer to item 3.1		
Limit:	Each FRS transmitter type must be designed such that the peak frequency deviation does not exceed 2.5 kHz, and the highest audio frequency contributing substantially to modulation must not exceed 3.125 kHz.		
Test Setup:	TRANSMITTER UNDER TEST TRANSMITTER LOAD TEST RECEIVER AUDIO GENERATOR TEST RECEIVER AUDIO GENERATOR TEST RECEIVER AUDIO GENERATOR TEST RECEIVER TRANSMITTER UNDER TEST TRANSMITTER UNDER TEST TRANSMITTER UNDER TEST TEST RECEIVER TEST RECEIVER TEST RECEIVER TEST RECEIVER TEST RECEIVER TEST RECEIVER Figure 3—Equipment set-up audio frequency response (constant input)		
Test Procedure:	Modulation limiting test a) Connect the equipment as illustrated in Figure 1. b) Adjust the transmitter per the manufacturer's procedure for full rated system deviation. c) Set the test receiver to measure peak positive deviation. Set the audio bandwidth for ≤0.25 Hz to ≥15 000 Hz. Turn the de-emphasis function off. d) Apply a 1000 Hz modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain 60% of full rated system deviation. This is the 0 dB reference level. e) Increase the level from the audio generator by 20 dB in 5 dB increments recording the deviation as measured from the test receiver in each step. Verify that the audio level used to make the OBW measurement is included in the sweep. f) Repeat for step e) at 300 Hz, 2500 Hz and 3000 Hz at a minimum using the 0 dB reference level		

「CT通测检测 TESTING CENTRE TECHNOLOGY	Report No.: TCT240726E0
	obtained in step d).
	g) Set the test receiver to measure peak negative
	deviation and repeat step d) through step f).
	h) The values recorded in step f) and step g) are the
	modulation limiting.
'	i) Plot the data set as a percentage of deviation relative
	to the 0 dB reference point versus input
	voltage.
	Audio frequency response test
	a) Connect the equipment as illustrated in Figure 3.
	b) Set the test receiver to measure peak positive
	deviation. Set the audio bandwidth for ≤50 Hz to
	≥15 000 Hz. Turn the de-emphasis function off.
Karaman and American and Americ	c) Adjust the transmitter per the manufacturer's
	procedure for full rated system deviation.
	d) Apply a 1000 Hz tone and adjust the audio frequency
	generator to produce 20% of the rated system
	deviation.
	e) Set the test receiver to measure rms deviation and

5.4.2. Test Instruments

Test Result:

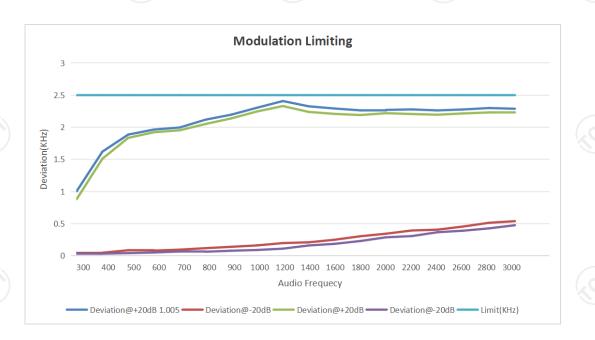
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Audio Analyzer	R&S	UPV	103866	Jun. 26, 2025
RF Communications Tester	HP	8920A	348A05658	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		

PASS

record the deviation reading as DEVREF.

frequency between 300 Hz and 3000 Hz.

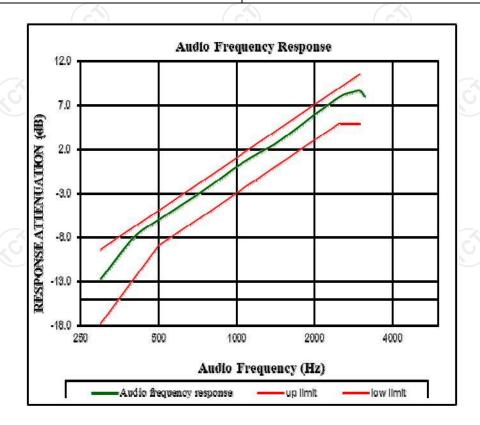
f) Set the audio frequency generator to the desired test



5.4.3. Test data

Modulation Limiting

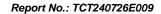
	Frequency: 462.6375 MHz					
Audio	Instantaneous		Steady	Steady-state		
Frequency (Hz)	Deviation@+20dB (KHz)	Deviation@-20dB (KHz)	Deviation@+20dB (KHz)	Deviation@-20dB (KHz)	Limit (KHz)	
300	1.005	0.044	0.882	0.032		
400	1.621	0.047	1.511	0.033		
500	1.886	0.086	1.835	0.041		
600	1.964	0.080	1.922	0.051		
700	1.996	0.095	1.953	0.066		
800	2.118	0.118	2.051	0.063		
900	2.196	0.139	2.138	0.078		
1000	2.304	0.161	2.246	0.090		
1200	2.408	0.197	2.330	0.110	0.5	
1400	2.326	0.209	2.239	0.160	2.5	
1600	2.292	0.249	2.208	0.185		
180	2.263	0.303	2.190	0.229		
2000	2.270	0.343	2.219	0.287		
2200	2.278	0.393	2.206	0.306		
2400	2.262	0.406	2.195	0.366		
2600	2.277	0.455	2.215	0.390		
2800	2.299	0.513	2.231	0.426		
3000	2.288	0.538	2.230	0.475		


Report No.: TCT240726E009

Audio Frequency Response

Frequency: 462.6375 MHz				
Audio Frequency (Hz)	Response Attenuation (dB)			
300	-12.81			
400	-8.18			
500	-6.10			
600	-4.55			
700	-3.28			
800	-2.09			
900	-1.00			
1000	-0.01			
1200	1.39			
1400	2.46			
1600	3.70			
1800	4.80			
2000	5.86			
2200	6.69			
2400	7.52			
2600	8.14			
2800	8.40			
3000	8.60			
3125	-12.81			

5.5. Emission Mask and Radiated Spurious Emission

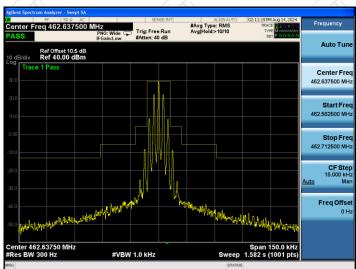

5.5.1. Test Specification

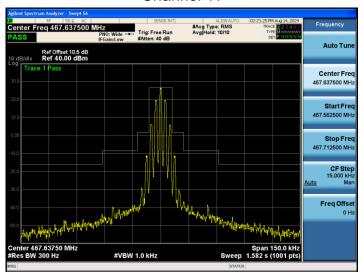
Test Requirement:	FCC part 95.579
Test Method:	ANSI C63.26-2015 Clause 5.5.3
Operation mode:	Refer to item 3.1
Limit:	 (a) Attenuation requirements. The power of unwanted emissions must be attenuated below the carrier power output in Watts (P) by at least: (1) 25 dB (decibels) in the frequency band 6.25 kHz to 12.5 kHz removed from the channel center frequency. (2) 35 dB in the frequency band 12.5 kHz to 31.25 kHz removed from the channel center frequency. (3) 43 + 10 log (P) dB in any frequency band removed from the channel center frequency by more than 31.25 kHz. (b) Measurement bandwidths. The power of unwanted emissions in the frequency bands specified in paragraphs (a)(1) and (2) of this section is measured with a reference bandwidth of 300 Hz. The power of unwanted emissions in the frequency range specified in paragraph (a)(3) is measured with a reference bandwidth of at least 30 kHz. (c) Measurement conditions. The requirements in this section apply to each FRS transmitter type both with and without the connection of permitted attachments, such as an external speaker, microphone and/or power cord.
Test setup:	For 30MHz~1GHz

13. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

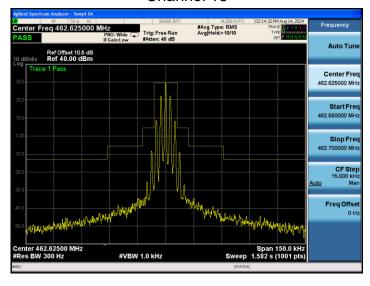
TE	STING CENTRE TECHNOLOG	Report No.: TCT240726E009 14. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts) = P(W) - [43 + 10log(P)] (dB) = [30 + 10log(P)] (dBm) - [43 + 10log(P)] (dB) = -13dBm.						
Test results	S:	PASS						
Remark:				ave been te in this test		only the wo	rst	

5.5.2. Test Instruments


Radiated Emission Test Site (966)							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025			
RF Communications Tester	HP	8920A	348A05658	Jun. 26, 2025			
Signal Generator	HP	N5173B	MY58108823	Jan. 31, 2025			
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025			
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025			
Broadband Antenna	Schwarzbeck	VULB9163	412	Jun. 28, 2025			
Horn Antenna	Schwarzbeck	BBHA 9120D	1201	Jun. 28, 2025			
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025			
Coaxial cable	SKET	RE-03-D	(0)	Jun. 26, 2025			
Coaxial cable	SKET	RE-03-M	/	Jun. 26, 2025			
Coaxial cable	SKET	RE-03-L	/	Jun. 26, 2025			
Coaxial cable	SKET	RE-04-D	/	Jun. 26, 2025			
Coaxial cable	SKET	RE-04-M		Jun. 26, 2025			
Coaxial cable	SKET	RE-04-L		Jun. 26, 2025			
Antenna Mast	Keleto	RE-AM	/				
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2				


5.5.3. Test Data

Emission Mask


Channel 4

Channel 11

Channel 18

Report No.: TCT240726E009

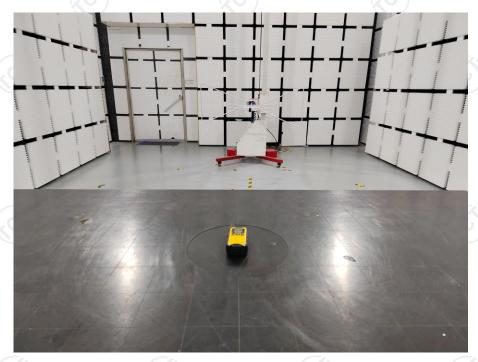
Radiated Spurious Emission

462.6375MHz							
		Spurious					
Frequency (MHz)	Polarization	Level (dBm)	Correction Factor (dB)	Spurious emissions (dBm)	Limit (dBm)	Result	
925.2750	Vertical	-32.53	15.62	-16.91	100		
1387.9125	V	-38.63	19.51	-19.12		PASS	
1850.5500	V	-46.15	22.36	-23.79	12.00		
925.2750	Horizontal	-30.68	14.92	-15.76	-13.00	PASS	
1387.9125	H	-36.71	20.33	-16.38			
1850.5500	Н	-43.22	23.41	-19.81			

467.6375MHz

	Spurious Emission					
Frequency (MHz)	Polarization	Level (dBm)	Correction Factor (dB)	Spurious emissions (dBm)	Limit (dBm)	Result
935.2750	Vertical	-35.77	15.71	-20.06		
1402.9125	V	-41.67	19.66	-22.01		
1870.5500	V	-49.53	22.52	-27.01	-13.00	PASS
935.2750	Horizontal	-33.28	15.23	-18.05	-13.00	PASS
1402.9125	Н	-39.67	20.53	-19.14		
1870.5500	Н	-47.09	23.61	-23.48		

462.6250MHz


	Spurious Emission					
Frequency (MHz)	Polarization	Level (dBm)	Correction Factor (dB)	Spurious emissions (dBm)	Limit (dBm)	Result
925.2500	Vertical	-33.71	15.61	-18.1		
1387.8750	V	-39.06	19.49	-19.57		
1850.5000	V	-47.69	22.33	-25.36	-13.00	PASS
925.2500	Horizontal	-32.11	14.88	-17.23	-13.00	PASS
1387.8750	Н	-39.04	20.31	-18.73		
1850.5000	H	-44.13	23.35	-20.78	(.c	

Note: The emission levels within 9KHz-30MHz are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

Appendix A: Photographs of Test Setup

Product: Walkie Talkie Model: K15 Radiated Emission

Appendix B: Photographs of EUT

Refer to the Appendix *****END OF REPORT*****