FCC TEST REPORT

FOR

KREAFUNK ApS

aSOUND, Bluetooth Stereo Speaker KFSC-(Color ref) 12,18,19

Test Model: PD-07

List Model No.: Please Refer to Page 06

Prepared for Address	:	KREAFUNK ApS Mindet 6D, 8000 Aarhus C, Denmark
Address	•	Mindet 6D, 8000 Aarrus C, Denmark
Prepared by	:	Shenzhen LCS Compliance Testing Laboratory Ltd.
Address	:	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,
		Bao'an District, Shenzhen, Guangdong, China
Tel	:	(+86)755-82591330
Fax	:	(+86)755-82591332
Web	:	www.LCS-cert.com
Mail	:	webmaster@LCS-cert.com
Date of receipt of test sample	:	March 20, 2017
Number of tested samples		1
Serial number	:	Prototype
Date of Test	:	March 20, 2017~March 28, 2017
Date of Report	:	March 28, 2017
	-	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 53

	FCC TEST REPORT			
FCC CFR 47 PART 15 C(15.247): 2015				
Report Reference No: :	LCS1703202441E			
Date of Issue:	March 28, 2017			
Testing Laboratory Name :	Shenzhen LCS Compliance Tes	ting Laboratory Ltd.		
Address :	Bao'an District, Shenzhen, Guang	dong, China		
Testing Location/ Procedure :	Full application of Harmonised sta Partial application of Harmonised Other standard testing method D	ndards ■ standards □		
Applicant's Name: :	KREAFUNK ApS			
Address:	Mindet 6D, 8000 Aarhus C, Denm	ark		
Test Specification				
Standard::	FCC CFR 47 PART 15 C(15.247):	2015		
Test Report Form No:	LCSEMC-1.0			
TRF Originator: :	Shenzhen LCS Compliance Testir	ng Laboratory Ltd.		
Master TRF:	Dated 2011-03			
Shenzhen LCS Compliance Testing	g Laboratory Ltd. All rights reserv	ved.		
This publication may be reproduced i Shenzhen LCS Compliance Testing I the material. Shenzhen LCS Complia assume liability for damages resulting its placement and context.	Laboratory Ltd. is acknowledged as ance Testing Laboratory Ltd. takes r	copyright owner and source of no responsibility for and will not		
Test Item Description::	aSOUND, Bluetooth Stereo Spe	aker KFSC-(Color ref) 12,18,19		
Trade Mark:	N/A			
Test Model :	-			
Ratings:	Switching Power Supply: INUT: A	C 100-240V, 50/60Hz, 1.2A DC 15V , 2A		
Result:	Positive			

Ada bing

Com m

Ada Liang/ File administrators

Glin Lu/ Technique principal

Gavin Liang/ Manager

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 53

FCC -- TEST REPORT

Test Report No. : LCS170	03202441E	March 28, 2017 Date of issue
r		
Test Model	: PD-07	
EUT	: aSOUND, Bluetooth St	ereo Speaker KFSC-(Color ref) 12,18,19
Applicant	: KREAFUNK ApS	
Address	: Mindet 6D, 8000 Aarhu	s C, Denmark
Telephone	: /	
Fax	: /	
Manufacturer	: Sound Crush Compar	•
Address	: Bldg 8,Xiang YuEr Ind. Gang,ShenZhen,China	Park,LongSheng Road, Long
Telephone	: /	
Fax	: /	
Factory	: Sound Crush Compar	-
Address	: Bldg 8,Xiang YuEr Ind. Gang,ShenZhen,China	Park,LongSheng Road, Long
Telephone	:/	
Fax	: /	

Test Result

Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By	
00	March 28, 2017	Initial Issue	Gavin Liang	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 53

TABLE OF CONTENTS

Description	Page
1. GENERAL INFORMATION	6
1.1 Description of Device (EUT)	6
1.2 Support equipment List	
1.3 External I/O Cable	
1.4 Description of Test Facility	
1.5 Statement of the Measurement Uncertainty	
1.6 Measurement Uncertainty	
1.7 Description of Test Modes	
2. TEST METHODOLOGY	
2.1 EUT Configuration	
2.2 EUT Exercise 2.3 General Test Procedures	
3. SYSTEM TEST CONFIGURATION	
3.1 Justification	
3.2 EUT Exercise Software	
3.3 Special Accessories 3.4 Block Diagram/Schematics	
3.5 Equipment Modifications	
3.6 Test Setup	
4. SUMMARY OF TEST RESULTS	
5. SUMMARY OF TEST EQUIPMENT	
6. MEASUREMENT RESULTS	
6.1 Peak Power	
6.2 Frequency Separation and 20 dB Bandwidth	
6.3 Number of Hopping Frequency	
6.4 Time of Occupancy (Dwell Time)	
6.5 Conducted Spurious Emissions and Band Edges Test	
6.6 Restricted Band Emission Limit	
6.7. AC Power line conducted emissions	
6.8. Band-edge measurements for radiated emissions	
6.9. Pseudorandom frequency hopping sequence	
6.10. Antenna requirement	
7. TEST SETUP PHOTOGRAPHS	
8. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 5 of 53

1. GENERAL INFORMATION

1.1 Description of Device (EUT)	
EUT	: aSOUND, Bluetooth Stereo Speaker KFSC-(Color ref) 12,18,19
Test Model	: PD-07
List Model No.	: PD-07, aSOUND KFSC-12, aSOUND KFSC-13, aSOUND KFSC-14, aSOUND KFSC-15, aSOUND KFSC-16, aSOUND KFSC-18, aSOUND KFSC-19
Model Declaration	: PCB board, structure and internal of these model(s) are the same, So no additional models were tested.
Power Supply	: DC 7.4V by battery(8800mAh) Charging voltage: 15.0V=, 2A Switching Power Supply: INUT: AC 100-240V, 50/60Hz, 1.2A Output: DC 15V=, 2A
Hardware version	: FW3817-64-V01
Software version	: FW3817-210_8M_Kreafunk_20160907_V0.13
Bluetooth Operation frequency	y: 2402MHz-2480MHz
Bluetooth Version	: V4.1
Bluetooth Channel Number	: 79 Channels for Bluetooth V3.0(DSS)
Bluetooth Modulation Type	: GFSK, π /4-DQPSK , 8-DPSK for Bluetooth V3.0(DSS)
Antenna Description	: Internal Antenna, 0.54dBi(Max.)

1.2 Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate
	Switching Power Supply	BI36-150200-I		CE

1.3 External I/O Cable

I/O Port Description	Quantity	Cable
DC PORT	1	N/A
AUX IN PORT	1	N/A
USB PORT	1	N/A

1.4 Description of Test Facility

CNAS Registration Number. is L4595. FCC Registration Number. is 899208. Industry Canada Registration Number. is 9642A-1. ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081. TUV RH Registration Number. is UA 50296516-001

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5 Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6 Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	3.10dB	(1)
		30MHz~200MHz	2.96dB	(1)
Radiation Uncertainty	:	200MHz~1000MHz	3.10dB	(1)
		1GHz~26.5GHz	3.80dB	(1)
		26.5GHz~40GHz	3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	1.63dB	(1)
Power disturbance	:	30MHz~300MHz	1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7 Description of Test Modes

Bluetooth operates in the unlicensed ISM Band at 2.4GHz. With basic data rate feature, the data rates can be up to 1 Mb/s by modulating the RF carrier using GFSK techniques. The EUT works in the X-axis, Y-axis, Z-axis. The following operating modes were applied for the related test items. All test modes were tested, only the result of the worst case was recorded in the report.

Mode of Operations	Frequency Range (MHz)	Data Rate (Mbps)			
	2402	1/2/3			
BT V 3.0	2441	1/2/3			
	2480	1/2/3			
F	For Conducted Emission				
Test Mode		TX Mode			
Test Mode		TX Mode			

Worst-case mode and channel used for 150 kHz-30 MHz power line conducted emissions was the mode and channel with the highest output power that was determined to be TX (1Mbps).

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be TX(1Mbps-Low Channel).

Pre-test AC conducted emission at both power adapter and charge from PC mode, recorded worst case.

Pre-test AC conducted emission at both voltage AC 120V/60Hz and AC 240V/50Hz, recorded worst case.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 7 of 53

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR PART 15C 15.207, 15.209, 15.247 and DA 00-705.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209, 15.247 under the FCC Rules Part 15 Subpart C.

2.3 General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a continuous transmits condition.

3.2 EUT Exercise Software

N/A.

3.3 Special Accessories

N/A.

3.4 Block Diagram/Schematics

Please refer to the related document.

3.5 Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

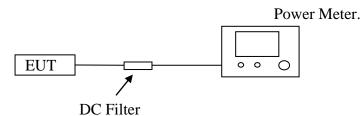
3.6 Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C						
FCC Rules	Result					
§15.247(b)(1)	Maximum Conducted Output Power	Compliant				
§15.247(c)	Frequency Separation And 20 dB Bandwidth	Compliant				
§15.247(a)(1)(ii)	Number Of Hopping Frequency	Compliant				
§15.247(a)(1)(iii)	Time Of Occupancy (Dwell Time)	Compliant				
§15.209, §15.205	Conducted Spurious Emissions and Band Edges Test	Compliant				
§15.209, §15.247(d)	Radiated and Conducted Spurious Emissions	Compliant				
§15.205	§15.205 Emissions at Restricted Band					
§15.207(a)	§15.207(a) Conducted Emissions					
§15.203	§15.203 Antenna Requirements					
§15.247(i)§2.1093	§15.247(i)§2.1093 RF Exposure					

5. SUMMARY OF TEST EQUIPMENT


Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1	Power Sensor	R&S	NRV-Z51	100458	2016-06-18	2017-06-17
2	Power Sensor	R&S	NRV-Z32	10057	2016-06-18	2017-06-17
3	Power Meter	R&S	NRVS	100444	2016-06-18	2017-06-17
4	DC Filter	MPE	23872C	N/A	2016-06-18	2017-06-17
5	RF Cable	Harbour Industries	1452	N/A	2016-06-18	2017-06-17
6	SMA Connector	Harbour Industries	9625	N/A	2016-06-18	2017-06-17
7	Spectrum Analyzer	Agilent	N9020A	MY50510140	2016-10-27	2017-10-26
8	Signal analyzer	Agilent	E4448A(Exter nal mixers to 40GHz)	US44300469	2016-06-16	2017-06-15
9	RF Cable	Hubersuhne	Sucoflex104	FP2RX2	2016-06-18	2017-06-17
10	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2016-06-18	2017-06-17
11	Amplifier	SCHAFFNER	COA9231A	18667	2016-06-18	2017-06-17
12	Amplifier	Agilent	8449B	3008A02120	2016-06-16	2017-06-15
13	Amplifier	MITEQ	AMF-6F-2604 00	9121372	2016-06-16	2017-06-15
14	Loop Antenna	R&S	HFH2-Z2	860004/001	2016-06-18	2017-06-17
15	By-log Antenna	SCHWARZBEC K	VULB9163	9163-470	2016-06-10	2017-06-09
16	Horn Antenna	EMCO	3115	6741	2016-06-10	2017-06-09
17	Horn Antenna	SCHWARZBEC K	BBHA9170	BBHA9170154	2016-06-10	2017-06-09
18	RF Cable-R03m	Jye Bao	RG142	CB021	2016-06-18	2017-06-17
19	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2016-06-18	2017-06-17
20	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	101142	2016-06-18	2017-06-17
21	Artificial Mains	ROHDE & SCHWARZ	ENV216	101288	2016-06-18	2017-06-17
22	EMI Test Software	AUDIX	E3	N/A	2016-06-18	2017-06-17

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 11 of 53

6. MEASUREMENT RESULTS

6.1 Peak Power

6.1.1 Block Diagram of Test Setup

6.1.2 Limit

According to §15.247(b)(1), For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

6.1.3 Test Procedure

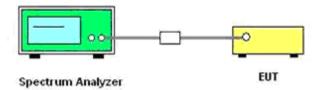
The transmitter output is connected to the Power Meter.

6.1.4 Test Results

Temperature	25.1 ℃	Humidity	48.8%
Test Engineer	Jayden Zhuo	Configurations	BT

Test Mode	Channel	Frequency (MHz)	Measured Maximum Peak Power (dBm)	Limits (dBm)	Verdict
	0	2402	-5.337		
GFSK	39	2441	-5.377	21	PASS
	78	2480	-6.120		
	0	2402	-6.885		
π/4-DQPSK	39	2441	-6.296	21	PASS
	78	2480	-8.141		
	0	2402	-5.740		
8-DPSK	39	2441	-7.539	21	PASS
	78	2480	-6.558		

Remark:


- 1. Test results including cable loss;
- 2. please refer to following plots;
- 3. Measured output power at difference Packet Type for each mode and recorded worst case for each mode.

6.2 Frequency Separation and 20 dB Bandwidth

6.2.1 Limit

According to §15.247(a) (1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

6.2.2 Block Diagram of Test Setup

6.2.3 Test Procedure

Frequency separation test procedure :

1). Place the EUT on the table and set it in transmitting mode.

2). Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.

3). Set center frequency of Spectrum Analyzer = middle of hopping channel.

4). Set the Spectrum Analyzer as RBW = 100 kHz, VBW = 300 kHz, Span = wide enough to capture the peaks of two adjacent channels, Sweep = auto.

5). Max hold, mark 2 peaks of hopping channel and record the 2 peaks frequency.

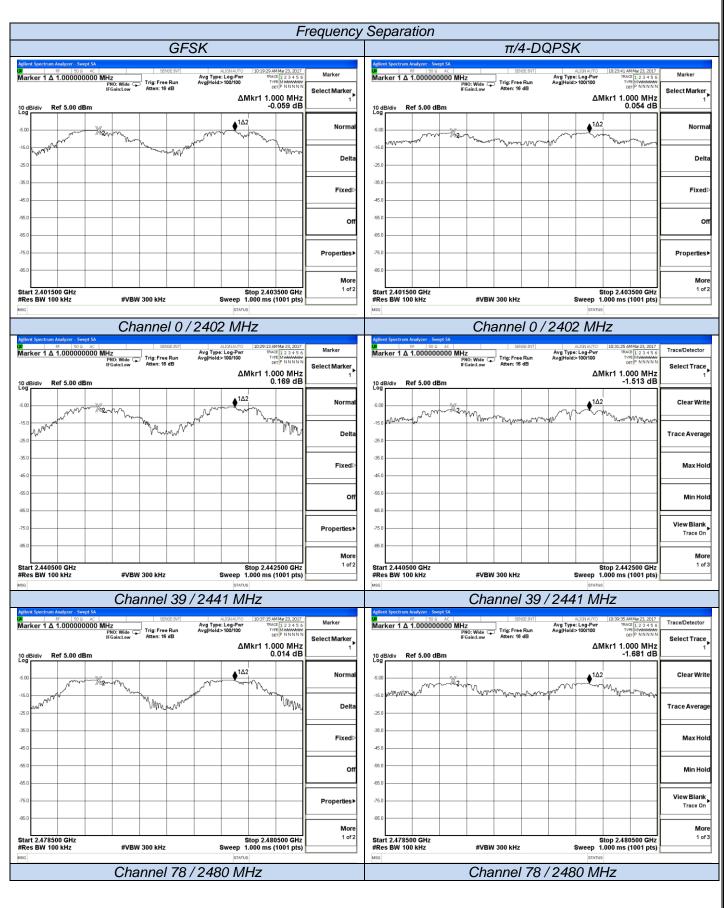
20dB bandwidth test procedure :

1). Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel.

2). RBW ≥1% of the 20 dB bandwidth, VBW ≥RBW.

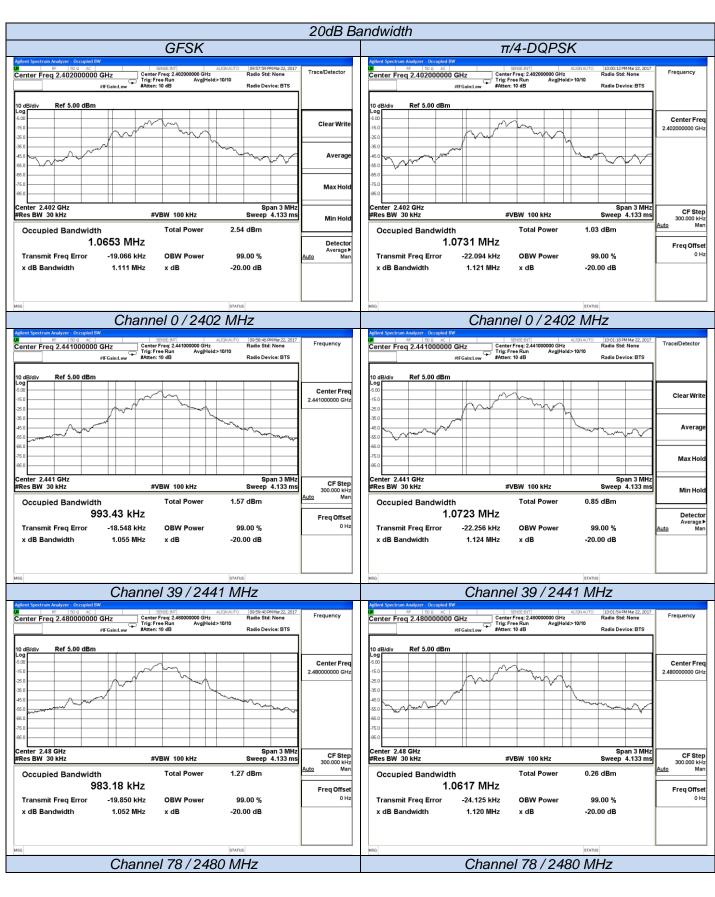
- 3). Detector function = peak.
- 4). Trace = max hold.

6.2.4 Test Results


Temperature	25.1 ℃	Humidity	48.8%
Test Engineer	Jayden Zhuo	Configurations	BT

Т	The Measurement Result With 1Mbps For GFSK Modulation							
Channel	20dB Bandwidth (KHz)	Channel Separation (MHz)	Limit (KHz)	Result				
Low	1111.00		740.67	Pass				
Middle	1055.00	1.000	703.33	Pass				
High	1052.00		701.33	Pass				
The Measurement Result With 2Mbps For π /4-DQPSK Modulation								
Channel	20dB Bandwidth (KHz)	Channel Separation (MHz)	Limit (KHz)	Result				
Low	1121.00		747.33	Pass				
Middle	1124.00	1.000	749.33	Pass				
High	1120.00		746.67	Pass				
Th	e Measurement Res	ult With 3Mbps For 8	-DPSK Modulation	า				
Channel	20dB Bandwidth (KHz)	Channel Separation (MHz)	Limit (KHz)	Result				
Low	1211.00		807.33	Pass				
Middle	1201.00	1.000	800.67	Pass				
High	1202.00		801.33	Pass				

Remark:

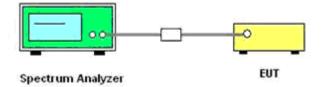

1. Test results including cable loss;

please refer to following plots;
 Measured at difference Packet Type for each mode and recorded worst case for each mode.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 15 of 53

		F	requency	/ Separation			
			8-E	DPSK			
Aglend Spectrum Analyzer - Swept 5A ■ 57 50 a AC Marker 1 Δ 1.000000000 f 10 dB/div Ref 5.00 dBm	MHz PHO: Wide IFGain:Low Atten: 16 dB	ALUN AUTO 102500 AM M#23,007 Avg Type: Leg-Pwr Avg Hold>100/100 ΔMkr1 1.000 MHz 0.082 dB	Select Marker	Aglent Spectrum Analyzer Sw Cal № 50 Ω Marker 1 Δ 1.000000 10 dB/div Ref 5.00 dl	AC SENSE INT DODO MHZ PNO: Wide IFGain:Low Atten: 16 dB	AUSHANTO 10.33.03 AMM/23, 2017 Avg Type: Log-Pwr TRAC[12.3 + 6 Avg]Hold>100/100 Tree[Hvmww ceriP NINNH AMkr1 1.000 MHz -1.627 dB	Trace/Detector
500	2 harrow harrow and		Normal	-5.00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Clear Write
-15.0 10 -25.0	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Delta	-15.0			Trace Average
-45.0			Fixed⊳	-35.0			Max Hold
-55.0			off	-55.0			Min Hold
-75.0			Properties►	-75.0			View Blank Trace On
Start 2.401500 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 2.403500 GHz Sweep 1.000 ms (1001 pts)	More 1 of 2	Start 2.440500 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 2.442500 GHz Sweep 1.000 ms (1001 pts)	More 1 of 3
MSG	Channel 0 /	status / 2402 MHz		MSG	Channel 3	9/2441 MHz	
Aglent Spectrum Analyze - Swept SA	SENSE:INT	ALISHAUTO 10:4057/AMM#23_0017 Avg Type: Log-Pwr TRACE 12:2:4:5:8 Avg[Hold>100/100 Tree[Nimmwr ΔMkr1 1.000 MHz -1.640 dB -1.640 dB					
5.00	En la	MWWWW 142	Clear Write				
-15.0	hhd Vynhrewrad		Trace Average				
-45.0			Max Hold				
-55.0			Min Hold				
-75.0			View Blank Trace On				
Start 2.478500 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 2.480500 GHz Sweep 1.000 ms (1001 pts)					
MSG	Channel 78	status / 2480 MHz					

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 17 of 53


Tes	t Plot of	Test Result
	8-DF	PSK
Adlent Spectrim Analyze - Occupied BW RF 500 cc SSEEBITI ALISTANTO 100e442 PMMar 22, 2017 Center Freq 2.402000000 GHz Center Freq: 2.402000000 GHz Center Freq: 2.402000000 GHz Radio Std: None ///FGaincl.ow rifg: Free Run Avg Heid>10/10 Radio Device: BTS	Trace/Detector	Adjent Spectrum Analyzer Occupied BW SEXEE.NT ALISMALTO 1008359 PM Mrz 22, 2017 O PF S00 AC SEXEE.NT ALISMALTO 1008359 PM Mrz 22, 2017 Center Freq 2.441000000 GHz Center Freq: 2.44100000 GHz Trace/Detector Trace/Detector #//FGaint.ew #Atten: 10 dB Radio Device: BTS Radio Device: BTS
10 dB/dv Ref 5.00 dBm	ClearWrite	
	Average	Average 450 650 650
75 0	Max Hold	
Center 2.402 GHz Span 3 MHz #Res BW 30 kHz #VBW 100 kHz Sweep 4.133 ms	Min Hold	#Res BW 30 kHz #VBW 100 kHz Sweep 4.133 ms Min Hold
Occupied Bandwidth Total Power 1.17 dBm 1.1571 MHz Transmit Freq Error -11.485 kHz OBW Power 99.00 % x dB Bandwidth 1.211 MHz x dB -20.00 dB	Detector Average <u>Auto</u> Mar	Transmit Freq Error -6.856 kHz OBW Power 99.00 % Auto Mar x dB Bandwidth 1.201 MHz x dB -20.00 dB
MSG STATUS		
Channel 0 / 2402 MHz Aglient Spectrum Analyzer - Occupied BW		Channel 39 / 2441 MHz
BI RF 590.2 SENERATI ALBENTO ID0237PMMe22.2017 Center Freq 2.480000000 GHz Center Freq 2.4800000.00 GHz Radio Std: None Radio Std: None #//FGaind.ow #//FGaind.ow #Atten: 10 dB Radio Device: BTS 10 dB/div Ref 5.00 dBm Ref 5.00 dBm	Trace/Detector	
	ClearWrite	
	Average	
Center 2.48 GHz Span 3 MHz	Max Hold	
#Res BW 30 kHz #VBW 100 kHz Sweep 4.133 ms	Min Hold	1
Occupied Bandwidth Total Power 0.19 dBm 1.1416 MHz Transmit Freq Error -7.085 kHz OBW Power 99.00 % x dB Bandwidth 1.202 MHz x dB -20.00 dB	Detector Average <u>Auto</u> Man	•
Channel 78 / 2480 MHz		

6.3 Number of Hopping Frequency

6.3.1 Limit

According to §15.247(a)(1)(ii) or A8.1 (d), Frequency hopping systems operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels.

6.3.2 Block Diagram of Test Setup

6.3.3 Test Procedure

1). Place the EUT on the table and set it in transmitting mode.

2). Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.

3). Set Spectrum Analyzer Start=2400MHz, Stop = 2483.5MHz, Sweep = auto.

4). Set the Spectrum Analyzer as RBW, VBW=1MHz.

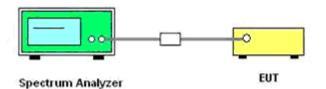
5). Max hold, view and count how many channel in the band.

6.3.4 Test Results

Temperature	25.1 ℃	Humidity	48.8%
Test Engineer	Jayden Zhuo	Configurations	BT

The Measurement Result With The Worst Case of 1Mbps For GFSK Modulation				
Total No. of	Measurement Result (No. of Ch)	Limit (MHz)	Result	
Hopping Channel	79	≥15	Pass	

Note: The test data refer to the following page.


	Nu	umber Of Hop	ping Frequenc	У	
Agilent Spectrum Analyz	zer - Swept SA				
Marker 1 Δ 78.0	50 Ω AC DOOOOOOOO MHz PNO: Fast C	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr Avg Hold:>100/100	10:13:05 PM Mar 22, 2017 TRACE 1 2 3 4 5 6 TYPE M WWWWW	Marker
	IFGain:Low	Atten: 16 dB		TYPE M WAWAWAW DET P N N N N N	Select Marker
	.00 dBm		ΔMk	r1 78.000 0 MHz -0.762 dB	1
Log					
-5.00	250.00000000000000000000000000000000000			<u>↓</u> ∆2	Norma
/~2·····	www.www.www.www.ww	**************************************			
-15.0					
-25.0					Delta
-25.0					
-35.0					
					Fixed▷
-45.0					
				1	
-55.0					Off
-65.0					
-75.0					Properties▶
-85.0					
					More
Start 2.40000 GH #Res BW 1.0 MH		W 1.0 MHz	Sweep	Stop 2.48350 GHz 1.000 ms (1001 pts)	1 of 2

6.4 Time of Occupancy (Dwell Time)

6.4.1 Limit

According to \$15.247(a)(1)(iii) or A8.1 (d), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

6.4.2 Block Diagram of Test Setup

6.4.3 Test Procedure

1). Place the EUT on the table and set it in transmitting mode.

2). Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.

3). Set center frequency of Spectrum Analyzer = operating frequency.

4). Set the Spectrum Analyzer as RBW, VBW=1MHz, Span = 0Hz, Sweep = auto.

5). Repeat above procedures until all frequency measured was complete.

6.4.4 Test Results

The Dwell Time=Burst Width*Total Hops. The detailed calculations are showed as follows:

The duration for dwell time calculation: 0.4[s]*hopping number=0.4[s]*79[ch]=31.6[s*ch];

The burst width [ms/hop/ch], which is directly measured, refers to the duration on one channel hop.

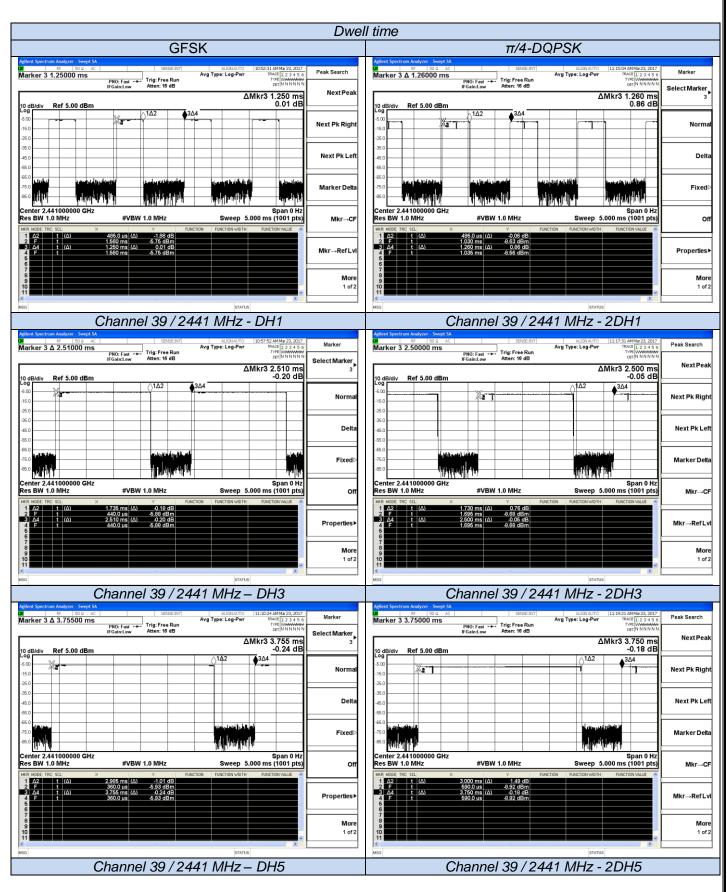
The hops per second for all channels: The selected EUT Conf uses a slot type of 5-Tx&1-Rx and a hopping rate of 1600 [ch*hop/s] for all channels. So the final hopping rate for all channels is 1600/6=266.67 [ch*hop/s]

The hops per second on one channel: 266.67 [ch*hops/s]/79 [ch]=3.38 [hop/s];

The total hops for all channels within the dwell time calculation duration: 3.38 [hop/s]*31.6[s*ch]=106.67 [hop*ch];

The dwell time for all channels hopping: 106.67 [hop*ch]*Burst Width [ms/hop/ch].

Temperature	25.1 ℃	Humidity	48.8%
Test Engineer	Jayden Zhuo	Configurations	ВТ


Mode	Frequency (MHz)	Burst Type	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Verdict
		DH1	0.485	0.1552		
GFSK	2441	DH3	1.735	0.2776	0.4	PASS
		DH5	2.985	0.3184		
		2DH1	0.495	0.1584		
π/4-DQPSK	2441	2DH3	1.730	0.2768	0.4	PASS
		2DH5	3.000	0.3200		
		3DH1	0.490	0.1568		
8-DPSK	2441	3DH3	1.725	0.2760	0.4	PASS
		3DH5	2.995	0.3195		

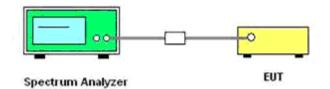
Remark:

1. Test results including cable loss;

2. please refer to following plots;

- 3. Measured at difference Packet Type for each mode and recorded woest case for each mode.
- 4. Dwell Time Calculate formula: DH1: Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second DH3: Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second DH5: Dwell time=Pulse Time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second
- 5. Measured at low, middle and high channel, recorded worst at middle channel;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 23 of 53


	Dwe	ll time	
	8-D	PSK	
Aglent Spectrum Analyzer - Swept SA # SS0 = AC IIIIII SS0 = AC IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Peak Search Next Peak	Aglent Spectrum Audyzer, Swegt SA Sense: Sens	Peak Search Next Peak
10 dB/div Ref 5.00 dBm 0.01 dB	Next Pk Right	10 dB/div Ref 5.00 dBm -0.07 dB -500	Next Pk Right
-350 -450 -460	Next Pk Left		Next Pk Left
	Marker Delta		Marker Delta
Center 2.441000000 GHz Span 0 Hz Res BW 1.0 MHz #VBW 1.0 MHz Sweep 5.000 ms (1001 pts) MRR MODE TRC SCL X Y Function Function visition 1 A/2 1 (A) 0 pt dBL Punction visition Function visition	Mkr→CF	Center 2.441000000 GHz Res BW 1.0 MHz #VBW 1.0 MHz Sweep 5.000 ms (1001 pts) HWT MOG The Su	Mkr→CF
1 Δ2 t (Δ) 4900 us (Δ) 0.01 dB 2 F t 550 us -777 dBm 3 Δ4 t (Δ) 1280 ms (Δ) 0.01 dB 4 F t 530 us -777 dBm 5 t 535.0 us -7.77 dBm 6 F t 535.0 us -7.77 dBm	Mkr→RefLvl	1 Δ2 t 17.28 ms (Δ) 1.12.48 2 F t 1.455 ms -8.63 dBm 3 Δ4 t t(Δ) 2.500 ms (Δ) -0.07 dB 4 F t 1.455 ms -8.63 dBm - 6 F t 1.455 ms -9.63 dBm -	Mkr→RefLvl
	More 1 of 2		More 1 of 2
Channel 39 / 2441 MHz - 3DH1		2 Channel 39 / 2441 MHz - 3DH3	
Aglent Spectrum Analyzer - Swept SA. III.2427 MM Mr 23, 2017 III.2427 MM Mr 23, 2017 Warker 3 3.76000 ms PHO: Feat →→ IF GainLow Trig: Free Run Atten: 16 dB Avg Type: Log-Pwr Trig: Stree Run Atten: 16 dB III.2427 MM Mr 23, 2017	Peak Search Next Peak		
1.06 dB/div Ref 5.00 dBm 1.06 dB 5.00 1.50 μ/μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ	Next Pk Right		
-350 -450 -450	Next Pk Left		
	Marker Delta		
Center 2.441000000 GHz Span 0 Hz Span 0 Hz Res BW 1.0 MHz #VBW 1.0 MHz Sweep 5.000 ms (1001 pts) Max Mod TMC SEC X Y Function Function value	Mkr→CF		
1 Δ2 t (Δ) 2996 ms (Δ) 0.35 dB 2 F t 1010 ms 8.75 dBm 3 Δ4 t (Δ) 3.760 ms (Δ) 1.06 dB 4 F t 1.010 ms 8.75 dBm 6 F t 3.75 dBm	Mkr→RefLvl		
	More 1 of 2		
Channel 39 / 2441 MHz – 3DH5			

6.5 Conducted Spurious Emissions and Band Edges Test

6.5.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

6.5.2 Block Diagram of Test Setup

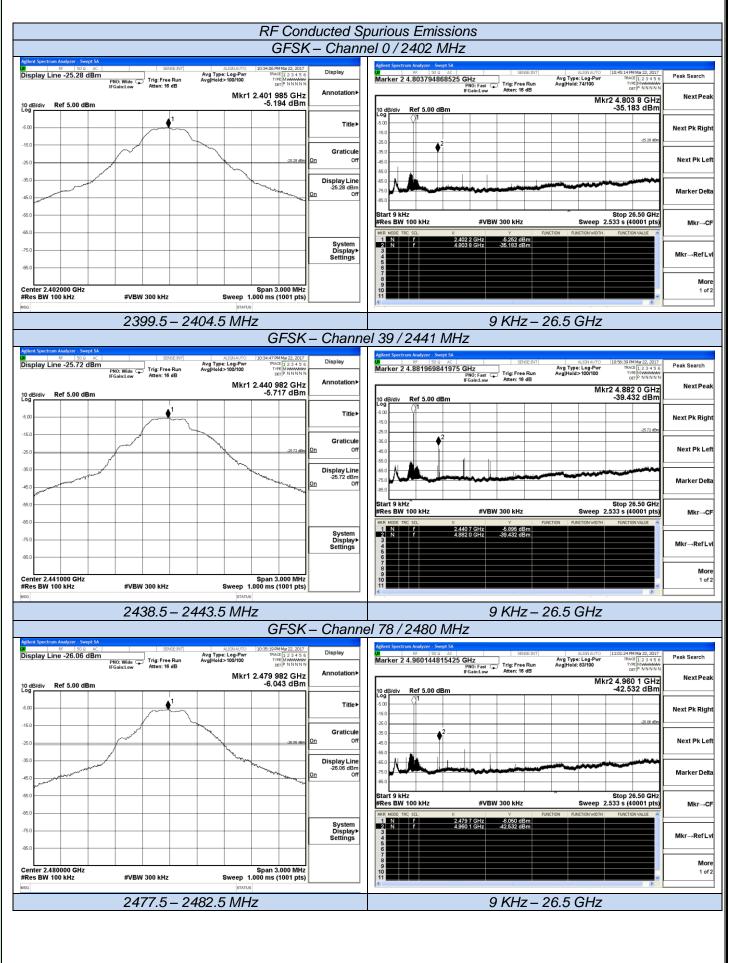
6.5.3 Test Procedure

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

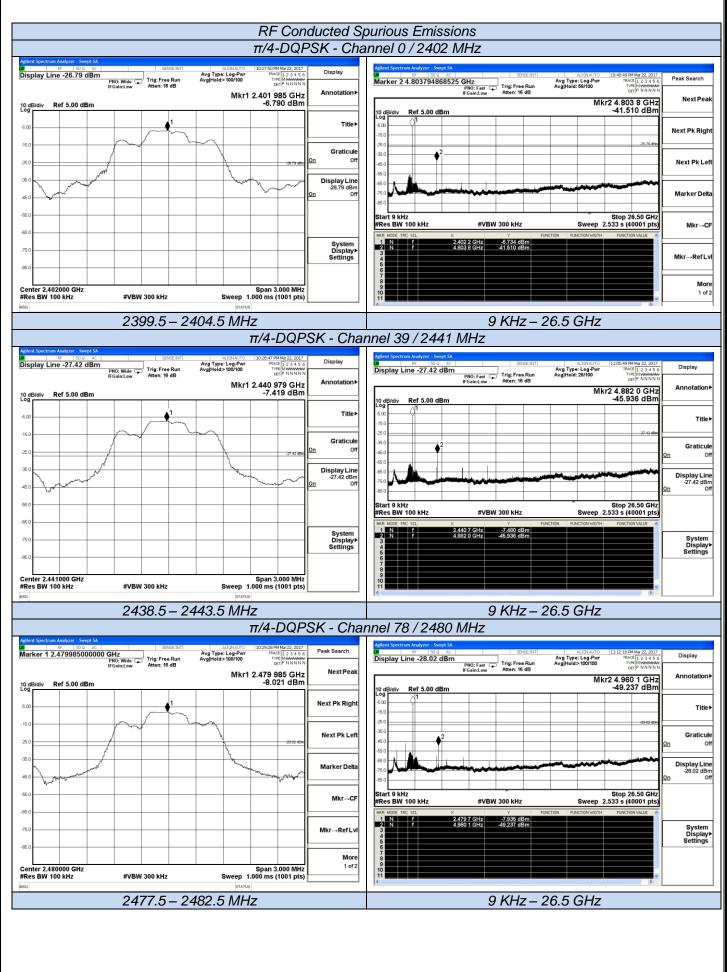
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 KHz. The video bandwidth is set to 300 KHz.

Measurements are made over the 9 kHz to 26.5GHz range with the transmitter set to the lowest, middle, and highest channels

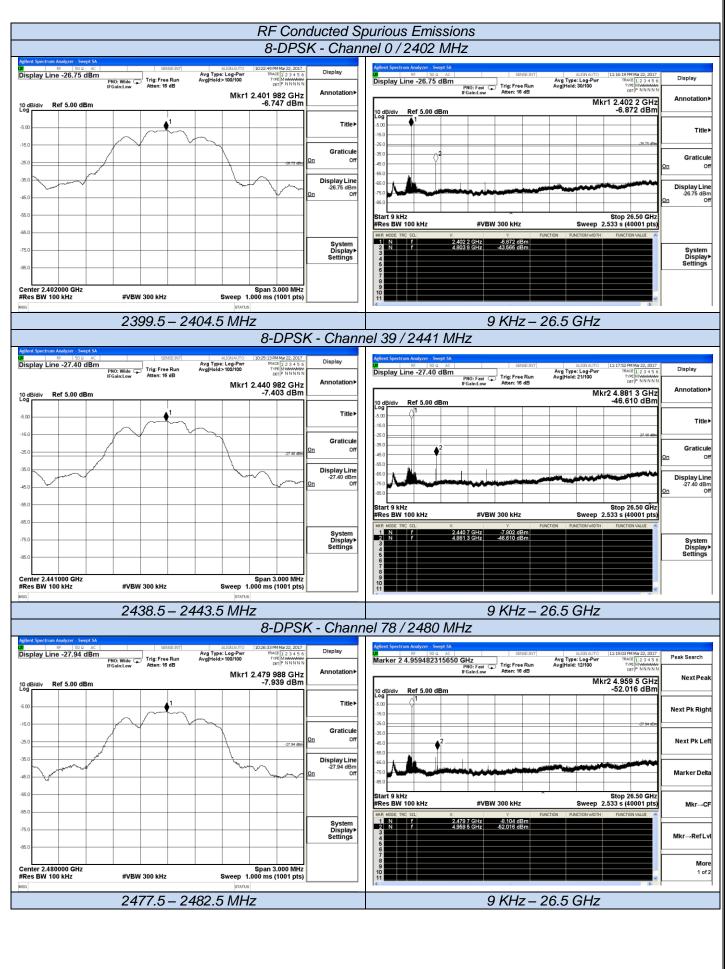
6.5.4 Test Results of Conducted Spurious Emissions

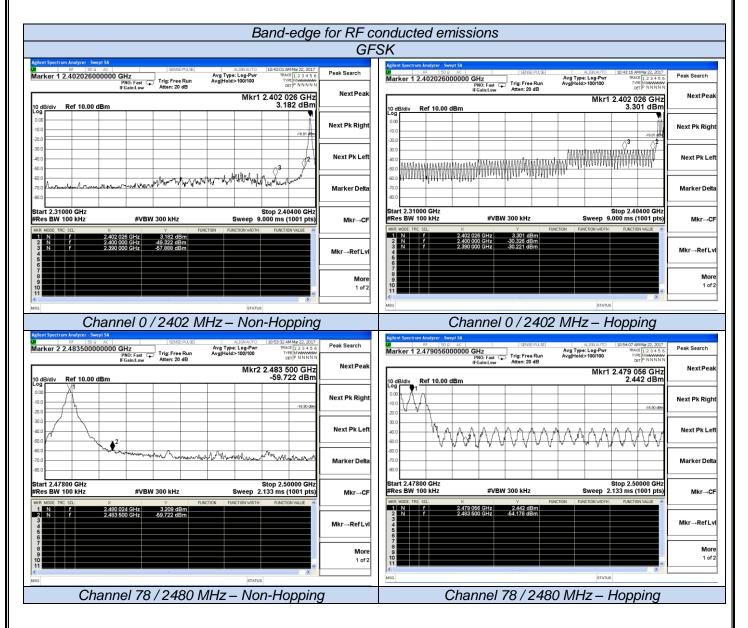

No non-compliance noted. Only record the worst test result in this report. The test data refer to the following page.

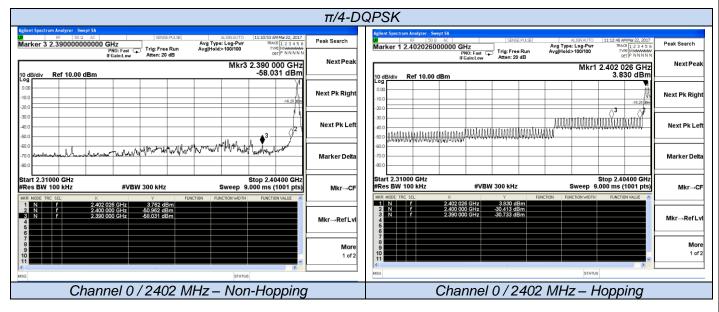
Temperature	25.1 ℃	Humidity	48.8%
Test Engineer	Jayden Zhuo	Configurations	BT


Test Mode	Channel	Frequency (MHz)	Spurious RF Conducted Emission (dBc)	Limits (dBc)	Verdict
	0	2402	<-20		
GFSK	39	2441	<-20	-20	PASS
	78	2480	<-20		
	0	2402	<-20	-20 PA	
π/4-DQPSK	39	2441	<-20		PASS
	78	2480	<-20		
	0	2402	<-20		
8-DPSK	39	2441	<-20	-20	PASS
	78	2480	<-20		

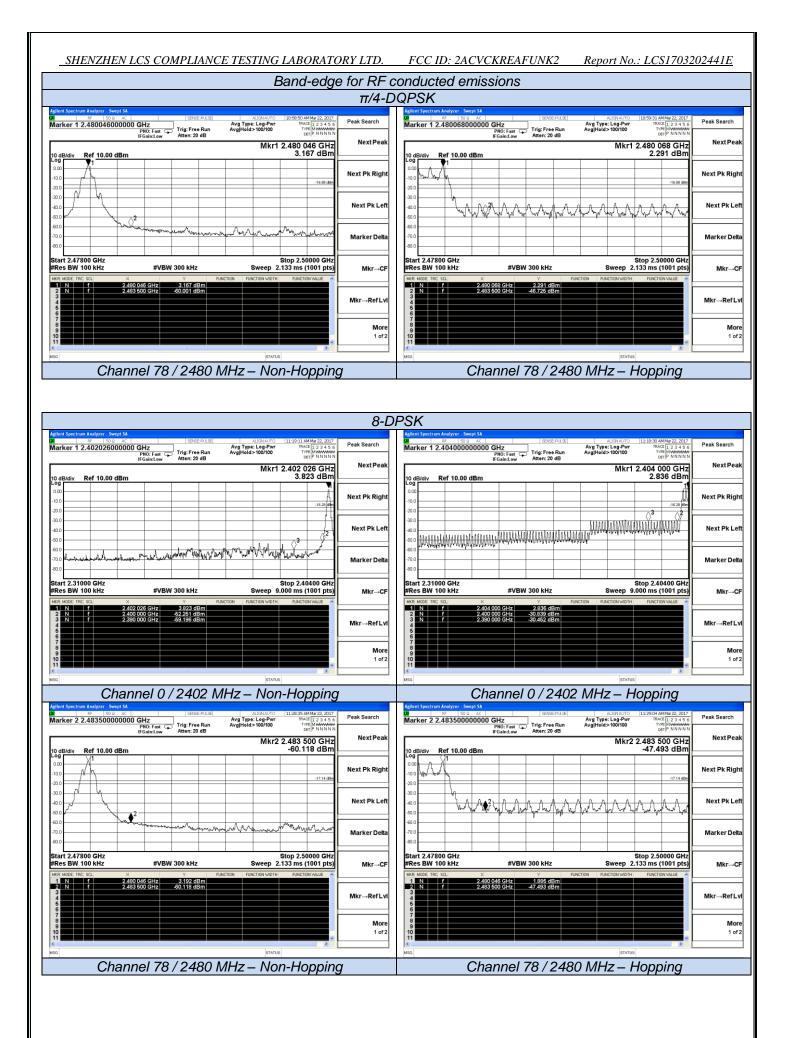
Remark:


Test results including cable loss;
 please refer to following plots;
 Measured at difference Packet Type for each mode and recorded worst case for each mode.


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 27 of 53



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 28 of 53



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 29 of 53

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 30 of 53

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 31 of 53

6.6 Restricted Band Emission Limit

6.6.1. Standard Applicable

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz		MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(\2\)	
13.36-13.41				

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

\2\ Above 38.6

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measuremen t Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

6.6.2. Measuring Instruments and Setting

Please refer to section 6 of equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 32 of 53

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

6.6.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna height is 0.8 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position $(\pm 45^\circ)$ and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

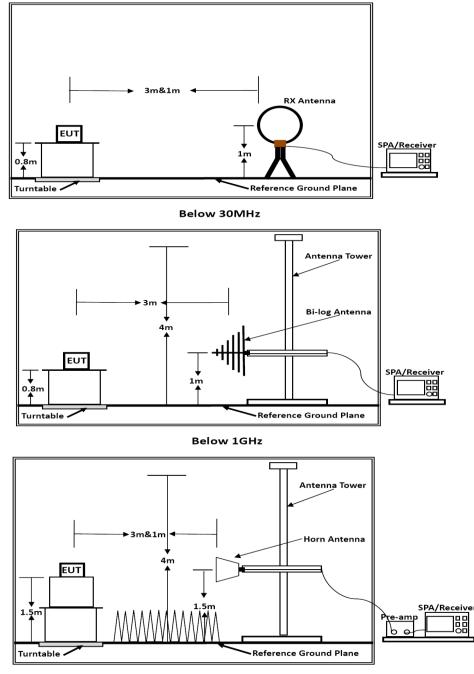
4) Sequence of testing above 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Premeasurement:


--- The antenna is moved spherical over the EUT in different polarizations of the antenna.

Final measurement:

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

6.6.4. Test Setup Layout

Above 1GHz

Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = 20 log (specific distanc [3m] / test distance [1.5m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 37 of 53

6.6.5. EUT Operation during Test

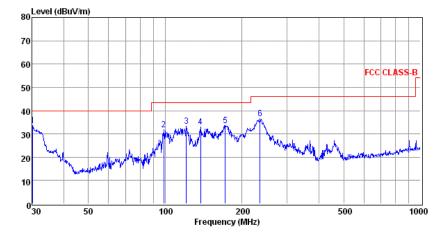
The EUT was programmed to be in continuously transmitting mode.

6.6.6. Results of Radiated Emissions (9 kHz~30MHz)

Temperature	23.8	°C	H	umidity		54%
Test Engineer	Jayden	Zhuo	Zhuo Configurations			BT
Freq. (MHz)	Level (dBuV)		Limit B)	Over Limit (dBuV)		Remark
-	-		-	-		See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor.

PASS.

Only record the worst test result in this report.

The test data please refer to following page.

Below 1GHz (Low Channel)

pol: HORIZONTAL

Freq Reading CabLos Antfac Measured Limit Over Remark

	MHz	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	30.21	20.83	0.39	12.33	33.55	40.00	-6.45	QP
2	98.49	18.23	0.61	13.06	31.90	43.50	-11.60	QP
3	121.12	22.41	0.70	10.31	33.42	43.50	-10.08	QP
4	137.42	23.83	0.70	8.38	32.91	43.50	-10.59	QP
5	171.99	23.73	0.91	9.11	33.75	43.50	-9.75	QP
6	234.99	23.82	0.87	11.87	36.56	46.00	-9.44	QP

Note: 1. All readings are Quasi-peak values.

2. Measured= Reading + Antenna Factor + Cable Loss

3. The emission that ate 20db blow the offficial limit are not reported

80 Level (dBuV/m) 70 60 FCC CLASS-B 50 40 В 30 20 10 0<mark>1-</mark> 30 50 100 200 500 1000 Frequency (MHz)

pol:

1

2

_ _

Freq Reading CabLos Antfac Measured Limit Over Remark dBuV dB/m dBuV/m MHz dB dBuV/m dВ 0.39 12.32 30.85 21.11 33.82 40.00 -6.18 QP 70.34 19.39 0.55 8.59 28.53 40.00 -11.47QP

3 119.44 23.52 0.64 10.58 34.74 43.50 -8.76 OP 4 140.84 26.60 0.758.20 35.55 43.50 -7.95 QP 43.50 5 154.82 26.07 0.76 8.46 35.29 -8.21 QP 6 171.99 24.23 0.91 9.11 34.25 43.50 -9.25 QP

Note: 1. All readings are Quasi-peak values.

2. Measured= Reading + Antenna Factor + Cable Loss

VERTICAL

3. The emission that ate 20db blow the offficial limit are not reported

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 39 of 53

Above 1GHz

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4804.00	55.26	33.30	36.44	7.68	59.80	74.00	-14.20	Peak	Horizontal
4804.00	40.03	33.30	36.44	7.68	44.57	54.00	-9.43	Average	Horizontal
12010.00	52.87	36.52	35.37	10.22	64.24	74.00	-9.76	Peak	Horizontal
12010.00	35.30	36.52	35.37	10.22	46.67	54.00	-7.33	Average	Horizontal
4804.00	59.10	33.48	36.44	7.68	63.82	74.00	-10.18	Peak	Vertical
4804.00	41.81	33.48	36.44	7.68	46.53	54.00	-7.47	Average	Vertical
12010.00	55.17	36.36	35.37	10.22	66.38	74.00	-7.62	Peak	Vertical
12010.00	49.61	36.36	35.37	10.22	60.82	54.00	6.82	Average	Vertical

The worst test result for GFSK, Channel 0 / 2402 MHz

The worst test result for π /4-DQPSK, Channel 0 / 2402 MHz

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4804.00	55.09	33.30	36.44	7.68	59.63	74.00	-14.37	Peak	Horizontal
4804.00	39.72	33.30	36.44	7.68	44.26	54.00	-9.74	Average	Horizontal
12010.00	52.89	36.52	35.37	10.22	64.26	74.00	-9.74	Peak	Horizontal
12010.00	34.72	36.52	35.37	10.22	46.09	54.00	-7.91	Average	Horizontal
4804.00	58.99	33.48	36.44	7.68	63.71	74.00	-10.29	Peak	Vertical
4804.00	42.03	33.48	36.44	7.68	46.75	54.00	-7.25	Average	Vertical
12010.00	55.37	36.36	35.37	10.22	66.58	74.00	-7.42	Peak	Vertical
12010.00	50.23	36.36	35.37	10.22	61.44	54.00	7.44	Average	Vertical

The worst test result for 8DPSK, Channel 0 / 2402 MHz

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4804.00	55.20	33.30	36.44	7.68	59.74	74.00	-14.26	Peak	Horizontal
4804.00	40.02	33.30	36.44	7.68	44.56	54.00	-9.44	Average	Horizontal
12010.00	53.22	36.52	35.37	10.22	64.59	74.00	-9.41	Peak	Horizontal
12010.00	35.06	36.52	35.37	10.22	46.43	54.00	-7.57	Average	Horizontal
4804.00	58.90	33.48	36.44	7.68	63.62	74.00	-10.38	Peak	Vertical
4804.00	41.98	33.48	36.44	7.68	46.70	54.00	-7.30	Average	Vertical
12010.00	55.37	36.36	35.37	10.22	66.58	74.00	-7.42	Peak	Vertical
12010.00	50.31	36.36	35.37	10.22	61.52	54.00	7.52	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 40 of 53

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4882.00	55.29	33.30	36.44	7.68	59.83	74.00	-14.17	Peak	Horizontal
4882.00	44.39	33.30	36.44	7.68	48.93	54.00	-5.07	Average	Horizontal
12205.00	53.32	36.52	35.37	10.22	64.69	74.00	-9.31	Peak	Horizontal
12205.00	35.19	36.52	35.37	10.22	46.56	54.00	-7.44	Average	Horizontal
4882.00	58.62	33.31	36.44	7.68	63.17	74.00	-10.83	Peak	Vertical
4882.00	42.05	33.31	36.44	7.68	46.60	54.00	-7.40	Average	Vertical
12205.00	55.24	36.63	35.37	10.22	66.72	74.00	-7.28	Peak	Vertical
12205.00	50.03	36.63	35.37	10.22	61.51	54.00	7.51	Average	Vertical

The worst test result for $\pi/4$ -DQPSK, Channel 39 / 2441 MHz

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4882.00	55.23	33.30	36.44	7.68	59.77	74.00	-14.23	Peak	Horizontal
4882.00	43.85	33.30	36.44	7.68	48.39	54.00	-5.61	Average	Horizontal
12205.00	53.01	36.52	35.37	10.22	64.38	74.00	-9.62	Peak	Horizontal
12205.00	35.00	36.52	35.37	10.22	46.37	54.00	-7.63	Average	Horizontal
4882.00	59.18	33.31	36.44	7.68	63.73	74.00	-10.27	Peak	Vertical
4882.00	42.04	33.31	36.44	7.68	46.59	54.00	-7.41	Average	Vertical
12205.00	55.38	36.63	35.37	10.22	66.86	74.00	-7.14	Peak	Vertical
12205.00	49.71	36.63	35.37	10.22	61.19	54.00	7.19	Average	Vertical

The worst test result for 8DPSK, Channel 39 / 2441 MHz

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4882.00	54.98	33.30	36.44	7.68	59.52	74.00	-14.48	Peak	Horizontal
4882.00	43.66	33.30	36.44	7.68	48.20	54.00	-5.80	Average	Horizontal
12205.00	53.06	36.52	35.37	10.22	64.43	74.00	-9.57	Peak	Horizontal
12205.00	35.28	36.52	35.37	10.22	46.65	54.00	-7.35	Average	Horizontal
4882.00	59.27	33.31	36.44	7.68	63.82	74.00	-10.18	Peak	Vertical
4882.00	42.02	33.31	36.44	7.68	46.57	54.00	-7.43	Average	Vertical
12205.00	55.17	36.63	35.37	10.22	66.65	74.00	-7.35	Peak	Vertical
12205.00	49.62	36.63	35.37	10.22	61.10	54.00	7.10	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 41 of 53

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac dB	Cab.L os dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4960.00	55.03	33.55	36.41	7.74	59.91	74.00	-14.09	Peak	Horizontal
4960.00	43.20	33.55	36.41	7.74	48.08	54.00	-5.92	Average	Horizontal
12400.00	51.07	36.52	35.37	10.22	62.44	74.00	-11.56	Peak	Horizontal
12400.00	34.64	36.52	35.37	10.22	46.01	54.00	-7.99	Average	Horizontal
4960.00	59.23	33.73	36.41	7.74	64.29	74.00	-9.71	Peak	Vertical
4960.00	42.38	33.73	36.41	7.74	47.44	54.00	-6.56	Average	Vertical
12400.00	56.64	36.27	35.37	10.22	67.76	74.00	-6.24	Peak	Vertical
12400.00	35.29	36.27	35.37	10.22	46.41	54.00	-7.59	Average	Vertical

The worst test result for GFSK, Channel 78 / 2480 MHz

The worst test result for $\pi/4$ -DQPSK, Channel 78 / 2480 MHz

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac dB	Cab.L os dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4960.00	55.10	33.55	36.41	7.74	59.98	74.00	-14.02	Peak	Horizontal
4960.00	42.95	33.55	36.41	7.74	47.83	54.00	-6.17	Average	Horizontal
12400.00	50.86	36.52	35.37	10.22	62.23	74.00	-11.77	Peak	Horizontal
12400.00	34.84	36.52	35.37	10.22	46.21	54.00	-7.79	Average	Horizontal
4960.00	58.90	33.73	36.41	7.74	63.96	74.00	-10.04	Peak	Vertical
4960.00	41.70	33.73	36.41	7.74	46.76	54.00	-7.24	Average	Vertical
12400.00	56.95	36.27	35.37	10.22	68.07	74.00	-5.93	Peak	Vertical
12400.00	35.25	36.27	35.37	10.22	46.37	54.00	-7.63	Average	Vertical

The worst test result for 8DPSK,, Channel 78 / 2480 MHz

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac dB	Cab.L os dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4960.00	55.25	33.55	36.41	7.74	60.13	74.00	-13.87	Peak	Horizontal
4960.00	43.07	33.55	36.41	7.74	47.95	54.00	-6.05	Average	Horizontal
12400.00	50.76	36.52	35.37	10.22	62.13	74.00	-11.87	Peak	Horizontal
12400.00	34.61	36.52	35.37	10.22	45.98	54.00	-8.02	Average	Horizontal
4960.00	58.63	33.73	36.41	7.74	63.69	74.00	-10.31	Peak	Vertical
4960.00	41.67	33.73	36.41	7.74	46.73	54.00	-7.27	Average	Vertical
12400.00	56.75	36.27	35.37	10.22	67.87	74.00	-6.13	Peak	Vertical
12400.00	34.98	36.27	35.37	10.22	46.10	54.00	-7.90	Average	Vertical

Notes:

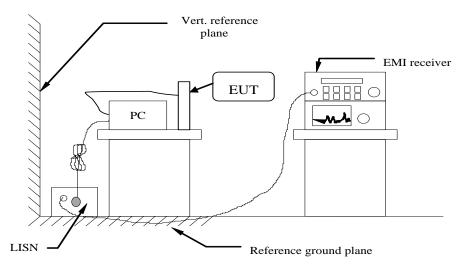
1). Measuring frequencies from 9k~10th harmonic (ex. 26GHz), No emission found between lowest internal used/generated frequency to 30 MHz.

2). Radiated emissions measured in frequency range from 9k~10th harmonic (ex. 26GHz) were made with an instrument using Peak detector mode.

3). 18~25GHz at least have 20dB margin. No recording in the test report.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 42 of 53

6.7. AC Power line conducted emissions

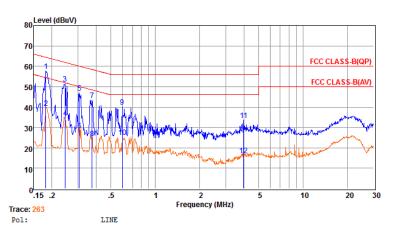

6.7.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits (dBµV)
(MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

* Decreasing linearly with the logarithm of the frequency

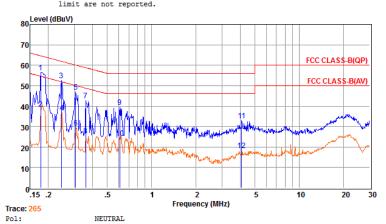
6.7.2 Block Diagram of Test Setup


6.7.3 Test Results

PASS.

The test data please refer to following page.

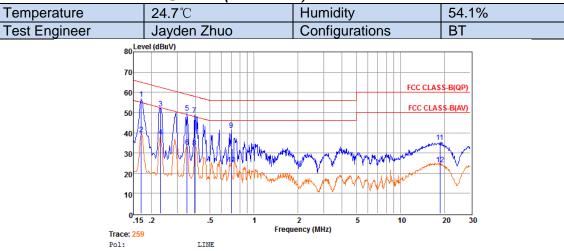
Test Results for AC 120V/60Hz @ GFSK (worst case)


Temperature	24.7 ℃	Humidity	54.1%
Test Engineer	Jayden Zhuo	Configurations	BT

Freq Reading LISNFac CabLos Aux2Fac Measured Limit Over Remark

	MHz	dBuV	dB	dB	dB	dB	dBuV	dBuV	dB
1	0.18	37.95	9.61	0.02	10.00	57.58	64.42	-6.84	QP
2	0.18	19.88	9.61	0.02	10.00	39.51	54.41	-14.90	Average
3	0.25	31.65	9.63	0.03	10.00	51.31	61.91	-10.60	QP
4	0.25	15.00	9.63	0.03	10.00	34.66	51.90	-17.24	Average
5	0.31	27.25	9.63	0.03	10.00	46.91	60.06	-13.15	QP
6	0.31	8.92	9.63	0.03	10.00	28.58	50.06	-21.48	Average
7	0.37	23.76	9.62	0.04	10.00	43.42	58.43	-15.01	QP
8	0.37	5.15	9.62	0.04	10.00	24.81	48.43	-23.62	Average
9	0.60	20.53	9.63	0.04	10.00	40.20	56.00	-15.80	QP
10	0.60	5.54	9.63	0.04	10.00	25.21	46.00	-20.79	Average
11	3.96	13.99	9.65	0.06	10.00	33.70	56.00	-22.30	QP
12	3.96	-3.50	9.65	0.06	10.00	16.21	46.00	-29.79	Average

Remarks: 1. Measured = Reading +Cable Loss +Aux2 Fac.
2. The emission levels that are 20dB below the official
limit are not reported.

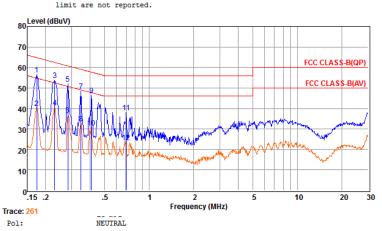

Freq	Reading	LISNFac	CabLos	Aux2Fac	Measured	Limit	Over	Remark
-	-							

	MHz	dBuV	dB	dB	dB	dB	dBuV	dBuV	dB
1 2 3	0.18 0.18 0.25	36.86	9.64	0.02 0.02 0.03	10.00	56.52 38.79	64.59 54.59	-8.07 -15.80 -9.34	QP Average
3 4 5	0.25 0.31	32.94 17.18 27.26	9.60 9.60 9.60	0.03	10.00	52.57 36.81 46.89	61.91 51.90 60.06	-9.34 -15.09 -13.17	QP Average QP
6 7	0.31	9.93 23.17	9.60 9.61	0.03	10.00	29.56 42.81	50.06 58.78	-20.50	Average QP
8 9 10	0.36 0.61 0.61	5.98 19.98 4.85	9.61 9.63 9.63	0.03 0.04 0.04	10.00	25.62 39.65 24.52	48.78 56.00 46.00	-23.16 -16.35 -21.48	Average QP Average
11 12	4.07 4.07	13.28 -1.26	9.65 9.65	0.06	10.00 10.00	32.99 18.45	56.00 46.00	-23.01 -27.55	QP Average

Remarks: 1. Measured = Reading +Cable Loss +Aux2 Fac.

 The emission levels that are 20dB below the official limit are not reported.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 44 of 53



Test Results for AC 240V/50Hz @ GFSK (worst case)

Freq Reading LISNFac CabLos Aux2Fac Measured Limit Over Remark

	MHz	dBuV	dB	dB	dB	dB	dBuV	dBuV	dB
1	0.17	37.23	9.60	0.02	10.00	56.85	64.94	-8.09	QP
2	0.17	19.57	9.60	0.02	10.00	39.19	54.94	-15.75	Average
3	0.23	32.41	9.63	0.03	10.00	52.07	62.44	-10.37	QP
4	0.23	18.54	9.63	0.03	10.00	38.20	52.43	-14.23	Average
5	0.35	30.25	9.62	0.03	10.00	49.90	58.96	-9.06	QP
6	0.35	13.38	9.62	0.03	10.00	33.03	48.96	-15.93	Average
7	0.39	29.15	9.62	0.04	10.00	48.81	57.99	-9.18	QP
8	0.39	12.92	9.62	0.04	10.00	32.58	47.99	-15.41	Average
9	0.70	21.58	9.64	0.04	10.00	41.26	56.00	-14.74	QP
10	0.70	4.66	9.64	0.04	10.00	24.34	46.00	-21.66	Average
11	18.62	15.46	9.75	0.11	10.00	35.32	60.00	-24.68	QP
12	18.62	4.64	9.75	0.11	10.00	24.50	50.00	-25.50	Average

Remarks: 1. Measured = Reading +Cable Loss +Aux2 Fac. 2. The emission levels that are 20dB below the official limit are not reported.

Freq Reading LISNFac CabLos Aux2Fac Measured Limit Over Remark

	MHz	dBuV	dB	dB	dB	dB	dBuV	dBuV	dB
1	0.17	36.75	0.64	0.00	10.00	56.41	CA 22	0.20	0.0
	0.17	30./5	9.64	0.02	10.00	30.41	64.77	-8.36	QP
2	0.17	20.60	9.64	0.02	10.00	40.26	54.76	-14.50	Average
3	0.23	34.22	9.59	0.03	10.00	53.84	62.44	-8.60	QP
4	0.23	20.74	9.59	0.03	10.00	40.36	52.43	-12.07	Average
5	0.28	32.44	9.60	0.03	10.00	52.07	60.76	-8.69	QP
6	0.28	17.33	9.60	0.03	10.00	36.96	50.76	-13.80	Average
7	0.35	28.83	9.61	0.03	10.00	48.47	59.05	-10.58	QP
8	0.35	13.10	9.61	0.03	10.00	32.74	49.04	-16.30	Average
9	0.41	26.64	9.61	0.04	10.00	46.29	57.73	-11.44	QP
10	0.41	10.84	9.61	0.04	10.00	30.49	47.72	-17.23	Average
11	0.70	18.42	9.63	0.04	10.00	38.09	56.00	-17.91	QP
12	0.70	3.74	9.63	0.04	10.00	23.41	46.00	-22.59	Average
Rem	arks: 1.	Measure		-					

 The emission levels that are 20dB below the official limit are not reported.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 45 of 53

6.8. Band-edge measurements for radiated emissions

6.8.1 Standard Applicable

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.8.2. Test Setup Layout

6.8.3. Measuring Instruments and Setting

Please refer to section 6 of equipment list in this report. The following table is the setting of Spectrum Analyzer.

6.8.4. Test Procedures

According to KDB 412172 section 1.1 Field Strength Approach (linear terms): eirp = $p_t x g_t = (E x d)^2/30$ Where: $p_t = transmitter output power in watts,$

 g_t = numeric gain of the transmitting antenna (unitless),

E = electric field strength in V/m,

d = measurement distance in meters (m).

```
erp = eirp/1.64 = (E \times d)^2/(30 \times 1.64)
```

Where all terms are as previously defined.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz for peak detector and RBW=1MHz, VBW=1/B for Peak detector.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.
- 6. Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- 7. Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 46 of 53

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ACVCKREAFUNK2 Report No.: LCS1703202441E

- Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies ≤ 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).
- 9. For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).
- 10. Compare the resultant electric field strength level to the applicable regulatory limit.
- 11. Perform radiated spurious emission test duress until all measured frequencies were complete.

Temperature	23.8 ℃	Humidity	54%
Test Engineer	Jayden Zhuo	Configurations	BT

		(GFSK – Non-I	Hopping			
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict
2310.000	-63.054	0.54	0.0	32.746	Peak	74.00	PASS
2310.000	-76.512	0.54	0.0	19.288	AV	54.00	PASS
2390.000	-64.020	0.54	0.0	31.780	Peak	74.00	PASS
2390.000	-76.738	0.54	0.0	19.062	AV	54.00	PASS
2483.500	-52.602	0.54	0.0	43.198	Peak	74.00	PASS
2483.500	-74.740	0.54	0.0	21.060	AV	54.00	PASS
2500.000	-63.848	0.54	0.0	31.952	Peak	74.00	PASS
2500.000	-76.770	0.54	0.0	19.030	AV	54.00	PASS

		π/4	-DQPSK – No	on-Hopping			
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict
2310.000	-64.149	0.54	0.0	31.651	Peak	74.00	PASS
2310.000	-76.260	0.54	0.0	19.540	AV	54.00	PASS
2390.000	-64.449	0.54	0.0	31.351	Peak	74.00	PASS
2390.000	-76.784	0.54	0.0	19.016	AV	54.00	PASS
2483.500	-54.648	0.54	0.0	41.152	Peak	74.00	PASS
2483.500	-75.360	0.54	0.0	20.440	AV	54.00	PASS
2500.000	-63.445	0.54	0.0	32.355	Peak	74.00	PASS
2500.000	-76.780	0.54	0.0	19.020	AV	54.00	PASS

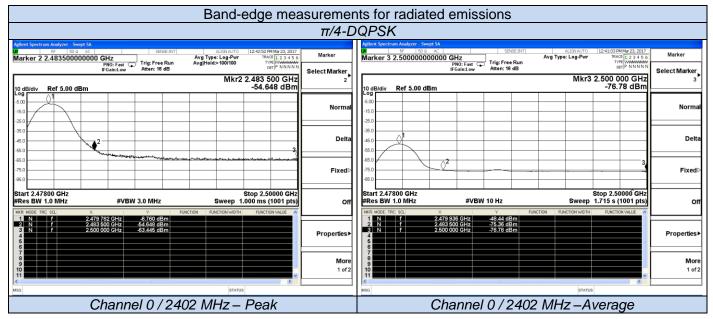
		8.	DPSK – Non	-Hopping			
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict
2310.000	-64.599	0.54	0.0	31.201	Peak	74.00	PASS
2310.000	-71.509	0.54	0.0	24.291	AV	54.00	PASS
2390.000	-64.997	0.54	0.0	30.803	Peak	74.00	PASS
2390.000	-68.875	0.54	0.0	26.925	AV	54.00	PASS
2483.500	-48.904	0.54	0.0	46.896	Peak	74.00	PASS
2483.500	-73.470	0.54	0.0	22.330	AV	54.00	PASS
2500.000	-64.995	0.54	0.0	30.805	Peak	74.00	PASS
2500.000	-76.780	0.54	0.0	19.020	AV	54.00	PASS

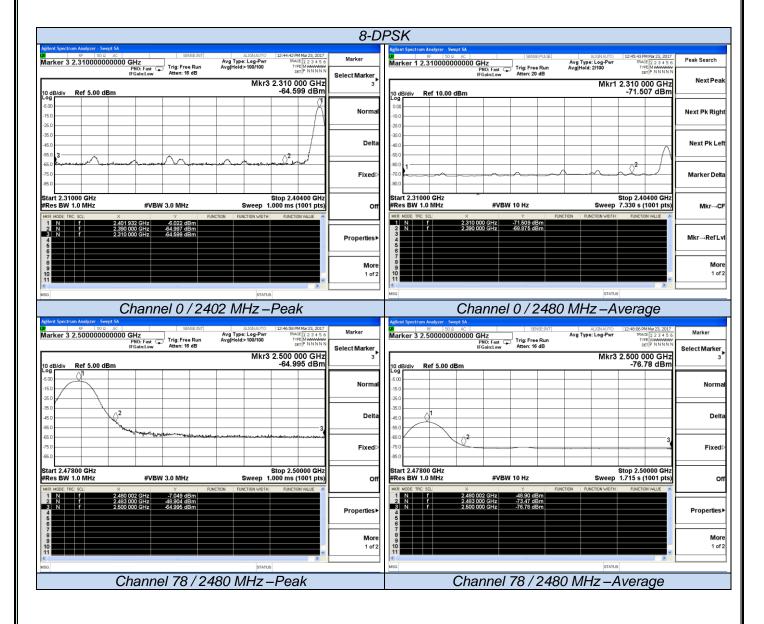
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 47 of 53

6.8.5. Test Results

Remark:

- 1. Measured at difference Packet Type for each mode and recorded worst case for each mode.
- 2. Measured at Hopping and Non-Hopping mode, recorded worst at Non-Hopping mode.
- 3. The other emission levels were very low against the limit.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. Detector AV is setting spectrum/receiver. RBW=1MHz/VBW=330Hz/Sweep time=Auto/Detector=Peak;


SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ACVCKREAFUNK2 Report No.: LCS1703202441E


Band-edge measure	ements for radiated emissions	
	GFSK	
Agilent Spectrum Analyzer - Swept SA μ RF 50 Ω AC SBNSEINT ALIGN AUTO 12:27:07 PM Mar 23, 2017	Agitent Spectrum Analyzer - Swept SA SPINEE 2011 AU391AUTO 12:3316 PM Mrz 33, 2017 Market Inter PF SD0 AC SPINEE 2011 AU391AUTO 12:3316 PM Mrz 33, 2017 Market	
PNO: Fast Trig: Free Run Avg Hold>100/100 TVPE MWWWWW	PN0: Fast C Trig: Free Run Avg Hold: 5/100 Type Log-Twin Run Run Run Run Run Run Run Run Run Ru	
Mkr3 2.310 000 GHz	3 Mkr3 2.310 000 GHz	arker 3
10 dB/div Ref 5.00 dBm -63.054 dBm -63.0554 dBm -63.0556 dBm -65.0556 dBm -65.05566 dBm -65.0556 dBm -65.0556 dBm -65.05566 dBm -65.0556 dBm -65.05		
-15.0	-15.0	Normal
-25.0		
450 3 72 7	Delta 450	Delta
1. 55.0 Barresseler Anna and Ann		
-75.0	Fixed 750	Fixed⊳
Start 2.31000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts)	Start 2.31000 GHz Stop 2.40400 GHz Off #Res BW 1.0 MHz #VBW 10 Hz Sweep 7.330 s (1001 pts)	
MKR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE	Off #Res BW 1.0 MHz #VBW 10 Hz Sweep 7.330 s (1001 pts) MRR MODE TRC SQL X Y RUNCTION WOTH RUNCTION WOTH RUNCTION WOTH	Off
1 N f 2.402.026 GHz 5.027 dBm 2 N f 2.390.000 GHz 64.020 dBm 3 N f 2.310.000 GHz 63.064 dBm	1 N f 2.401932 GHz 4/7 924 GBm 2 N f 2.3000 GHz -76.513 GBm 3 N f 2.310000 GHz -76.512 GBm Prop	
		erties►
	More 8	More
10		1 of 2
MSG STATUS	MSG STATUS	
Channel 0 / 2402 MHz – Peak	Channel 0 / 2402 MHz – Average	
Agilent Spectrum Analyzer - Swept SA SBNEEINT ALIEN AUTO 12:31:04 PM Mar 23, 2017	Applient Spectrum Analyzer - Swept SA SENSEEINT ALISNAUTO 12:35:14 PM Mgr 23, 2017 Δ RF SD Ω AC SENSEEINT ALISNAUTO 12:35:14 PM Mgr 23, 2017	er
Addient Spectrum Analyzer - Sweet SA SEREEPT AUSTAUTO 12:31:04 PM Mar 23: 2007 M MS SD 0 AC SEREEPT AUSTAUROTO 12:31:04 PM Mar 23: 2007 Mail MS SD 0 AC SEREEPT Aug Type: Log-Pwr TMAE [12:3:4:5:6] PHO: Fast Trig: Free Run Avg Type: Log-Pwr TMAE [12:3:4:5:6] Mail	Aglent Spectrum Analyzer - Swrpt SA Street ALIXYAUTO 12:25:14 PM Mar 23:2017 rker Marker 3 2.500000000000 GHz Avg Type: Leg-Pwr TMAC [1:2:3:45 F Marker PN0: Fast PN0: Fast Trig: Free Run Avg Type: Leg-Pwr TWR WHWWW	_
Aglinit Spectrum Analyzer Swigt SA SDNEENT ALSINAUTO 12:31:041PM Mar 23, 2017 Mar B 85 SD S AC SDNEENT ALSINAUTO 12:31:041PM Mar 23, 2017 Mar PHO: East IFGaint.ew Trig: Free Run Atten: 16 dB Avg Type: Leg-Pwr Avg Hold>100/100 Trig: Free Run VPM Newswer Select	Agtent Spectrum Analyzer - Swegd SA. Stable BVT AUGVAUTO 1228514PH Mwr23.2017 Marker rker Marker 3.2.500000000000 GHz Trig: Free Run IFGain.low Avg Type: Log-Pwr Trid: Free Run Atten: 16 dB Marker 3.2.500.000 GHz Marker 4 Mkr3 2.500.000 GHz Select M	_
Addient Spectrum Analyzer - Sweet SA SEREEPT AUSTAUTO 12:31:04 PM Mar 23: 2007 M MS SD 0 AC SEREEPT AUSTAUROTO 12:31:04 PM Mar 23: 2007 Mail MS SD 0 AC SEREEPT Aug Type: Log-Pwr TMAE [12:3:4:5:6] PHO: Fast Trig: Free Run Avg Type: Log-Pwr TMAE [12:3:4:5:6] Mail	Addent Spectrum Analyzer, Snippet Sh. Australia Australia Australia Australia Australia Australia Australia Australia Marker Select M	arker 3
Aginet Spectrum Analyzer Swigt SA SDSEEDT AUSTAURO 12:31:04194 Mar 23, 2017 Mar M 89 30.9 A.C SDSEEDT AUSTAURO 12:31:04194 Mar 23, 2017 Mar PHO: Fast Trig: Free Run Avg]Heido: 100/100 Trig! Www.www. EIF Gaind.ow Select 10 dB/div Ref 5.00 dBm	Addient Spectrum Analyzer, Snippi 55 Marker Augregation Marker Augregation Augregation Marker Marker Free Run Atten: 15 dB Augregation Marker Select M Se	_
Ageinet Spectrum Analyzer Smigl SA SSNEEDIT ALSIAUTO 12:31:04194 Mar 23, 2017 PHO: Fast Trig: Free Run IF Gaint.ow Trig: Free Run Atten: 16 dB Avg Type: Log Pwr Avg]Hold=100/100 Trig: Free Run It is in the state of the state o	Agtent Spectrum Analyzer - Swept SA Proj 500 Action Spectrum Analyzer - Swept SA Number of the sector of the s	larker 3 Normal
Applied Spectrum Analyzer Smigl SA SDREENT ALSPLANTO 1231:041PM Mar 23, 2017 Mar PHO: Fast Trig: Free Run Rtten: 16 dB Avg Type: Leg Pwr AvgHeid:>100/100 Trig: Gree Run Rtten: 16 dB Avg Type: Leg Pwr Hold I 2 3 4 5 5 Mar I dB/div Ref 5.00 dBm Gree Run Select Gree Run Select Select 150 250 Gree Run Select Gree Run Select Gree Run Select Gree Run Select Select	Agitent Spectrum Analyzer - Swept 50 Figure 1 Statistical Spectrum Analyzer - Swept 50 Marker Augree 1 Statistical Spectrum Analyzer - Swept 50 Marker Statistical Spectrum Analyzer - Swept 50 Marker Augree 1 Statistical Spectrum Analyzer - Swept 50 Marker Statistical Spectrum Analyzer - Swept 50 Marker Augree 1 Statistical Spectrum Analyzer - Swept 50 Marker Marker - Swept 50 Marker Marker - Swept 50 Marker Marker - Swept 50 Marker - Swept 50 Marker Select M	arker 3
Addref Spectrum, Audyrer Smigl SA State State State State State Max #8 80 or Ac Free Run HEGainLow Arg Type L log Pur Arg Type	Addent Spectrum Analyzer, Surget 50 Automation Automation Automation Automation Automation Automation Automation Marker Automation Automation Marker Select M Select	larker 3 Normal Delta
Applied Spectrum Analyzer Smigl SA SDREENT ALSPLANTO 1231.041PM Mar 23, 2017 Mar PHO: Fast Trig: Free Run Avg Type: Leg Pwr PHO: Fast PHO: Fast <td< th=""><th>Addent Spectrum Analyzer, Surget 50 Automation Automation Automation Automation Automation Automation Automation Marker Automation Automation Marker Select M Select</th><th>larker 3 Normal</th></td<>	Addent Spectrum Analyzer, Surget 50 Automation Automation Automation Automation Automation Automation Automation Marker Automation Automation Marker Select M Select	larker 3 Normal
Addinit Spectrum Analyzer Smigt SA Stoce Fail ALDIANTO 12310414MMgr22,2017 Mail PHO: Fail Trig: Free Run Brown: 16 dB Avg Type: Leg Pwr AvgType: Leg Pw	Addition Spectrum Analyzer Spectrum Spectrum Analyzer Spectrum	larker 3 Normal Delta Fixed⊳
Addind Spectrum Analyzer Smigl SA ESEREENT ALSPLANTO 1231.041PM Mgr 23, 2017 Mail PHO: Fast Trig: Free Run Avg Type: Leg Pwr PHO: Fast PHO: Fast <t< th=""><th>Normal Official Spectrum Analyzer Spect for Spectrum Spectrum August Minor Spectrum Marker 23:24:55 Select M 10 dB/div Ref 5.00 dBm -76.77 dBm -76.77 dBm N</th><th>larker 3 Normal Delta</th></t<>	Normal Official Spectrum Analyzer Spect for Spectrum Spectrum August Minor Spectrum Marker 23:24:55 Select M 10 dB/div Ref 5.00 dBm -76.77 dBm -76.77 dBm N	larker 3 Normal Delta
Addred Spectrum Analyzer Swigt SA Support Suppo	Addition Spectrum Analyzer Served 50 Served 50 Served 50 Name Name Served 50 Served 50 Name Served 50 Served 50 Served 50 Name Served 50 S	larker 3 Normal Delta Fixed⊳
Addred Spectrum Analyzer Swigt SA Support Suppo	Addition Spectrum Analyzer Served 50 Served 50 Served 50 Name Name Served 50 Served 50 Name Served 50 Served 50 Served 50 Name Served 50 S	larker 3 Normal Delta Fixed⊳ Off
Addred Spectrum Analyzer Swigt SA Support Suppo	Addent Spectrum Andyzer, Snapp 50. B2002.011	larker 3 Normal Delta Fixed⊳ Off erties►
Addred Spectrum Analyzer Swigt SA Support Suppo	Addition Synactrom Analyzer: Surger 50 Second International Analyzer: Surger 500 Marker 32:5000000000000000000000000000000000000	larker 3 Normal Delta Fixed⊳ Off
Addred Spectrum Analyzer Swigt SA Support Suppo	Addent Spectrum Analyzer, Swapt 50 Stop 100 Stop 200 Marker Avg Type: Leg Pwr Trust [23:4:5:0 Marker IMarker 3 2.500000000000 GHz Trust Free Run PG0 Fast Trust Free Run Atten: 16 dB Mkr3 2.500000 GHz Select M I o dB/dv Ref 5.00 dBm -76.77 dBm N N 10 dB/dv Ref 5.00 dBm -76.77 dBm N 150 -76.77 dBm -76.77 dBm N 350 -71 -76.77 dBm N 450 -72 -77.75 N N 450 -72 -72 -77.75 N 450 -72 -72 -77.75 N 450 -72 -72 -77.75 N 450 -74.778 -77.75 N N 450 -74.778 -77.75 N N	larker 3 Normal Delta Fixed⊳ Off erties►

π/4-DQPSK					
Agtent Spectrum Analyzer Swegt SA 10 20 20 20 20 20 20 20 20 20 20 20 20 20	ALI91NUTO [12:37:20 PM M#: 23, 2017 Avg Type: Log-Pwr Avg[Hold>100/100 ter[P NNNN Mkr3 2:310 000 GHz]		Agtent Spectrum Analyzer - Swypt 5A SSNEEINT ALISNAUTO 123858 PM Mar2a Marker 3 2.310000000000 GHz FN0: Fest C Frig: Free Run Arg Heid: 5/100 Trig: Free Run	Select Marker	
10 dB/d/v Ref 5.00 dBm -64.149 dBm			10 dB/div Ref 5.00 dBm -76.260 dl		
-5.00	Λ Λ	Normal		Normal	
		Delta	350	Delta	
65.0	nan an the and the second and the second	Fixed⊳		Fixed⊳	
Start 2.31000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz MKR MODEL TRC: SOL X Y	Stop 2.40400 GHz Sweep 1.000 ms (1001 pts)	Off	Start 2.31000 GHz Stop 2.40400 (#Res BW 1.0 MHz #VBW 10 Hz Sweep 7.330 s (1001) Iwar most Fis Sci. x y Ranction was the number of the number		
N I 2.401 650 GHz -6.821 dBm N f 2.390000 GHz 64.449 dBm N f 2.310 000 GHz 64.149 dBm		Properties►	Image: Construction 2.401 982 GHz 47.822 dHs Construction Constru	Properties►	
7		More 1 of 2	7 8 9 10 11	More 1 of 2	
NS STATUS MSG STATUS			NG STATUS		
Channel 0 / 2402 MHz – Peak			Channel 0 / 2402 MHz – Average		

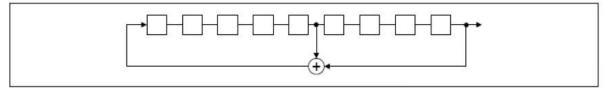
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 49 of 53

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ACVCKREAFUNK2 Report No.: LCS1703202441E

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 50 of 53

6.9. Pseudorandom frequency hopping sequence

6.9.1 Standard Applicable


For 47 CFR Part 15C sections 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.9.2 EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

6.10. Antenna requirement

6.10.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

6.10.2 Antenna Connected Construction

6.10.2.1. Standard Applicable

According to § 15.203 & RSS-Gen, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

6.10.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 0.54 dBi, and the antenna is an internal antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

6.10.2.3. Results: Compliance.

7. TEST SETUP PHOTOGRAPHS

Please refer to separated files for Test Setup Photos of the EUT.

8. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Please refer to separated files for External Photos & Internal Photos of the EUT.

-----THE END OF REPORT------

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 53 of 53