Human Exposure to Radiofrequency fields – calculations as defined by OET65 #### **Table of Contents** | | Overview Device characteristics – Metnet1200 Node | | 3 | |----|----------------------------------------------------------------------------------|----------------------------------------------------------------|---| | | | | 3 | | | 2.1 | Calculation of compliance boundary for general public exposure | 3 | | 3. | Device characteristics – Metnet1200 High Gain Node | | 4 | | | 3.1 | Calculation of compliance boundary for general public exposure | 4 | | 1 | Installation quidance to ensure general public are outside compliance boundaries | | 5 | #### 1. Overview This document shows the calculation of the compliance boundary for the Metnet 1200 product to meet the basic restrictions as defined in OET65 Edition 97-01. The limit for occupational exposure according to OET65 is 5mW/cm<sup>2</sup> (50W/m<sup>2</sup>). The limit for general population exposure according to OET65 is 1mW/cm<sup>2</sup> (10W/m<sup>2</sup>). #### 2. Device characteristics – Metnet1200 Node The Metnet node emits RF energy through a common RF (waveguide) port connected directly either to an internal switched antenna array or directly to a third-party dish antenna. The maximum RF power at the common RF port is 24dBm (with QPSK modulation). In the case of the internal antenna configuration, the RF energy then passes through an RF switch module before being fed to the selected antenna. The minimum loss of this switch module is 2.7dB. Therefore the worst case output power at the antenna is 21.3 dBm. The maximum gain of the internal antenna is 20dBi. ### 2.1 Calculation of compliance boundary for general public exposure The far field (spherical) calculation method defined in equation 3 of OET65 has been used to define the compliance boundary, using the maximum gain noted above. As mentioned in Section 2of the OET 65, this gives a conservative result (it overestimates the field strength) for near field. Therefore the exposure at the distance calculated below will be well within safe limits. S= Power Density – basic restriction is 10W/m<sup>2</sup> P= Output Power G= Gain (relative to isotropic) r= compliance boundary radius S= (PG)/ $(4\pi r^2)$ PG=41.3 dBm =13.489 Watts Therefore: $r^2 = (PG)/(S4\pi)$ $r^2 = 13.489 /(10 \times 4\pi)$ r = 32.7 cm (For occupational exposure, according to OET65, r=14.65 cm) ## 3. Device characteristics – Metnet1200 High Gain Node The far field (spherical) calculation method defined in equation 3 of OET65 has been used to define the compliance boundary, using the maximum gain noted above. As mentioned in Section 2of the OET 65, this gives a conservative result (it overestimates the field strength) for near field. Therefore the exposure at the distance calculated below will be well within safe limits. The maximum RF power at the common RF port is 24 dBm (with QPSK modulation). The maximum gain of the 20cm dish antenna is 35.5 dBi. The maximum gain of the 60cm dish antenna is 43.1 dBi ### 3.1 Calculation of compliance boundary for general public exposure S= Power Density – basic restriction is 10W/m<sup>2</sup> P= Output Power G= Gain (relative to isotropic) r= compliance boundary radius ``` S=(PG)/(4\pi r^2) ``` ``` Therefore for the 20cm dish: ``` ``` PG=59.5 dBm =891.25 Watts ``` $$r^2 = (PG)/(S4\pi)$$ $$r^2 = 891.25/(10 \times 4\pi)$$ r = 2.66m (For occupational exposure, according to OET65, r=1.19 m) And for the 60cm dish: PG=67.1 dBm=5128.61 W $r^2 = (PG)/(S4\pi)$ $r^2 = 5128.61 / (10 \times 4\pi)$ r = 6.39 m (For occupational exposure, according to OET65, r=2.85 m) # 4. Installation guidance to ensure general public are outside compliance boundaries The Metnet 1200 product is designed to be mounted on street furniture (e.g. lampposts) adjacent to small cellular base stations. The equipment is necessarily mounted out of reach of the general public for the following reasons: - 1. To avoid interference with the equipment by the general public - 2. To avoid blocking of the radio signal by passing traffic e.g. double-decker buses requires installation height greater than 5 metres Therefore the equipment is only accessible to authorised personnel.