

NGT-9000 FCC TEST PROCEDURES AND RESULTS POWER AMP QUALIFICATION

Aviation Communication & Surveillance Systems

our veinanee eyeteine				
CAGE Code	Initial Release Date	Revision Date	Document Number	Revision
1WYD3	09-SEP-2019	N/A	8020133-002	Α

Proprietary Notice
This document and the information disclosed herein are proprietary data of Aviation
Communication & Surveillance Systems, LLC. Neither this document nor the information
contained herein shall be reproduced, used, or disclosed to others without the written
authorization of Aviation Communication & Surveillance Systems, LLC.

Notice Freedom of Information Act (5 USC 552) and Disclosure of Confidential Information Generally (18 USC 1905)

This document is being furnished in confidence by Aviation Communication & Surveillance Systems, LLC. The information disclosed herein falls within exemption (b) (4) of 5 USC 552 and the prohibitions of 18 USC 1905.

Export Notice

This technology is controlled under the Export Administration Regulations (EAR) and may not be exported to a Foreign Person, either in the U.S. or abroad, without proper authorization by the U.S. Department of Commerce.

> Copyright 2019 Aviation Communication & Surveillance Systems, LLC. All Rights Reserved.

Document Number	NGT-9000 FCC Test Procedures and Results	Revision
8020133-002	Power Amp Qualification	А

Record of Revisions

Rev	Date	Authorization	Description of Change
-	09-SEP-2019	ECR018906	Initial Release
			Update per FCC TCB comments to remove internal
А	03-OCT-2019	ECR018906	and external photographs and theory of operation.

ACSS Proprietary	Use or disclosure of the information on this sheet is subject to the proprietary and export notices on the title page.	RR-1
---------------------	--	------

Table of Contents

1.1 Purpose 1 1.2 Scope 1 1.3 References 1 1.4 Acronyms and Abbreviations 3 2 GENERAL INFORMATION 5 2.1 Type Designation 5 2.2 Service and Rule for Intended Operation 5 2.3 Description of Equipment 5 2.3.1 NGT-9000 Functionality 5 2.3.1.1 INGT-9000 Units Tested 6 2.3.1.2 Type of Emission 6 2.3.1.3 Frequency Range 6 2.3.1.4 Power Rating 6 2.3.1.5 Antenna Gain/Type 6 2.3.2 Schematics 7 2.3.4 Tune-up Procedure 7 3.1 DRAWINGS AND PHOTOGRAPHS 8 3.2 Photographs 8 3.3 NGT-9000 Models to be Subjected to FCC Compliance Testing 8 3.4.1 Conclusion 8 3.4.1 Conclusion 8 3.4.1 Conclusion 9 4.2 Test	1 INTRODUCTION	
1.2 Scope 1 1.3 References 1 1.4 Acronyms and Abbreviations 3 2 GENERAL INFORMATION 5 2.1 Type Designation 5 2.2 Service and Rule for Intended Operation 5 2.3 Description of Equipment 5 2.3.1 NGT-9000 Units Tested 6 2.3.1.1 NGT-9000 Units Tested 6 2.3.1.2 Type of Emission 6 2.3.1.3 Frequency Range 6 2.3.1.4 Power Rating 6 2.3.1.5 Antenna Gain/Type 6 2.3.3 User Guide and Installation Manual 7 2.3.4 Tune-up Procedure 7 2.3.4 Tune-up Procedure 7 3.3 NGT-9000 Models to be Subjected to FCC Compliance Testing 8 3.4 NGT-9000 Models to be Subjected to FCC Compliance Testing 8 3.4 NGT-9000 Models to be Subjected to FCC Compliance Testing 8 3.4.1 Conclusion 8 3.4.1 Conclusion 4.1 Test Equipm	1.1 Purpose	
1.3 References 1 1.4 Acronyms and Abbreviations 3 2 GENERAL INFORMATION 5 2.1 Type Designation 5 2.2 Service and Rule for Intended Operation 5 2.3 Description of Equipment 5 2.3.1 NGT-9000 Units Tested 6 2.3.1.1 NGT-9000 Units Tested 6 2.3.1.2 Type of Emission 6 2.3.1.4 Power Rating 6 2.3.1.5 Antenna Gain/Type 6 2.3.1.5 Antenna Gain/Type 6 2.3.1.5 Antenna Gain/Type 7 2.3.1 User Guide and Installation Manual 7 2.3.2 Schematics 7 3.1 Drawings 8 3.1 Drawings 8 3.2 Photographs 8 3.3 NGT-9000 Models to be Subjected to FCC Compliance Testing 8 3.4.1 Conclusion 8 3.4.1 Conclusion 8 3.4.1 Conclusion 9 4.2.1<	1.2 Scope	
1.4 Acronyms and Abbreviations. 3 2 GENERAL INFORMATION 5 2.1 Type Designation 5 2.2 Service and Rule for Intended Operation 5 2.3 Description of Equipment 5 2.3.1 NGT-9000 Functionality 5 2.3.1 NGT-9000 Units Tested 6 2.3.1.1 NGT-9000 Units Tested 6 2.3.1.2 Type of Emission 6 2.3.1.3 Frequency Range 6 2.3.1.4 Power Rating 6 2.3.1.5 Antenna Gain/Type 6 2.3.1 Unser Guide and Installation Manual 7 2.3.3 User Guide and Installation Manual 7 2.3.4 Une-up Procedure 7 3 DRAWINGS AND PHOTOGRAPHS 8 3.1 Drawings 8 3.2 Photographs 8 3.3 NGT-9000 Models to be Subjected to FCC Compliance Testing 8 3.4 NGT-9000 Models to be Subjected to FCC Compliance Testing 8 3.4 NGT-9000 Models to be Subjected to FCC Compliance Testing </td <td>1.3 References</td> <th></th>	1.3 References	
2 GENERAL INFORMATION 5 2.1 Type Designation 5 2.2 Service and Rule for Intended Operation 5 2.3 Description of Equipment 5 2.3.1 NGT-9000 Functionality 5 2.3.1.1 NGT-9000 Units Tested 6 2.3.1.2 Type of Emission 6 2.3.1.4 Power Rating 6 2.3.1.5 Antenna Gain/Type 6 2.3.1.4 Power Rating 6 2.3.1.5 Antenna Gain/Type 6 2.3.1 User Guide and Installation Manual 7 2.3.4 Tune-up Procedure 7 3 DRAWINGS AND PHOTOGRAPHS 8 3.1 Drawings 8 3.2 Photographs 8 3.3 NGT-9000 Models to be Subjected to FCC Compliance Testing 8 3.4.1 Conclusion 8 3.4.1 Conclusion 8 3.4.1 Conclusion 9 4.2 Test Facilities 9 4.2 Test Equipment 9	1.4 Acronyms and Abbreviations	
2.1 Type Designation 5 2.2 Service and Rule for Intended Operation 5 2.3 Description of Equipment 5 2.3.1 NGT-9000 Functionality 5 2.3.1.1 NGT-9000 Units Tested 6 2.3.1.2 Type of Emission 6 2.3.1.3 Frequency Range 6 2.3.1.4 Power Rating 6 2.3.1.5 Antenna Gain/Type 6 2.3.2 Schematics 7 2.3.3 User Guide and Installation Manual 7 2.3.4 Tune-up Procedure 7 3 DRAWINSS AND PHOTOGRAPHS 8 3.1 Drawings 8 3.2 Photographs 8 3.3 NGT-9000 Models to be Subjected to FCC Compliance Testing 8 3.4.1 Conclusion 8 3.4.1 Conclusion 8 3.4.1 Conclusion 8 3.4.1 Conclusion 9 4.2 Test Facilities 9 4.3.1 Hardware Configuration 11	2 GENERAL INFORMATION	5
2.2 Service and Rule for Intended Operation 5 2.3 Description of Equipment 5 2.3.1 NGT-9000 Units Tested 6 2.3.1.1 NGT-9000 Units Tested 6 2.3.1.2 Type of Emission 6 2.3.1.3 Frequency Range 6 2.3.1.4 Power Rating 6 2.3.1.5 Antenna Gain/Type 6 2.3.2 Schematics 7 2.3.3 User Guide and Installation Manual 7 2.3.4 Tune-up Procedure 7 3.1 Drawlinds AND PHOTOGRAPHS 8 3.1 Drawings 8 3.2 Photographs 8 3.3 NGT-9000 Models Are Considered Identical 8 3.4 NGT-9000 Models Are Considered Identical 8 3.4.1 Conclusion 8 4 EQUIPMENT AND SETUP 9 4.1 Test Facilities 9 4.2 Test Facilities 9 4.3.1 Hardware Configuration 11 4.4 Power Output 13 <td>2.1 Type Designation</td> <th>5</th>	2.1 Type Designation	5
2.3 Description of Equipment 5 2.3.1 NGT-9000 Units Tested 6 2.3.1.2 Type of Emission 6 2.3.1.3 Frequency Range 6 2.3.1.4 Power Rating 6 2.3.1.5 Antenna Gain/Type 6 2.3.1 Antenna Gain/Type 6 2.3.1 Schematics 7 2.3.3 User Guide and Installation Manual 7 2.3.4 Tune-up Procedure 7 2.3.4 Tune-up Procedure 7 3 DRAWINGS AND PHOTOGRAPHS 8 3.1 Drawings 8 3.2 Photographs 8 3.3 NGT-9000 Models to be Subjected to FCC Compliance Testing 8 3.4 NGT-9000 Models Are Considered Identical 8 3.4.1 Conclusion 8 4 EQUIPMENT AND SETUP 9 4.1 Test Equipment 9 4.2.1 Setup Block Diagram 9 4.3.2 Software Configuration 11 4.4 Photographs 13 <	2.2 Service and Rule for Intended Operation	5
2.3.1 NGT-9000 Functionality 5 2.3.1.1 NGT-9000 Units Tested 6 2.3.1.2 Type of Emission 6 2.3.1.3 Frequency Range 6 2.3.1.4 Power Rating 6 2.3.1.5 Antenna Gain/Type 6 2.3.2 Schematics 7 2.3.3 User Guide and Installation Manual 7 2.3.4 Tune-up Procedure 7 7 DRAWINGS AND PHOTOGRAPHS 8 3.1 Drawings 8 3.2 Photographs 8 3.3 NGT-9000 Models to be Subjected to FCC Compliance Testing 8 3.4 NGT-9000 Models Are Considered Identical 8 3.4.1 Conclusion 8 4 EQUIPMENT AND SETUP 9 4.1 Test Equipment 9 4.2.1 Setup Block Diagram 9 4.3 LRU Setup 9 4.3 LRU Setup 11 4.4 Photographs 13 6.1 RF Power Output Test Equipment Required 13 <tr< td=""><td>2.3 Description of Equipment</td><th>5</th></tr<>	2.3 Description of Equipment	5
2.3.1.1 NGT-9000 Units Tested 6 2.3.1.2 Type of Emission 6 2.3.1.3 Frequency Range 6 2.3.1.4 Power Rating. 6 2.3.1.5 Antenna Gain/Type 6 2.3.2 Schematics. 7 2.3.3 User Guide and Installation Manual 7 2.3.4 Tune-up Procedure 7 2.3.4 Tune-up Procedure 7 3 DRAWINGS AND PHOTOGRAPHS 8 3.1 Drawings. 8 3.2 Photographs 8 3.3 NGT-9000 Models to be Subjected to FCC Compliance Testing. 8 3.4 NGT-9000 Models Are Considered Identical. 8 3.4.1 Conclusion 8 3.4.1 Conclusion 8 4 EQUIPMENT AND SETUP 9 4.1 Test Equipment 9 4.2 Test Equipment 9 4.2.1 Setup Block Diagram 9 4.3 LRU Setup 11 4.3.2 Software Configuration 11 <t< td=""><td>2.3.1 NGT-9000 Functionality</td><th>5</th></t<>	2.3.1 NGT-9000 Functionality	5
2.3.1.2 Type of Emission 6 2.3.1.3 Frequency Range 6 2.3.1.4 Power Rating 6 2.3.1.5 Antenna Gain/Type 6 2.3.2 Schematics 7 2.3.3 User Guide and Installation Manual 7 2.3.4 Tune-up Procedure 7 3 DRAWINGS AND PHOTOGRAPHS 8 3.1 Drawings 8 3.2 Photographs 8 3.3 NGT-9000 Models to be Subjected to FCC Compliance Testing 8 3.4 NGT-9000 Models Are Considered Identical 8 3.4.1 Conclusion 8 3.4.1 Test Equipment 9 4.2 Test Facilities 9 4.2.1 Setup Block Diagram 9 4.3.1 Hardware Configuration 11 4.3.2 Software Configuration 11 4.4 Photographs 13 6.1.1 RF Power Output Test Equipment Required 13 6.1.1 RF Power Output Test Equipment Required 13 6.1 RF Power Outpu	2.3.1.1 NGT-9000 Units Tested	
2.3.1.3 Frequency Range 6 2.3.1.4 Power Rating 6 2.3.1.5 Antenna Gain/Type 6 2.3.2 Schematics 7 2.3.3 User Guide and Installation Manual 7 2.3.4 Tune-up Procedure 7 3 DRAWINGS AND PHOTOGRAPHS 8 3.1 Drawings 8 3.2 Photographs 8 3.3 NGT-9000 Models to be Subjected to FCC Compliance Testing 8 3.4 NGT-9000 Models Are Considered Identical 8 3.4.1 Conclusion 8 3.4 NGT-9000 Models Are Considered Identical 8 3.4.1 Conclusion 8 3.4.1 Tost Equipment 9 4.2 Test Facilities 9 4.2.1 Setup Block Diagram 9 4.3.1 Hardware Configuration 11 4.3.2 Software Configuration 11 4.3.2 Software Configuration 11 4.4 Photographs 11 6.1 RF Power Output Test Equipment Required </td <td>2.3.1.2 Type of Emission</td> <th></th>	2.3.1.2 Type of Emission	
2.3.1.4 Power Rating 6 2.3.1.5 Antenna Gain/Type 6 2.3.2 Schematics 7 2.3.3 User Guide and Installation Manual 7 2.3.4 Tune-up Procedure 7 3 DRAWINGS AND PHOTOGRAPHS 8 3.1 Drawings 8 3.2 Photographs 8 3.3 NGT-9000 Models to be Subjected to FCC Compliance Testing 8 3.4 NGT-9000 Models for Econsidered Identical 8 3.4.1 Conclusion 8 4 EQUIPMENT AND SETUP 9 4.1 Test Equipment 9 4.2 Test Equipment 9 4.3 LRU Setup 9 4.3 LRU Setup 9 4.3.1 Hardware Configuration 11 4.3.2 Software Configuration 11 4.3 Prover Output 11 5 TEST SCHEDULE 12 6 FC COMPLIANCE TEST PROCEDURES 13 6.1.1.1 RF Power Output Test Setup 13	2.3.1.3 Frequency Range	6
2.3.1.5 Antenna Gain/Type 6 2.3.2 Schematics 7 2.3.3 User Guide and Installation Manual 7 2.3.4 Tune-up Procedure 7 2.3.4 Tune-up Procedure 7 3 DRAWINGS AND PHOTOGRAPHS 8 3.1 Drawings 8 3.2 Photographs 8 3.3 NGT-9000 Models to be Subjected to FCC Compliance Testing 8 3.4.1 Conclusion 8 3.4.1 Conclusion 8 3.4.1 Conclusion 8 3.4.1 Conclusion 8 3.4.1 Tost Equipment 9 4.1 Test Facilities 9 4.2 Test Equipment 9 4.3.1 Hardware Configuration 11 4.3.2 Software Configuration 11 4.3.2 Software Configuration 11 4.3.1 Hardware Configuration 11 4.3.2 Software Configuration 11 4.3.1 Hardware Configuration 11 5 <td>2.3.1.4 Power Rating</td> <th>6</th>	2.3.1.4 Power Rating	6
2.3.2 Schematics 7 2.3.3 User Guide and Installation Manual 7 2.3.4 Tune-up Procedure 7 3 DRAWINGS AND PHOTOGRAPHS 8 3.1 Drawings 8 3.2 Photographs 8 3.3 NGT-9000 Models to be Subjected to FCC Compliance Testing 8 3.4 NGT-9000 Models Are Considered Identical 8 3.4.1 Conclusion 8 3.4.1 Conclusion 8 4 EQUIPMENT AND SETUP 9 4.1 Test Facilities 9 4.2 Test Equipment 9 4.2.1 Setup Block Diagram 9 4.3 LRU Setup 9 4.3.1 Hardware Configuration 11 4.4 Photographs 11 5 TEST SCHEDULE 12 6 FCC COMPLIANCE TEST PROCEDURES 13 6.1.1.1 RF Power Output Test Equipment Required 13 6.1.1.2 RF Power Output Test Setup 14 6.1.1.3 RF Power Output Test Setup 1	2.3.1.5 Antenna Gain/Type	6
2.3.3 User Guide and Installation Manual. 7 2.3.4 Tune-up Procedure 7 3 DRAWINGS AND PHOTOGRAPHS 8 3.1 Drawings 8 3.2 Photographs 8 3.3 NGT-9000 Models to be Subjected to FCC Compliance Testing 8 3.4 NGT-9000 Models Are Considered Identical. 8 3.4.1 Conclusion 8 4 EQUIPMENT AND SETUP 9 4.1 Test Facilities 9 4.2 Test Equipment. 9 4.2 Test Equipment. 9 4.3 LRU Setup 9 4.3.1 Hardware Configuration 11 4.3.2 Software Configuration 11 4.4 Photographs 11 5 TEST SCHEDULE 12 6 FCC COMPLIANCE TEST PROCEDURES 13 6.1.1.2 RF Power Output Test Equipment Required 13 6.1.1.1 RF Power Output Test Equipment Required 13 6.1.1.2 RF Power Output Test Equipment Required 15 6.2	2.3.2 Schematics	7
2.3.4 Tune-up Procedure 7 3 DRAWINGS AND PHOTOGRAPHS 8 3.1 Drawings 8 3.2 Photographs 8 3.3 NGT-9000 Models to be Subjected to FCC Compliance Testing 8 3.4 NGT-9000 Models Are Considered Identical 8 3.4.1 Conclusion 8 3.4.1 Conclusion 8 4 EQUIPMENT AND SETUP 9 4.1 Test Facilities 9 4.2 Test Equipment 9 4.2 Test Equipment 9 4.3 LRU Setup 9 4.3 LRU Setup 9 4.3.1 Hardware Configuration 11 4.3.2 Software Configuration 11 4.3.2 Software Configuration 11 4.4 Photographs 11 5 TEST SCHEDULE 12 6 FCC COMPLIANCE TEST PROCEDURES 13 6.1 RF Power Output Test Equipment Required 13 6.1.1.1 RF Power Output Test Equipment Required 13	2.3.3 User Guide and Installation Manual	7
3 DRAWINGS AND PHOTOGRAPHS 8 3.1 Drawings 8 3.2 Photographs 8 3.3 NGT-9000 Models to be Subjected to FCC Compliance Testing. 8 3.4 NGT-9000 Models Are Considered Identical. 8 3.4.1 Conclusion. 8 3.4.1 Conclusion. 8 4.2 Test Facilities. 9 4.1 Test Facilities. 9 4.2 Test Equipment. 9 4.3 LRU Setup 9 4.3 LRU Setup 9 4.3 LRU Setup 9 4.3.1 Hardware Configuration 11 4.3.2 Software Configuration 11 5 TEST SCHEDULE 12 6 FCC COMPLIANCE TEST PROCEDURES 13 6.1 RF Power Output Test Equipment Required 13 6.1.1.2 RF Power Output Test Setup 14 6.1.1.2 RF Power Output Test Setup 14 6.1.1.2 RF Power Output Test Setup 15 6.2 Modulation Characteristics Test Equipment	2.3.4 Tune-up Procedure	7
3.1 Drawings. 8 3.2 Photographs 8 3.3 NGT-9000 Models to be Subjected to FCC Compliance Testing. 8 3.4 NGT-9000 Models Are Considered Identical. 8 3.4.1 Conclusion. 8 3.4.1 Conclusion. 8 4 EQUIPMENT AND SETUP. 9 4.1 Test Facilities. 9 4.2 Test Equipment. 9 4.2.1 Setup Block Diagram 9 4.3 LRU Setup 9 4.3.1 Hardware Configuration 11 4.3.2 Software Configuration 11 4.3.2 Software Configuration 11 4.3.2 Software Configuration 11 4.4 Photographs 11 5 TEST SCHEDULE 12 6 FCC COMPLIANCE TEST PROCEDURES 13 6.1 RF Power Output Test Equipment Required 13 6.1.1.1 RF Power Output Test Equipment Required 13 6.1.1.2 RF Power Output Test Procedure 14 6.1.1.4 Test	3 DRAWINGS AND PHOTOGRAPHS	
3.2 Photographs 8 3.3 NGT-9000 Models to be Subjected to FCC Compliance Testing. 8 3.4 NGT-9000 Models Are Considered Identical. 8 3.4.1 Conclusion. 8 4 EQUIPMENT AND SETUP. 9 4.1 Test Facilities. 9 4.2 Test Equipment. 9 4.3 LRU Setup 9 4.3.1 Hardware Configuration 11 4.3.2 Software Configuration 11 4.4 Photographs 11 5 TEST SCHEDULE 12 6 FCC COMPLIANCE TEST PROCEDURES 13 6.1 RF Power Output Test Equipment Required 13 6.1.1.1 RF Power Output Test Setup 14 6.1.1.2 RF Power Output Test Setup 14 6.1.1.3 RF Power Output Test Procedure 14 6.1.1.4 Test Result Data. 15 6.2.1 Modulation Characteristics Test Equipment Required 15 6.2.3 Modulation Characteristics Test Setup 15 6.2.3 Modulation Characteristics Test Proced	3.1 Drawings	8
3.3 NGT-9000 Models to be Subjected to FCC Compliance Testing. 8 3.4 NGT-9000 Models Are Considered Identical. 8 3.4.1 Conclusion	3.2 Photographs	
3.4 NGT-9000 Models Are Considered Identical. 8 3.4.1 Conclusion 8 3.4.1 Conclusion 8 4 EQUIPMENT AND SETUP 9 4.1 Test Facilities 9 4.2 Test Equipment 9 4.2.1 Setup Block Diagram 9 4.3 LRU Setup 9 4.3.1 Hardware Configuration 11 4.3.2 Software Configuration 11 4.3.2 Software Configuration 11 4.3.2 Software Configuration 11 4.4 Photographs 11 5 TEST SCHEDULE 12 6 FCC COMPLIANCE TEST PROCEDURES 13 6.1 RF Power Output 13 6.1.1.1 RF Power Output Test Equipment Required 13 6.1.1.2 RF Power Output Test Procedure 14 6.1.1.3 RF Power Output Test Procedure 14 6.1.1.4 Test Result Data 15 6.2 Modulation Characteristics Test Equipment Required 15 6.2.1 Modulat	3.3 NGT-9000 Models to be Subjected to FCC Com	pliance Testing8
3.4.1 Conclusion	3.4 NGT-9000 Models Are Considered Identical	
4 EQUIPMENT AND SETUP	3.4.1 Conclusion	
4.1 Test Facilities	4 EQUIPMENT AND SETUP	
4.2 Test Equipment	4.1 Lest Facilities	
4.2.1 Setup Block Diagram 9 4.3 LRU Setup 9 4.3.1 Hardware Configuration 11 4.3.2 Software Configuration 11 4.3.2 Software Configuration 11 4.3.4 Photographs 11 5 TEST SCHEDULE 12 6 FCC COMPLIANCE TEST PROCEDURES 13 6.1 RF Power Output 13 6.1.1.1 RF Power Output Test Equipment Required 13 6.1.1.2 RF Power Output Test Setup 14 6.1.1.3 RF Power Output Test Procedure 14 6.1.1.4 Test Result Data 15 6.2 Modulation Characteristics 15 6.2.1 Modulation Characteristics Test Equipment Required 15 6.2.2 Modulation Characteristics Test Setup 15 6.2.3 Modulation Characteristics Test Procedure 16 6.2.3 Modulation Characteristics Test Results 17	4.2 Lest Equipment	
4.3 LRO Setup 9 4.3.1 Hardware Configuration 11 4.3.2 Software Configuration 11 4.3.4 Photographs 11 5 TEST SCHEDULE 12 6 FCC COMPLIANCE TEST PROCEDURES 13 6.1 RF Power Output 13 6.1.1.1 RF Power Output Test Equipment Required 13 6.1.1.2 RF Power Output Test Setup 14 6.1.1.3 RF Power Output Test Procedure 14 6.1.1.4 Test Result Data 15 6.2 Modulation Characteristics Test Equipment Required 15 6.2.1 Modulation Characteristics Test Setup 15 6.2.2 Modulation Characteristics Test Setup 15 6.2.3 Modulation Characteristics Test Procedure 16 6.2.3 Modulation Characteristics Test Procedure 16 6.2.3 Modulation Characteristics Test Results 17	4.2.1 Setup Block Diagram	
4.3.1 Hardware Configuration 11 4.3.2 Software Configuration 11 4.3.2 Software Configuration 11 4.4. Photographs 11 5 TEST SCHEDULE 12 6 FCC COMPLIANCE TEST PROCEDURES 13 6.1 RF Power Output 13 6.1.1.1 RF Power Output Test Equipment Required 13 6.1.1.2 RF Power Output Test Setup 14 6.1.1.3 RF Power Output Test Procedure 14 6.1.1.4 Test Result Data 15 6.2 Modulation Characteristics 15 6.2.1 Modulation Characteristics Test Equipment Required 15 6.2.2 Modulation Characteristics Test Setup 15 6.2.3 Modulation Characteristics Test Procedure 16 6.2.3.1 Modulation Characteristics Test Results 17	4.3 LRU Setup	
4.3.2 Software Configuration 11 4.4 Photographs 11 5 TEST SCHEDULE 12 6 FCC COMPLIANCE TEST PROCEDURES 13 6.1 RF Power Output 13 6.1.1.1 RF Power Output Test Equipment Required 13 6.1.1.2 RF Power Output Test Setup 14 6.1.1.3 RF Power Output Test Procedure 14 6.1.1.4 Test Result Data 15 6.2 Modulation Characteristics 15 6.2.1 Modulation Characteristics Test Equipment Required 15 6.2.2 Modulation Characteristics Test Setup 15 6.2.3 Modulation Characteristics Test Procedure 16 6.2.3.1 Modulation Characteristics Test Results 17	4.3.1 Haluwale Configuration	
4.4 Flotographs 11 5 TEST SCHEDULE 12 6 FCC COMPLIANCE TEST PROCEDURES 13 6.1 RF Power Output 13 6.1.1.1 RF Power Output Test Equipment Required 13 6.1.1.2 RF Power Output Test Setup 14 6.1.1.3 RF Power Output Test Procedure 14 6.1.1.4 Test Result Data 15 6.2 Modulation Characteristics 15 6.2.1 Modulation Characteristics Test Equipment Required 15 6.2.2 Modulation Characteristics Test Setup 15 6.2.3 Modulation Characteristics Test Procedure 16 6.2.3.1 Modulation Characteristics Test Results 17	4.5.2 Soliware Conliguration	
6 FCC COMPLIANCE TEST PROCEDURES. 13 6.1 RF Power Output 13 6.1.1.1 RF Power Output Test Equipment Required 13 6.1.1.2 RF Power Output Test Setup 14 6.1.1.3 RF Power Output Test Procedure 14 6.1.1.4 Test Result Data. 15 6.2 Modulation Characteristics 15 6.2.1 Modulation Characteristics Test Equipment Required 15 6.2.2 Modulation Characteristics Test Setup 15 6.2.3 Modulation Characteristics Test Procedure 16 6.2.3.1 Modulation Characteristics Test Results 17		
6.1 RF Power Output 13 6.1.1.1 RF Power Output Test Equipment Required 13 6.1.1.2 RF Power Output Test Setup 14 6.1.1.3 RF Power Output Test Procedure 14 6.1.1.4 Test Result Data. 15 6.2 Modulation Characteristics 15 6.2.1 Modulation Characteristics Test Equipment Required 15 6.2.2 Modulation Characteristics Test Setup 15 6.2.3 Modulation Characteristics Test Procedure 16 6.2.3.1 Modulation Characteristics Test Results 17		
6.1.1.1 RF Power Output Test Equipment Required 13 6.1.1.2 RF Power Output Test Setup 14 6.1.1.3 RF Power Output Test Procedure 14 6.1.1.4 Test Result Data 15 6.2 Modulation Characteristics 15 6.2.1 Modulation Characteristics Test Equipment Required 15 6.2.2 Modulation Characteristics Test Setup 15 6.2.3 Modulation Characteristics Test Procedure 16 6.2.3.1 Modulation Characteristics Test Results 17	6.1 RE Power Output	
6.1.1.2 RF Power Output Test Setup 14 6.1.1.3 RF Power Output Test Procedure 14 6.1.1.4 Test Result Data 15 6.2 Modulation Characteristics 15 6.2.1 Modulation Characteristics Test Equipment Required 15 6.2.2 Modulation Characteristics Test Setup 15 6.2.3 Modulation Characteristics Test Procedure 16 6.2.3.1 Modulation Characteristics Test Results 17	6 1 1 1 BE Power Output Test Equipment Requ	irod 13
6.1.1.2 INF Power Output Test Procedure 14 6.1.1.3 RF Power Output Test Procedure 14 6.1.1.4 Test Result Data 15 6.2 Modulation Characteristics 15 6.2.1 Modulation Characteristics Test Equipment Required 15 6.2.2 Modulation Characteristics Test Setup 15 6.2.3 Modulation Characteristics Test Procedure 16 6.2.3.1 Modulation Characteristics Test Results 17	6 1 1 2 RE Power Output Test Setup	14
6.1.1.4 Test Result Data	6 1 1 3 RF Power Output Test Procedure	14
6.2 Modulation Characteristics 15 6.2.1 Modulation Characteristics Test Equipment Required 15 6.2.2 Modulation Characteristics Test Setup 15 6.2.3 Modulation Characteristics Test Procedure 16 6.2.3.1 Modulation Characteristics Test Results 17	6 1 1 4 Test Result Data	15
6.2.1 Modulation Characteristics Test Equipment Required 15 6.2.2 Modulation Characteristics Test Setup 15 6.2.3 Modulation Characteristics Test Procedure 16 6.2.3.1 Modulation Characteristics Test Results 17	6.2 Modulation Characteristics	15
 6.2.2 Modulation Characteristics Test Setup 6.2.3 Modulation Characteristics Test Procedure 6.2.3.1 Modulation Characteristics Test Results 17 	6.2.1 Modulation Characteristics Test Equipment F	Required 15
6.2.3 Modulation Characteristics Test Procedure	6.2.2 Modulation Characteristics Test Setup	15
6.2.3.1 Modulation Characteristics Test Results	6.2.3 Modulation Characteristics Test Procedure	
	6.2.3.1 Modulation Characteristics Test Results	
6.3 Occupied Bandwidth	6.3 Occupied Bandwidth	
6.3.1 Occupied Bandwidth Test Equipment Required17	6.3.1 Occupied Bandwidth Test Equipment Requir	ed17
6.3.1.1 Occupied Bandwidth Test Setup	6.3.1.1 Occupied Bandwidth Test Setup	
6.3.1.2 Occupied Bandwidth Test Procedure	6.3.1.2 Occupied Bandwidth Test Procedure	
6.3.1.3 Occupied Bandwidth Test Results19	6.3.1.3 Occupied Bandwidth Test Results	
6.4 Spurious Emissions at Antenna Terminals19	6.4 Spurious Emissions at Antenna Terminals	
6.4.1 Spurious Emissions at Antenna Terminals Test Equipment Required	6.4.1 Spurious Emissions at Antenna Terminals Te	est Equipment Required19
6.4.1.1 Spurious Emissions at Antenna Terminals Test Setup	6.4.1.1 Spurious Emissions at Antenna Termina	als Test Setup20
6.4.1.2 Spurious Emissions at Antenna Terminals Test Procedure	6.4.1.2 Spurious Emissions at Antenna Termina	als Test Procedure20

ACSS	Lise or disclosure of t
Proprietary	proprietary a

Document Number	NGT-9000 FCC Test Procedures and Results	Revision
8020133-002	Power Amp Qualification	А

6.4.1.3 Spurious Emissions at Antenna Terminals Test Results	21
6.5 Field Strength of Spurious Radiation	21
6.5.1 Field Strength of Spurious Radiation Test Equipment Required	21
6.5.2 Field Strength of Spurious Radiation Test Setup	21
6.5.3 Field Strength of Spurious Radiation Test Procedure	21
6.5.4 Field Strength of Spurious Radiation Test Results	22
6.6 Frequency Stability	22
6.6.1 Frequency Stability (Temperature Variation)	22
6.6.1.1 Frequency Stability (Temperature Variation) Test Equipment Required	22
6.6.1.1.1 Frequency Stability (Temperature Variation) Test Setup	23
6.6.1.1.2 Transponder Frequency Stability (Temperature Variation) Test Procedure	23
6.6.1.1.3 TAS Frequency Stability (Temperature Variation) Test Procedure	23
6.6.1.1.4 Frequency Stability (Temperature Variation) Test Results	24
6.6.2 Frequency Stability (Primary Power Variation)	25
6.6.2.1 Frequency Stability (Primary Power Variation) Test Equipment Required	25
6.6.2.1.1 Frequency Stability (Primary Power Variation) Test Setup	25
6.6.2.1.2 XPDR Frequency Stability (Primary Power Variation) Test Procedure	25
6.6.2.1.3 TAS Frequency Stability (Primary Power Variation) Test Procedure	26
6.6.2.1.4 Frequency Stability (Primary Power Variation) Test Results	26
APPENDIX A COMPLIANCE TESTING RESULTS – MESA, AZ	27
END OF DOCUMENT	

ACSS Proprietary	Use or disclosure of the information on this sheet is subject to the proprietary and export notices on the title page.	TC-2
1 ,	proprietary and export notices on the title page.	

Table of Figures

Figure 4-1: Test Equipment Setup (Typical)	9
Figure 4-2: Test Equipment Setup and Temperature Chamber (Typical)	10
Figure 4-3: NGT-9000 inside the Temperature Chamber (Typical)	10
Figure 6-1: RF Power Output Test Setup	14
Figure 6-2: Modulation Characteristics Test Setup	15
Figure 6-3: Occupied Bandwidth Test Setup	18
Figure 6-4: Spurious Emissions at Antenna Terminals Test Setup	20
Figure 6-5: Field Strength of Spurious Radiation Test Setup	21
Figure 6-6: Frequency Stability (Temperature Variation) Test Setup for UAT Transmission	23
Figure 6-7: Frequency Stability (Primary Power Variation) Test Setup	25

ACSS	Use or disclosure of the information on this sheet is subject to the	IF-1
Proprietary	proprietary and export notices on the title page.	

Table of Tables

Table 1-1 Referenced ACSS Documents	1
Table 1-2 Referenced Industry Documents	1
Table 1-3: Referenced FCC Documents	3
Table 1-4: Acronyms and Abbreviations	3
Table 4-1: Software Details Drawings and Photographs	11
Table 6-1: RF Power Output Test Equipment Required	13
Table 6-2: NGT-9000 Peak power output	15
Table 6-3: Modulation Characteristics Test Equipment Required	15
Table 6-4: Signal Analyzer settings for modulation characteristics measurement (or equivalent)	17
Table 6-5: Occupied Bandwidth Test Equipment Required	17
Table 6-6 Occupied Bandwidth	19
Table 6-7: Spurious Emissions at Antenna Terminals Test Equipment Required	19
Table 6-8: Field Strength of Spurious Radiation Test Equipment Required	21
Table 6-9: Frequency Stability (Temperature Variation) Test Equipment Required	22
Table 6-10: Frequency Stability (Temperature Variation) Test Results TAS	24
Table 6-11: Frequency Stability (Temperature Variation) Test Results XPDR	24
Table 6-12: Frequency Stability (Primary Power Variation) Test Equipment Required	25
Table 6-13: Frequency Stability (Primary Power variation) Test Results	26

ACSS	Lise or disclosure of the information on this sheet is subject to the	TT-1
Proprietary	proprietary and export notices on the title page.	

1 INTRODUCTION

The NGT-9000 is a Mode-S Transponder that provides Automatic Dependent Surveillance-Broadcast (ADS-B) out on 1090MHz with an integrated GPS receiver. The unit also receives ADS-B data via 978MHz and 1090MHz. Some models support an optional Active Traffic (TAS or TCAS) and/or antenna Diversity functionality. The transponder is available in either Panel Mount or Remote Mount configurations.

The transponder is designed to operate with an input voltage ranging from +14V to +28V VDC.

1.1 Purpose

The purpose of this document is to provide the FCC compliance test procedures and results for the NGT-9000 equipment in both the Panel Mount and Remote Mount Versions.

1.2 Scope

This test report document establishes the FCC compliance test procedures and resultsfor NGT-9000, Part Numbers 9029000-20000 and 9029000-40000.

1.3 References

Document No.	Revision	Description
9029000-20000	J	NGT-9000D End Item Assembly
9029000-40000	J	NGT-9000RD End Item Assembly
9200-17000-01	AH	Transponder Panel Mount With Diversity
9200-17500-01	R	Transponder Remote Mount With Diversity
9020020-003	G	CCA Drawing (Main CCA)
9029010-002	F	CCA Drawing (GPS-UAT RX CCA)
0040-17001-01	W	Installation Manual
8020133-002	А	NGT-9000 FCC Test Procedures and Results Power Amp Qualification

Table 1-1 Referenced ACSS Documents

Table 1-2 Referenced Industry Documents

Source	Document No.	Revision	Description
FAA	AC 20-151B	3/18/2014	Airworthiness Approval of Traffic Alert and Collision Avoidance Systems (TCAS II), Versions 7.0 & 7.1 and Associated Mode S Transponders
FAA	TSO-C112d	6/6/2011	Air Traffic Control Radar Beacon System/Mode Select (ATCRBS/Mode S) Airborne Equipment

AC33	Lise or disclosure of the information on this sheet is subject to the	Page-1
Proprietary	proprietary and export notices on the title page.	

Document Number	NGT-9000 FCC Test Procedures and Results	Revision
8020133-002	Power Amp Qualification	А

Table 1-2 Referenced Industry Documents

Source	Document No.	Revision	Description
RTCA	DO-181E	3/17/2011	Minimum Operational Performance Standards for Air Traffic Control Radar Beacon System/Mode Select (ATCRBS/Mode S) Airborne Equipment
FAA	AC 20-165A	11/7/2012	Airworthiness Approval of Automatic Dependent Surveillance – Broadcast (ADS-B) Out Systems
FAA	TSO-C166b	12/2/2009	Extended Squitter Automatic Dependent Surveillance - Broadcast (ADS-B) and Traffic Information Service – Broadcast (TIS-B) Equipment Operating on the Radio Frequency of 1090 Megahertz (MHz)
RTCA	DO-260B with Corrigendum 1	12/13/2011	Minimum Operational Performance Standards for 1090 MHz Extended Squitter Automatic Dependent Surveillance –Broadcast (ADS-B) and Traffic Information Services – Broadcast (TIS-B)
FAA	TSO-C147	4/6/1998	Traffic Advisory System (TAS) Airborne Equipment
FAA	TSO-C118a	10/27/2014	Traffic Alert and Collision Avoidance System (TCAS) Airborne Equipment, TCAS I
RTCA	DO-197A, Change 1	7/29/1997	Minimum Operational Performance Standards for an Active Traffic Alert and Collision Avoidance System I (Active TCAS I), Change 1
FAA	AC-20-172A	3/23/2012	Airworthiness Approval for ADS-B In Systems and Applications
FAA	TSO-C154c	12/2/2009	Universal Access Transceiver (UAT) Automatic Dependent Surveillance-Broadcast (ADS-B) Equipment Operating on Frequency of 978 MHz
RTCA	DO-282B with Corrigendum 1	12/13/2011	Minimum Operational Performance Standards (MOPS) for Universal Access Transceiver (UAT) Automatic Dependent Surveillance-Broadcast (ADS-B)
FAA	TSO-C157a	9/9/2011	Aircraft Flight Information Services – Broadcast (FIS-B) Data Link Systems and Equipment
RTCA	DO-267A	4/29/2004	Minimum Aviation System Performance Standards (MASPS) for Flight Information Services-Broadcast (FIS- B) Data Link
FAA	TSO-C195a	2/29/2012	Avionics Supporting Automatic Dependent Surveillance – Broadcast (ADS-B) Aircraft Surveillance Applications (ASA)
RTCA	DO-317A	12/13/2011	Minimum Operational Performance Standards (MOPS) for Aircraft Surveillance Applications (ASA) System
FAA	AC20-138D	3/28/14	Airworthiness Approval of Positioning and Navigation Systems
FAA	TSO-C145c	5/2/2008	Airborne Navigation Sensors Using The Global Positioning System Augmented By The Satellite Based Augmentation System
RTCA	DO-229D, Change 1	2/1/2013	Minimum Operational Performance Standards for Global Positioning System/Satellite-Based Augmentation System Airborne Equipment
RTCA	DO-160G	12/8/2010	Environmental Conditions and Test Procedures For Airborne Equipment

ACSS	Use or disclosure of the information on this sheet is subject to the	Page-2
Dreprieten		
Proprietary	proprietary and export notices on the title page.	

Document Number	NGT-9000 FCC Test Procedures and Results	Revision
8020133-002	Power Amp Qualification	А

Table 1-3: Referenced FCC Documents

Document No.	Description
CFR Title 47	Code of Federal Regulations – Telecommunications
Chapter 1	Federal Communications Commission
Part 1	Practice and Procedure
Subpart I	Procedures Implementing the National Environmental Policy Act of 1969
CFR Title 47	Code of Federal Regulations – Telecommunications
Chapter 1	Federal Communications Commission
Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
Subpart J	Equipment Authorization Procedures
CFR Title 47	Code of Federal Regulations, Telecommunication.
Chapter 1	Part 87 – Aviation Services
Part 87	
CEP Title 47	Code of Federal Regulations – Telecommunications
Chapter 1 Part	Federal Communications Commission
97 Subport D	Aviation Services
or Subpart D	Technical Requirements

1.4 Acronyms and Abbreviations

Table 1-4: Acronyms and Abbreviations

Acronym	Definition
ACSS	Aviation Communication & Surveillance Systems
ADS-B	Automatic Dependent Surveillance – Broadcast
ASA	Aircraft Surveillance Applications
ATCRBS	Air Traffic Control Radar Beacon System
ATE	Automated Test Equipment
CCA	Circuit Card Assembly
CFR	Code of Federal Regulations
CPFSK	Continuous Phase Frequency Shift Keying
CRC	Cyclic Redundancy Check
dB	Decibel
EVAcq	Enhanced Visual Acquisition
FAA	Federal Aviation Administration
FCC	Federal Communications Commission
FET	Field Effect Transistor
FIS-B	Flight Information Service - Broadcast
FPGA	Field Programmable Gate Array
FSK	Frequency Shift Keying
GHz	Giga Hertz
GPS	Global Positioning System
IF	Intermediate Frequency
kHz	kilo Hertz
LDMOS	Laterally Diffused Metal Oxide Semiconductor
LNA	Low Noise amplifier
LO	Local Oscillator

ACSS Use or disclosure of the information on this	s sheet is subject to the Page-3
proprietary and export notices on	the title page.

Document Number	NGT-9000 FCC Test Procedures and Results	Revision
8020133-002	Power Amp Qualification	А

Table 1-4: Acronyms and Abbreviations

Acronym	Definition
LRU	Line Replaceable Unit
MASPS	Minimum Aviation System Performance Standards
Mbps	Megabits per second
MHz	Mega Hertz
MOPS	Minimum Operational Performance Standards
ns	Nanosecond
PC	Personal Computer
PLL	Phase Locked Loop
РРМ	Parts Per Million
RF	Radio Frequency
rms	root mean square
RTCA	Radio Technical Commission for Aeronautics
тсхо	Temperature Compensated Crystal Oscillator
TSO	Technical Standard Order
UAT	Universal Access Transceiver
us	Microsecond
UUT	Unit Under Test
VCO	Voltage Controlled Oscillator
VDC	Volts Direct Current

ACSS	Use or disclosure of the information on this sheet is subject to the	Page-4
Proprietary	proprietary and export notices on the title page.	

2 GENERAL INFORMATION

2.1 Type Designation

The equipment has been designated by ACSS as NGT-9000, P/N 9029000-20XXX and P/N 9029000-40XXX.

2.2 Service and Rule for Intended Operation

Air Traffic Control Part 87

2.3 Description of Equipment

2.3.1 NGT-9000 Functionality

The NGT-9000 is a Mode S Transponder that provides 1090 MHz Automatic Dependent Surveillance-Broadcast (ADS-B) information with the following functionality:

- 1090 MHz Mode-S Level 2 transponder functions including the 1090ES ADS-B Input and Output functions.
 - $\circ~$ 1090 MHz Mode S Transponder function is available as a single or optional diversity antenna configuration.
- An internally integrated GPS/UAT receive-only module supporting Class Beta 1 GPS functions that provides the required GPS data for ADS-B input and output functions.
 - Note: the NGT-9000 only utilizes the internal GPS as its position source; no external GPS inputs are supported.
- ADS-B traffic (UAT & 1090MHz) and FIS-B weather and FIS-B textual data products will be output from the transponder via serial (RS-422 or RS-232) interfaces to external cockpit displays.
- An ARINC 735B compatible output of traffic (ADS-B, ADS-R, and TIS-B) is supported for conventional traffic (TAS) and CDTI displays.
- Panel mount versions of the transponder will also display the traffic (ADS-B, ADS-R, and TIS-B) and FIS-B products on the touch screen panel. The Remote mount versions do not have the touch screen display.
- The NGT-9000 system also supports an Active Traffic (TAS or TCAS) function.
- The Panel Mount and Remote mount units use identical internal circuit cards, with the exception of the touch screen display. Because of the display, the panel mount versions are mounted horizontally while the remote mount versions are mounted vertically.
- For marketing purposes, various options exist for NGT-9000 that enable or disable diversity antenna function and 1030MHz transmissions (TAS or TCAS function). This is software controlled, this testing is performed with all features enabled.

ACSS is seeking approval for the following FAA TSOs:

- a. TSO-C112d Air Traffic Control Radar Beacon System/Mode Select (ATCRBS / Mode S) Airborne Equipment:
 - Level 2dens Class 1 (diversity configuration)
 - Level 2ens Class 1 (non-diversity configuration)
 - b. TSO-C113a Airborne Multipurpose Electronic Displays
- c. TSO-C118a Traffic Alert and Collision Avoidance System (TCAS) Airborne Equipment, TCAS I
- d. TSO-C145c Airborne Navigation Sensors Using The Global Positioning System Augmented By The Satellite Based Augmentation System
 - Class Beta 1

ACSS	Use or disclosure of the information on this sheet is subject to the	Page-5
Proprietary	proprietary and export notices on the title page.	

Document Number	NGT-9000 FCC Test Procedures and Results	Revision
8020133-002	Power Amp Qualification	А
·	·	
e. TSO-C147	Traffic Advisory System (TAS) Airborne Equipment Class A 	
f. TSO-C154c	Universal Access Transceiver (UAT) Automatic Dependent Broadcast (ADS-B) Equipment Operating on Frequency of Class A1S Receive Only	Surveillance- 978 MHz
g. TSO-C157a	Aircraft Flight Information Services-Broadcast (FIS-B) Data Equipment • Class 2	a Link Systems and
h. TSO-C166b	Extended Squitter Automatic Dependent Surveillance - Bro and Traffic Information Service - Broadcast (TIS-B) Equipm the Radio Frequency of 1090 Megahertz (MHz) • Class A2	adcast (ADS-B) nent Operating on
i. TSO-C195a	Avionics Supporting Automatic Dependent Surveillance – E Aircraft Surveillance Applications (ASA) • Class B1, B5, C1, & C5	Broadcast (ADS-B)

2.3.1.1 NGT-9000 Units Tested

Two units will be used in the FCC test process: Serial Numbers LXE13068 (Panel Mount) and LXE13069 (Remote Mount). A complete set of conducted and radiated testing is performed on the Panel Mount version as the baseline. The Remote Mount version uses the same RF circuit cards and interface cables, but does not include the touch screen display, Because of these similarities, the Remote Mount version will be qualified by similarity to the Panel Mount version for all testing except for radiated emissions. Radiated emissions testing is also performed on the Remote mount version because of the different enclosure, mounting orientation and touch screen display.

2.3.1.2 Type of Emission

Transponder Transmissions: 14M0M1D TCAS/TAS Transmissions: 18M0V1D

2.3.1.3 Frequency Range

Mode S & ATCRBS Transponder Transmission: 1090 MHz \pm 1 MHz TCAS/TAS Transmission: 1030 MHz \pm 0.1 MHz

2.3.1.4 Power Rating

500 Watts Peak Effective Isotropic Radiated Power (Pulsed, 1090 MHz)

Note: This assumes 3 dBi antenna gain, per TSO-C112d

1.74 Watts to 500 Watts Peak Effective Radiated Power (Pulsed, 1030 MHz)

Note: This assumes 3 dBi antenna gain, per TSO-147c

2.3.1.5 Antenna Gain/Type

The antenna used for the Transponder function is a standard aviation blade antenna that transmits omnidirectionally at 1090MHz with a minimum gain of 2.0dBi.

The antenna used for the TCAS/TAS function transmits omnidirectionally at 1030MHz with a minimum gain of 2.5dBi.

ACSS	Lise or disclosure of the information on this sheet is subject to the	Page-6
Proprietary	proprietary and export notices on the title page.	-

Document Number	NGT-9000 FCC Test Procedures and Results	Revision
8020133-002	Power Amp Qualification	А

2.3.2 Schematics

A block diagram and schematics will be provided when the application for certification is filed with the FCC.

2.3.3 User Guide and Installation Manual

An ACSS document, Installation Manual (0040-17001-01) provides instructions for the proper installation of the NGT-9000, both Remote and Panel mount versions, on a given aircraft.

2.3.4 Tune-up Procedure

No field tuning is required. Alignment is performed in the factory.

ACSS Proprietary	Use or disclosure of the information on this sheet is subject to the proprietary and export notices on the title page.	Page-7
---------------------	--	--------

3 DRAWINGS AND PHOTOGRAPHS

3.1 Drawings

Refer to Table 1-1 for a list of ACSS drawings that will be furnished with the application.

3.2 Photographs

Internal and external photographs of the NGT-9000 units will be provided when the application for certification is filed with the FCC.

3.3 NGT-9000 Models to be Subjected to FCC Compliance Testing

The NGT-9000 panel mount unit (9029000-20000) will be subjected to the full suite of FCC compliance tests with the resulting data submitted to the FCC for certification. The NGT-9000 Remote mount unit (9029000-40000) will be subjected only to the radiated test due to differences in mounting and the aperture presented by the touch screen panel. All TAS/diversity transponder functionality will be enabled during the FCC testing.

3.4 NGT-9000 Models Are Considered Identical

For purposes of FCC compliance testing and certification other than the testing of radiated emissions, all versions of the NGT-9000 units are considered to meet the FCC definition of "Identical," because the items which provide the transmit and receive functions (the main circuit card and the software) as well as the interface connections and cables are the same in all of the NGT-9000 models.

3.4.1 Conclusion

The full suite of FCC compliance tests will be performed on a NGT-9000D+ (Panel Mount with Diversity and TAS/TCAS) model while radiated emissions testing will also be performed on NGT-9000RD+(Remote Mount with Diversity and TAS/TCAS) model. Test data from the NGT FCC compliance test will be submitted to the FCC to apply for a new certification and FCC identifier for the NGT family of units.

ACSS	Use or disclosure of the information on this sheet is subject to the	Page-8
Proprietary	proprietary and export notices on the title page.	

4 EQUIPMENT AND SETUP

4.1 Test Facilities

FCC testing will be performed at the following facilities:

Compliance Testing 1724 S. Nevada Way Mesa, AZ 85204

4.2 Test Equipment

The test equipment used is listed in each test results section below.

4.2.1 Setup Block Diagram

Setup block diagrams are shown in each test results section below.

4.3 LRU Setup

Figure 4-1: Test Equipment Setup (Typical)

ACSS	Lise or disclosure of the information on this sheet is subject to the	Page-9
Proprietary	proprietary and export notices on the title page.	

Figure 4-2: Test Equipment Setup and Temperature Chamber (Typical)

Figure 4-3: NGT-9000 inside the Temperature Chamber (Typical)

ACSS Proprietary	Use or disclosure of the information on this sheet is subject to the proprietary and export notices on the title page.	Page-10
---------------------	--	---------

Document Number	NGT-9000 FCC Test Procedures and Results	Revision
8020133-002	Power Amp Qualification	А

4.3.1 Hardware Configuration

A complete suite of FCC testing was conducted on the NGT-9000D+ Panel Mount LRU P/N 9029000-20000 and, for Radiated testing, the NGT-9000RD+ Remote Mount LRU P/N 9029000-40000.

4.3.2 Software Configuration

The part number and CRC of the software used for testing both units, are shown in Table 4-1.

Table 4-1: Software Details Drawings and Photographs

Part Number	CRC	Description
8010-17000-0301	0x30F7F081	Flight SW
8010-17001-0301	0x81AE33F4	Maint SW
8000-17000-0100	0xC3A4C270	Firmware
8010-14020-0302		Bootloader
9021105-011	0xB085C320	GPS/UAT Composite
9021100-010	0xE16FB1D7	GPS/UAT RX
9021120-005	0xB04CB80B	GPS/UAT Firmware
9021110-005	0x05D924A5	GPS/UAT Bootloader

4.4 Photographs

Photographs of the test equipment will be provided when the application for certification is filed with the FCC.

ACSS	Use or disclosure of the information on this sheet is subject to the	Page-11
Proprietary	proprietary and export notices on the title page.	

Document Number	NGT-9000 FCC Test Procedures and Results	Revision
8020133-002	Power Amp Qualification	А

5 TEST SCHEDULE

FCC testing will commence in July of 2019.

ACSS Proprietary	Use or disclosure of the information on this sheet is subject to the proprietary and export notices on the title page.	Page-12
---------------------	--	---------

6 FCC COMPLIANCE TEST PROCEDURES

47CFR2.1041 states that for equipment operating under the authorized radio services, the measurement procedures are specified in the rules governing the particular device for which certification is requested. For equipment operating in the authorized radio services, measurements are required as specified in sections 2.1046 (RF Power Output), 2.1047 (Modulation Characteristics), 2.1049 (Occupied Bandwidth), 2.1051 (Spurious Emissions at Antenna Terminals), 2.1053 (Field Strength of Spurious Radiation), 2.1055 (Frequency Stability) and 2.1057 (Frequency Spectrum to be Investigated).

Representative test configurations are shown in block diagram format in the test procedures below but may be modified depending on the equipment available at the test facilities. The test equipment used during test will be documented in the test report.

6.1 **RF Power Output**

47CFR Reference: 2.1046, RF Power Output 87.131, Bandwidth of Emission

Given that the maximum power output of the transmitter located inside the NGT-9000 unit ranges from 870 mW to 350 W at the rear of the unit, the transmitter's peak power output in dBm is calculated as follows:

 $\begin{array}{l} {{P_{{peak_Max}}}\left({dBm,\,1090\;MHz} \right) = 10Log_{10}({P_{{peak}}},\,W\,x\,1000mW/W}) \\ {{P_{{peak_Max}}}\left({dBm,\,1090\;MHz} \right) = 10Log_{10}(350\;W\,x\,1000mW/W}) \\ {{P_{{peak_Max}}}\left({dBm,\,1090\;MHz} \right) = 55.4\;dBm } \end{array}$

 $\begin{array}{l} {P_{peak_Max}}\left({dBm,\;1030\;MHz} \right) = 10Log_{10}({P_{min}},\,W\;x\;1000mW/W) \\ {P_{peak_Max}}\left({dBm,\;1030\;MHz} \right) = 10Log_{10}(350\;W\;x\;1000mW/W) \\ {P_{peak_Max}}\left({dBm,\;1030\;MHz} \right) = 55.4\;dBm \end{array}$

The transmitter's measured peak power output should be approximately 54 dBm (250 W) at the rear of the unit, considering manufacturing tolerances, measurement equipment tolerances and losses in any cables/connectors.

Comment: In this report, the LRU's output power may be referenced in two separate locations, at the antenna or at the rear of the unit. Per Installation Manual, a loss of 1.5dB from the LRU to the aircraft antenna can be assumed. Therefore, when power is referenced to the rear of the LRU, the RF output power at the aircraft antenna can be assumed to be 1.5dB lower than the recorded power.

6.1.1.1 RF Power Output Test Equipment Required

Block Diagram Reference	Туре	Manufacturer	Model
Α	NGT-9000 LRU	ACSS	9029000-20000
В	NGT VALFAC	ACSS	9006052-001 and 9000717-002
С	Peak Power Meter		
D	Spectrum Analyzer		

Table 6-1: RF Power Output Test Equipment Required

Comment: Equivalent equipment may be used.

ACSS	Lise or disclosure of the information on this sheet is subject to the	Page-13
Droprietory	bise of disclosure of the information on this sheet is subject to the	
Proprietary	proprietary and export notices on the title page.	

Document Number	NGT-9000 FCC Test Procedures and Results	Revision
8020133-002	Power Amp Qualification	А

6.1.1.2 RF Power Output Test Setup

Figure 6-1: RF Power Output Test Setup

6.1.1.3 RF Power Output Test Procedure

- 1. Connect the equipment as shown in Figure 6-1 above. It is also acceptable to insert a directional coupler between A and B and measure the power at the coupled port.
- 2. Calculate RF path loss from LRU connector to Power Meter Port on VALFAC.

For Testing XPDR Transmissions:

Using VALFAC Scripts:

 Configure the VALFAC script tool to run DO181E_23221_modes_top.scp, DO181E_23221_modes_bot.scp (Mode S, Long DF-20 replies at 50 Hz on top/bottom antennas, respectively) and then DO181E_23221_atcrbs_top.scp and DO181E_23221_atcrbs_bot.scp (ATCRBS, Mode A replies at 500 Hz on top/bottom antennas with Mode A code set to 0xFFF).

Using IFR:

- Configure the VALFAC TCAS GUI tool with correct APM configuration and select Run.
- To use the IFR, the optional directional coupler must be used for measurements. Instead of connecting the directional coupler to B above, it must be connected to the output of the IFR.
- Setup IFR for ATCRBS:
 - Select C10 and F01 for ATCRBS. Select Mode A reply using front panel switch. Set PRF to 500.
 - Set output Switch to NORM.
- Setup IFR for MODE-S:
 - Select C10 and F02 for MODE-S. Set PRF to 50.
 - Select S Menu and configure for UF=4, RR=12, AA=LRU Mode-S Address (normally 0000C8). (This will solicit a DF-20 Long Mode-S Reply)
 - Set output Switch to NORM.
- 3. Record the measured output power and frequency using the Peak Power Analyzer and Spectrum Analyzer.

For Testing TAS Transmissions:

- 1. Open the serial terminal window and connect to Com 1 at 115200 baud.
- 2. Place UUT in testmode 3 by typing "testmode set 3" in serial terminal.
- 3. Turn on the TAS functionality by typing "nvm install nvm write 60 1 1" in the serial terminal (the status may be read by typing "nvm install nvm read 60 1", if it returns "0" then TAS is off).
- 4. Write TAS enable into DCM by typing "nvm install dcm write 60 1 1"
- 5. Select whisper shout step 7 with suppression pulse by typing "tcas ws 7c" in serial terminal.

ACSS Proprietary	Use or disclosure of the information on this sheet is subject to the proprietary and export notices on the title page.	Page-14

6. Record the measured output power and frequency using the Peak Power Analyzer and Spectrum Analyzer.

6.1.1.4 Test Result Data

The peak power measured during testing is shown in Table 6-2.

Table 6-2: NGT-9000 Peak power output

		NGT-9000 Peak p			
Modulation Characteristic		Measurement	Top antenna	Bottom antenna	Limit
TAS	ATCRBS (1030 MHz)	Power Output (dBm)	53.32	N/A	≥ 52dBm,< 56dBm
VPDP	Mode S (1090 MHz)	Power Output (dBm)	53.82	53.92	≥ 52.5dBm
APDR	ATCRBS (1090 MHz)	Power Output (dBm)	53.78	53.98	≥ 52.5dBm

6.2 Modulation Characteristics

47CFR Reference: 2.1047, Modulation Characteristics 87.141c, Modulation Requirements

6.2.1 Modulation Characteristics Test Equipment Required

Table 6-3: Modulation Characteristics Test Equipment Required

Block Diagram Reference	Туре	Manufacturer	Model
A	NGT-9000 Test Unit	ACSS	9092000-20000
В	NGT VALFAC	ACSS	9006052-001 and 9000717-002
С	Peak Power Meter		

Comment: Equivalent equipment may be used.

6.2.2 Modulation Characteristics Test Setup

Figure 6-2: Modulation Characteristics Test Setup

ACSS Proprietary Use or disclosure of the information on this sheet is subject to the proprietary and export notices on the title page.	Page-15
--	---------

6.2.3 Modulation Characteristics Test Procedure

- 1. Connect the equipment as shown in Figure 6-2 above. It is also acceptable to insert a directional coupler between A and B and measure the power at the coupled port.
- 2. Calculate RF path loss from LRU connector to Power Meter Port on VALFAC.

For Transponder Modulation Characteristics:

Using VALFAC Scripts:

 Configure the VALFAC script tool to run DO181E_23221_modes_top.scp, DO181E_23221_modes_bot.scp (Mode S, Long DF-20 replies at 50 Hz on top/bottom antennas, respectively) and then DO181E_23221_atcrbs_top.scp and DO181E_23221_atcrbs_bot.scp (ATCRBS, Mode A replies at 500 Hz on top/bottom antennas with Mode A code set to 0xFFF).

Using IFR:

- Configure the VALFAC TCAS GUI tool with correct APM configuration and select Run.
- To use the IFR, the optional directional coupler must be used for measurements. Instead of connecting the directional coupler to B above, it must be connected to the output of the IFR.
- Setup IFR for ATCRBS:
 - Select C10 and F01 for ATCRBS. Select Mode A reply using front panel switch. Set PRF to 500.
 - Set output Switch to NORM.
- Setup IFR for MODE-S:
 - Select C10 and F02 for MODE-S. Set PRF to 50.
 - Select S Menu and configure for UF=4, RR=12, AA=*LRU Mode-S Address (normally 0000C8)*. (This will solicit a DF-20 Long Mode-S Reply)
 - Set output Switch to NORM.
- 3. Record the modulation characteristics on the Peak Power Meter. Capture pictures of the following data to be shown in the test report:
 - Typical ATCRBS or Mode S reply pulse showing rise and fall times.
 - Mode S reply with pulse position modulation
 - Close up of Mode S reply preamble
 - ATCRBS Mode C reply

For TAS Modulation Characteristics:

- 1. Open the serial terminal window and connect to Com 1 at 115200 baud.
- 2. Activate the terminal and type, "testmode set 3"
- 3. Enter the following command, "tcas ws 7c" for a 50 Hz transmission of the highest power Mode C interrogation (P1 and P3).
- 4. Record the modulation characteristics on the Peak Power Meter. Capture pictures of the following data to be shown in the test report:
 - Typical ATCRBS Mode C interrogation pulse showing rise and fall times, without S1 Pulse Present.
- 5. Next, enter the following command, "tcas ws 7t" for a 50 Hz transmission of the highest power Mode C interrogation (S1, P1, and P3).
- 6. Record the modulation characteristics on the Peak Power Meter. Capture pictures of the following data to be shown in the test report:
 - Typical ATCRBS Mode C interrogation pulse showing rise and fall times, with S1 Pulse Present.

ACSS	Use or disclosure of the information on this sheet is subject to the	Page-16
Proprietary	proprietary and export notices on the title page.	

Document Number	NGT-9000 FCC Test Procedures and Results	Revision
8020133-002	Power Amp Qualification	А

Table 6-4: Signal Analyzer settings for modulation characteristics measurement (or equivalent)

Parameter Item/Function	Parameter Setting Value
Channel / Vertical Scale	5 dB/div
Channel / Vertical Center	40 dBm
Channel / Extensions / Corrections / dB Offset	Calculated Path Loss
Channel / Extensions / Averaging	8
Time / Timebase (for pulse width, rise time, fall time, amplitude)	200 ns/div
Time / Timebase (for pulse spacing)	2 us/div
Time / Trigger Delay	0 us
Trigger / Trigger Mode	Normal
Trigger / Trigger Level	+40 dBm
Trigger / Trigger Slope	+
Measure / Freq Ch1	1.06 GHz

6.2.3.1 Modulation Characteristics Test Results

Refer to Appendix A for NGT-9000 test results for modulation related parameters measured during testing.

6.3 Occupied Bandwidth

47CFR Reference: 2.1049, Occupied Bandwidth 87.135, Bandwidth of Emission

Occupied bandwidth is defined in 47CFR2.1049 as "the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission."

6.3.1 Occupied Bandwidth Test Equipment Required

Table 6-5: Occupied Bandwidth Test Equipment Required

Block Diagram Reference	Туре	Manufacturer	Model
А	NGT-9000 Test Unit	ACSS	9029000-20000
В	NGT VALFAC	ACSS	9006052-001 and 9000717-002
С	Spectrum Analyzer		

Comment: Equivalent equipment may be used.

ACSS Proprietary Use or disclosure of the information on this sheet is subject to the proprietary and export notices on the title page.	ge-17
--	-------

Document Number	NGT-9000 FCC Test Procedures and Results	Revision
8020133-002	Power Amp Qualification	А

6.3.1.1 Occupied Bandwidth Test Setup

Figure 6-3: Occupied Bandwidth Test Setup

6.3.1.2 Occupied Bandwidth Test Procedure

For XPDR Transmissions

1. Connect the equipment as shown in Figure 6-3 above. It is also acceptable to insert a directional coupler between A and B and measure the power at the coupled port.

Using VALFAC Scripts:

 Configure the VALFAC script tool to run DO181E_23221_modes_top.scp, DO181E_23221_modes_bot.scp (Mode S, Long DF-20 replies at 50 Hz on top/bottom antennas, respectively) and then DO181E_23221_atcrbs_top.scp and DO181E_23221_atcrbs_bot.scp (ATCRBS, Mode A replies at 500 Hz on top/bottom antennas with Mode A code set to 0xFFF).

Using IFR:

- Configure the VALFAC TCAS GUI tool with correct APM configuration and select Run.
- To use the IFR, the optional directional coupler must be used for measurements. Instead of connecting the directional coupler to B above, it must be connected to the output of the IFR.
- Setup IFR for ATCRBS:
 - Select C10 and F01 for ATCRBS. Select Mode A reply using front panel switch. Set PRF to 500.
 - Set output Switch to NORM.
- Setup IFR for MODE-S:
 - Select C10 and F02 for MODE-S. Set PRF to 50.
 - Select S Menu and configure for UF=4, RR=12, AA=*LRU Mode-S Address (normally 0000C8)*. (This will solicit a DF-20 Long Mode-S Reply)
 - Set output Switch to NORM.
- 2. Using the Spectrum analyzer, use the Occupied Bandwidth measurement function.
- 3. Set the center frequency to 1090 MHz, Span to 200 MHz, Resolution bandwidth to 2 MHz and Video bandwidth to 6 MHz.
- 4. Set the detector function to Average rms.
- 5. Select trace>>max hold and allow the window to fill up with the signal.
- 6. Record the occupied bandwidth in Table 6-6, below.

For TAS Transmissions

- 1. Enter the following command in serial terminal, "tcas ws 7t" for a 50 Hz transmission of the highest power Mode C interrogation (S1, P1, and P3).
- 2. Set the center frequency to 1030 MHz

ACSS	Use or disclosure of the information on this sheet is subject to the	Page-18
Proprietary	proprietary and export notices on the title page.	

Document Number	NGT-9000 FCC Test Procedures and Results	Revision
8020133-002	Power Amp Qualification	А

- 3. Select trace>>max hold and allow the window to fill up with the signal.
- 4. Record the occupied bandwidth in Table 6-6, below.

6.3.1.3 Occupied Bandwidth Test Results

Measured occupied bandwidth as mentioned in Table 6-6.

Table 6-6 Occupied Bandwidth

	NGT-9000 Occupied Bandwidth		
	Measurement	Top antenna	Bottom antenna
TAS	ATCRBS (1030 MHz)	7.1634 MHz	N/A
XPDR	Mode S (1090 MHz)	8.4484 MHz	7.9775 MHz
	ATCRBS (1090 MHz)	7.6566 MHz	7.6163 MHz

6.4 Spurious Emissions at Antenna Terminals

47CFR Reference: 2.1051, Spurious Emissions at Antenna Terminals 87.139, Emission Limitations

47CFR2.1051 states that the radio frequency voltages or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna.

47CFR2.1051 says that curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in Sec 2.1049 (Occupied Bandwidth) as appropriate.

6.4.1 Spurious Emissions at Antenna Terminals Test Equipment Required

Table 6-7: Spurious Emissions at Antenna Terminals Test Equipment Required

Block Diagram Reference	Туре	Manufacturer	Model
А	NGT-9000 Test Unit	ACSS	9029000-20000
В	NGT VALFAC	ACSS	9006052-001 and 9000717-002
С	Spectrum Analyzer		

Comment: Equivalent equipment may be used.

ACSS Proprietary	Use or disclosure of the information on this sheet is subject to the proprietary and export notices on the title page.	Page-19
---------------------	--	---------

Document Number	NGT-9000 FCC Test Procedures and Results	Revision
8020133-002	Power Amp Qualification	А

6.4.1.1 Spurious Emissions at Antenna Terminals Test Setup

Figure 6-4: Spurious Emissions at Antenna Terminals Test Setup

6.4.1.2 Spurious Emissions at Antenna Terminals Test Procedure

For XPDR Transmissions

1. Connect the equipment as shown in Figure 6-4 above. It is also acceptable to insert a directional coupler between A and B and measure the power at the coupled port.

Using VALFAC Scripts:

 Configure the VALFAC script tool to run DO181E_23221_modes_top.scp, DO181E_23221_modes_bot.scp (Mode S, Long DF-20 replies at 50 Hz on top/bottom antennas, respectively) and then DO181E_23221_atcrbs_top.scp and DO181E_23221_atcrbs_bot.scp (ATCRBS, Mode A replies at 500 Hz on top/bottom antennas with Mode A code set to 0xFFF).

Using IFR:

- Configure the VALFAC TCAS GUI tool with correct APM configuration and select Run.
- To use the IFR, the optional directional coupler must be used for measurements. Instead of connecting the directional coupler to B above, it must be connected to the output of the IFR.
- Setup IFR for ATCRBS:
 - Select C10 and F01 for ATCRBS. Select Mode A reply using front panel switch. Set PRF to 500.
 - Set output Switch to NORM.
- Setup IFR for MODE-S:
 - Select C10 and F02 for MODE-S. Set PRF to 50.
 - Select S Menu and configure for UF=4, RR=12, AA=LRU Mode-S Address(normally 0000C8). (This will solicit a DF-20 Long Mode-S Reply)
 - Set output Switch to NORM.
- 2. Measure and plot all spurs below 2000 MHz. Use 200 MHz spans and a 300 kHz IF bandwidth on the Spectrum Analyzer.

For TAS Transmissions

- 1. Open the serial terminal window and connect to Com 1 at 115200 baud.
- 2. Activate the terminal and type, "testmode set 3"
- 3. Enter the following command, "tcas ws 7t" for a 50 Hz transmission of the highest power Mode C interrogation (S1, P1, and P3).
- 4. Measure and plot all spurs below 2000 MHz. Use 200 MHz spans and a 300 kHz IF bandwidth on the Spectrum Analyzer.

ACSS	Lise or disclosure of the information on this sheet is subject to the	Page-20
Proprietary	proprietary and export notices on the title page.	

Document Number	NGT-9000 FCC Test Procedures and Results	Revision
8020133-002	Power Amp Qualification	А

6.4.1.3 Spurious Emissions at Antenna Terminals Test Results

Refer to Appendix A for NGT-9000 test results for Spurious Emissions at the Antenna Terminals

6.5 Field Strength of Spurious Radiation

47CFR References: 2.1053, Field Strength of Spurious Radiation 87.139, Emission Limitations

6.5.1 Field Strength of Spurious Radiation Test Equipment Required

Table 6-8: Field Strength of Spurious Radiation Test Equipment Required

Block Diagram Reference	Туре	Manufacturer	Model
А	NGT VALFAC	ACSS	9006052-001 and 9000717-002
Б	NCT 0000 Test Unit	1000	9029000-20000
D	NGT-9000 Test Unit	AC33	9029000-40000
С	Antenna, Biconical		
D	Antenna, Log Per.		
E	Antenna, Horn		
F	Spectrum Analyzer		
G	Preselector		
Н	Quasi-Peak		

Comment: Equivalent equipment may be used.

6.5.2 Field Strength of Spurious Radiation Test Setup

Figure 6-5: Field Strength of Spurious Radiation Test Setup

6.5.3 Field Strength of Spurious Radiation Test Procedure

1. Connect the equipment as shown in Figure 6-5, above. Note that this procedure needs to be performed twice, once with the 9029000-20000 and once with the 9029000-40000. The supply voltage is set to 28VDC.

For XPDR Transmissions:

Using VALFAC Scripts:

• Configure the VALFAC script tool to run DO181E_23222.scp (ATCRBS replies at 500 Hz and Mode S, replies at 50 Hz on top antenna). This will cause the transmitter to radiate at its maximum duty cycle.

ACSS	Lise or disclosure of the information on this sheet is subject to the	Page-21
Proprietary	proprietary and export notices on the title page.	

Document Number	NGT-9000 FCC Test Procedures and Results	Revision
8020133-002	Power Amp Qualification	А

Using IFR:

- Configure the VALFAC TCAS GUI tool with correct APM configuration and select Run.
- To use the IFR, the optional directional coupler must be used for measurements. Instead of connecting the directional coupler to B above, it must be connected to the output of the IFR.
- Setup IFR for Interlaced Mode-S and ATCRBS:
 - Select C10 and F05 for INTLCE, Ratio 1:10. Set PRF to 500.
 - Select Mode A with switch on front panel.
 - Select S Menu and configure for UF=4, RR=12, AA=LRU Mode-S Address (normally 0000C8). (This will solicit a DF-20 Long Mode-S Reply)
 - Set output Switch to NORM.

For TAS Transmissions

- Open the serial terminal window and connect to Com 1 at 115200 baud.
- Activate the terminal and type, "testmode set 3"
- Enter the following command, "tcas ws 7t" for a 50 Hz transmission of the highest power Mode C interrogation (S1, P1, and P3), or "tcas ws 7c" for a 50 Hz transmission of the highest power Mode A interrogation (P1 and P3 only)
- 2. Measure and record all spurious emissions using the appropriate antenna at a distance of 3 meters.

6.5.4 Field Strength of Spurious Radiation Test Results

Refer to Appendix A for NGT-9000 test results for Field Strength of Spurious Radiation test results

6.6 Frequency Stability

6.6.1 Frequency Stability (Temperature Variation)

47CFR Reference: 2.1055, Frequency Stability 87.133, Frequency Stability

6.6.1.1 Frequency Stability (Temperature Variation) Test Equipment Required

Table 6-9: Frequency Stability (Temperature Variation) Test Equipment Required

Block Diagram Reference	Туре	Manufacturer	Model
А	NGT-9000 Test Unit	ACSS	9029000-20000
В	NGT VALFAC	ACSS	9006052-001 and 9000717-002
С	Peak Power Analyzer		
D	Spectrum Analyzer		

Comment: Equivalent equipment may be used.

ACSS	Lise or disclosure of the information on this sheet is subject to the	Page-22
Proprietary	proprietary and export notices on the title page.	

Document Number	NGT-9000 FCC Test Procedures and Results	Revision
8020133-002	Power Amp Qualification	А

6.6.1.1.1 Frequency Stability (Temperature Variation) Test Setup

Figure 6-6: Frequency Stability (Temperature Variation) Test Setup for UAT Transmission

6.6.1.1.2 Transponder Frequency Stability (Temperature Variation) Test Procedure

1. Connect the equipment as shown in Figure 6-6 above. It is also acceptable to insert a directional coupler between A and B and measure the power and frequency at the coupled port.

Using VALFAC Scripts:

 Configure the VALFAC script tool to run DO181E_23221_modes_top.scp, DO181E_23221_modes_bot.scp (Mode S, Long DF-20 replies at 50 Hz on top/bottom antennas, respectively).

Using IFR:

- Configure the VALFAC TCAS GUI tool with correct APM configuration and select Run.
- To use the IFR, the optional directional coupler must be used for measurements. Instead of connecting the directional coupler to B above, it must be connected to the output of the IFR.
- Setup IFR for MODE-S:
 - Select C10 and F02 for MODE-S. Set PRF to 50.
 - Select S Menu and configure for UF=4, RR=12, AA=*LRU Mode-S Address (normally 0000C8)*. (This will solicit a DF-20 Long Mode-S Reply)
 - Set output Switch to NORM.
- 2. Set the temperature chamber to 30°C and allow the transmitter (non-operating) temperature to stabilize. (Comment: -30°C is used based on FCC part 2, section 2.1055, and not the minimum temperature capability of the NGT-9000).
- 3. Apply power to the unit and record the transmission frequency.
- 4. Repeat steps 3 and 4 at -20°C, -10°C, 0°C, +10°C, +20°C, +30°C, +40°C and +50°C. Perform the test using +28 VDC power.
- 5. Record results in tables similar to Table 6-10 below.

6.6.1.1.3 TAS Frequency Stability (Temperature Variation) Test Procedure

- 1. Connect the equipment as shown in Figure 6-6 above.
- 2. Open the Serial Terminal and connect to Com 1 at 115200 baud.
- 3. Activate and enter the following commands, "testmode set 3" and "tcas ws 7c" (50 Hz rate of highest level whisper/shout step)
- 4. Set the temperature chamber to 50°C and allow the transmitter (non-operating) temperature to stabilize.
- 5. Apply power to the unit and record the transmission frequency.
- 6. Repeat steps 4 and 5 at -40°C, -30°C, -20°C, -10°C, 0°C, +10°C, +20°C, +30°C, +40°C and +50°C. Perform the test using +28 VDC power.
- 7. Record results in tables similar to Table 6-10 below.

ACSS	Use or disclosure of the information on this sheet is subject to the	Page-23
Proprietary	proprietary and export notices on the title page.	

6.6.1.1.4 Frequency Stability (Temperature Variation) Test Results

The transmission frequency offset and the peak power output values recorded during the temperature variation test are tabulated in Table 6-10.

Top Antenna					
Measurement	28VDC	Limits			
Temperature Deg C	Measured Frequency (MHz)	Frequency (MHz)			
-30	1030.01	1030 ± 0.1			
-20	1030.005	1030 ± 0.1			
-10	1030.00625	1030 ± 0.1			
0	1030.0025	1030 ± 0.1			
10	1029.9975	1030 ± 0.1			
20	1029.99625	1030 ± 0.1			
30	1029.996430	1030 ± 0.1			
40	1029.99125	1030 ± 0.1			
50	1029.99125	1030 ± 0.1			

Table 6-10: Frequency Stability (Temperature Variation) Test Results TAS

Table 6-11: Frequency Stability (Temperature Variation) Test Results XPDR

Top Antenna					
Measurement	28VDC	Limits			
Temperature Deg C	Measured Frequency (MHz)	Frequency (MHz)			
-30	1089.9975	1090 ± 1.0			
-20	1090.00125	1090 ± 1.0			
-10	1090.005	1090 ± 1.0			
0	1090.0025	1090 ± 1.0			
10	1089.99625	1090 ± 1.0			
20	1089.996254	1090 ± 1.0			
30	1089.997275	1090 ± 1.0			
40	1089.99375	1090 ± 1.0			
50	1089.98875	1090 ± 1.0			

ACSS Proprietary	Use or disclosure of the information on this sheet is subject to the proprietary and export notices on the title page.	Page-24
---------------------	--	---------

6.6.2 Frequency Stability (Primary Power Variation)

47CFR references: 2.1055, Frequency Stability 87.133, Frequency Stability

For the 14 VDC power, 85%/115% = 11.9 VDC/16.1 VDC will be used For the 28 VDC power, 85%/115% = 23.8 VDC/32.2 VDC will be used

6.6.2.1 Frequency Stability (Primary Power Variation) Test Equipment Required

Table 6-12: Frequence	y Stability	(Primary	y Power	Variation)	Test Ec	quipment	Required
-----------------------	-------------	----------	---------	------------	---------	----------	----------

Block Diagram Reference	Туре	Manufacturer	Model
А	NGT-9000 Test Unit	ACSS	9029000-20000
В	NGT VALFAC	ACSS	9006052-001 and 9000717-002
С	Peak Power Analvzer		
D	Spectrum Analyzer		

Comment: Equivalent equipment may be used.

6.6.2.1.1 Frequency Stability (Primary Power Variation) Test Setup

Figure 6-7: Frequency Stability (Primary Power Variation) Test Setup

6.6.2.1.2 XPDR Frequency Stability (Primary Power Variation) Test Procedure

1. Connect the equipment as shown in Table 6-7 above. It is also acceptable to insert a directional coupler between A and B and measure the power at the coupled port.

Using VALFAC Scripts:

• Configure the VALFAC script tool to run DO181E_23221_atcrbs_top.scp and DO181E_23221_atcrbs_bot.scp (ATCRBS, Mode A replies at 500 Hz on top/bottom antennas with Mode A code set to 0xFFF).

Using IFR:

- Configure the VALFAC TCAS GUI tool with correct APM configuration and select Run.
- To use the IFR, the optional directional coupler must be used for measurements. Instead of
- connecting the directional coupler to B above, it must be connected to the output of the IFR.
- Setup IFR for ATCRBS:

ACSS	Use or disclosure of the information on this sheet is subject to the	Page-25
Proprietary	proprietory and expert notices on the title page	
riophotary	proprietary and export notices on the title page.	

Document Number	NGT-9000 FCC Test Procedures and Results	Revision
8020133-002	Power Amp Qualification	А

- Select C10 and F01 for ATCRBS. Select Mode A reply using front panel switch. Set PRF to 500.
- Set output Switch to NORM.
- 2. Apply +28VDC power to the unit and vary the primary power by +/-15% to the values shown in. Record the transmission frequency in Table 6-13.
- 3. Repeat step 2 for +14VDC power.

6.6.2.1.3 TAS Frequency Stability (Primary Power Variation) Test Procedure

- 1. Connect the equipment as shown in Table 6-7 above. It is also acceptable to insert a directional coupler between A and B and measure the power at the coupled port.
- Open the Serial Terminal and connect to Com 1 at 115200 baud. Activate and enter the following commands, "testmode set 3" and "tcas ws 7c" (50 Hz rate of highest level whisper/shout step)
- 3. Apply +28VDC power to the unit and vary the primary power by +/-15% to the values shown in. Record the transmission frequency in Table 6-13.
- 4. Repeat step 3 for +14VDC power.

6.6.2.1.4 Frequency Stability (Primary Power Variation) Test Results

The transmission frequency offset values recorded during the primary power variation test are tabulated in Table 6-13.

Top Antenna				
Transmission Type	Power Supply Voltage (V)	Measured Frequency (MHz)	Frequency Limit (MHz)	
	11.9	1029.998	1030 ± 0.1	
	14	1029.992	1030 ± 0.1	
TAS	16.1	1030.008	1030 ± 0.1	
TAS	23.8	1030.002	1030 ± 0.1	
	28	1029.995	1030 ± 0.1	
	32.2	1030.0101	1030 ± 0.1	
XPDR	11.9	1089.99323	1090 ± 1.0	
	14	1089.99457	1090 ± 1.0	
	16.1	1089.99356	1090 ± 1.0	
	23.8	1089.99299	1090 ± 1.0	
	28	1089.99366	1090 ± 1.0	
	32.2	1089.99383	1090 ± 1.0	

Table 6-13: Frequency Stability (Primary Power variation) Test Results

ACSS	Use or disclosure of the information on this sheet is subject to the	Page-26
Proprietary	proprietary and export notices on the title page.	

Document Number	NGT-9000 FCC Test Procedures and Results	Revision
8020133-002	Power Amp Qualification	А

APPENDIX A COMPLIANCE TESTING RESULTS – MESA, AZ

Compliance Testing Results - Mesa, AZ

FCC Part 2, Part 87

Models: NGT-9000D+ & NGT-9000RD+

ACSS	Use or disclosure of the information on this sheet is subject to the	Page-27
Proprietary	proprietary and export notices on the title page.	

Compliance Testing, LLC

Previously Flom Test Lab EMI, EMC, RF Testing Experts Since 1963

http://www.ComplarceTesting.com info@ComplarceTesting.com

Test Report

Prepared for: Aviation Communication and Surveillance Systems

Model: NGT-9000D+ and NGT-9000RD+

Description: Mode-S transponder

Serial Number: LXE13068, LXE13369

FCC ID: 2ACTZMSS9019

То

FCC Part 87

Date of Issue: August 23, 2019

On the behalf of the applicant:

Aviation Communication and Surveillance Systems 19810 N. 7th Ave. Phoenix, AZ 85027

Attention of:

Mark D. Smith 623-445-6643 Mark.D.Smith@L3Harris.com

Prepared by Compliance Testing, LLC 1724 S. Nevada Way Mesa, AZ 85204 (480) 926-3100 phone / (480) 926-3598 fax <u>www.compliancetesting.com</u> Project No: p1960015

parala

Poona Saber Project Test Engineer

This report may not be reproduced, except in full, without written permission from Compliance Testing. All results contained herein relate only to the sample tested.

Test Report Revision History

Revision	Date	Revised By	Reason for Revision
1.0	August 23,2019	Poona Saber	Original Document
2.0	August 29,2019	Poona Saber	Revised material after Mark Smith's review
3.0	August 30,2019	Poona Saber	More revised text

Table of Contents

Description_	<u>Page</u>
Standard Test Conditions Engineering Practices	5
Test Results Summary	7
Carrier Output Power (Conducted)	
Conducted Spurious Emissions	10
Radiated Spurious Radiation	11
Occupied Bandwidth	12
Emission Masks (Occupied Bandwidth)	13
Frequency Stability (Temperature Variation)	14
Frequency Stability (Voltage Variation)	15
Modulation Characteristics	
Modulation Details	17
Test Equipment Utilized	21

<u>ILAC / A2LA</u>

Compliance Testing, LLC, has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer joint ISO-ILAC-IAF Communiqué dated January 2009).

The tests results contained within this test report all fall within our scope of accreditation, unless noted in the table below

Please refer to http://www.compliancetesting.com/labscope.html for current scope of accreditation.

Testing Certificate Number: 2152.01

FCC Site Reg. #349717

IC Site Reg. #2044A-2

Non-accredited tests contained in this report:

N/A

Standard Test Conditions Engineering Practices

Except as noted herein, the following conditions and procedures were observed during the testing:

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.947, 2.1033(c), 2.1041, 2.1046, 2.1047, 2.1051, 2.1053, 2.1055, 2.1057 and the following individual Parts: FCC Part 87.

Measurement results, unless otherwise noted, are worst-case measurements.

Environmental Conditions							
Temperature (°C)	Humidity (%)	Pressure (mbar)					
24-25.3	24.1-32.2	956-962					

Model: NGT-9000D+ and NGT-9000RD+ Description: Mode-S transponder

Additional Information:

NGT-9000D+ is the panel mount unit with S/N LXE13068 and NGT-9000RD+ is the remote unit with S/N LXE13369. The panel mount and remote mount units use identical internal circuit cards with the exception of the touch screen display. Both Conducted and radiated testing is done on panel mount unit and only radiated testing is repeated on remote mount unit.

NGT-9000 is a mode S transponder that provides 1090 MHz automatic dependent surveillance-broadcast information and also supports an optional active traffic (TAS/TCAS1) 1030 MHz function.

Following is declared as type of emission for NGT-9000D system:

- Transponder (Compliant with FAA TSO C112d with deviations): 14M0M1D
- TCAS/TAS (Compliant with FAA TSO C118a & TSO C147 with deviations): 18M0V1D
- Frequency range: 1030 ± 0.01 MHz and 1090 ± 1 MHz
- There are two sub-modes operation for 1090 MHz called: ATCRBS reply and Mode S and can be transmitted from both top and bottom antennas. ATCRBS interrogation mode is available at 1030 MHz from only top antenna.
- Transponder system (1090 MHz) uses pulse position modulation combined with pulse width modulation (M1D) while TCAS uses pulse position and amplitude modulation (V1D)
- In TCAS mode the transmitter always transmits to only one antenna port at a time and the maximum duty cycle is 0.012%
- In transponder mode the transmitter transmits to two antenna ports, top and bottom. The top and bottom antennas do not transmit simultaneously.
- The maximum duty cycle for transponder ATCRBS transmission is 0.338% and mode S transmission is 0.239%
- Unit is powered by 14 Vdc and 28 Vdc

EUT Support Equipment

Qty	Description	Manufacturer	Model No.	Part No.
1	XPDR RF Simulation Module	ACSS	-	ACSS-001985
1	Mode S generic test Fixture	ACSS	-	ACSS-001969
1	ATC Test Set	IFR	ATC 1400A	
1	Transponder test set	IFR	SI-1404	
1	DC Power Supply	Agilent	N5746A	
1	AC Power Supply	Elgar	CW1251	
1	Oscilloscope	Tektronix	TDS 3054B	0175
1	Directional Coupler	Narda	3003-20	11210
1	Directional coupler	Narda	27002SC-40	
1	Directional Coupler	Werlatone	C3910-10	
1	10 dB 50 Watts attenuator	Pasternack	NA	PE7392-10
2	Dell Computers	Dell	NA	

.XPDR RF Simulation Module is comprised of RF generators and attenuators that are controlled by an FPGA card in the test computer. We use this to send interrogations and receive replies from the UUT.

.Mode-S Generic Test Fixture is used to control the power applied to the UUT (via DC power supply) as well as providing the UUT with the necessary discrete inputs to facilitate normal operation and test operations.

Test Setup with Directional coupler and Support Equipment

Test Results Summary

Specification	Test Name	Pass, Fail, N/A	Comments
2.1046, 87.131	Carrier Output Power (Conducted)	Pass	
2.1051, 87.139(i)(1)	Unwanted Emissions (Transmitter Conducted)	Pass	
2.1053 87.139 (i)(1)	Field Strength of Spurious Radiation	Pass	
2.1049, 87.139 (i)(1) 87.135	Emission Masks and Occupied Bandwidth	Pass	
2.1047	Audio Low Pass Filter (Voice Input)	N/A	The EUT does not contain an audio input
2.1047	Audio Frequency Response	N/A	The EUT does not contain an audio input
2.1047	Modulation Limiting	N/A	
2.1047	Modulation Characteristic	Pass	
2.1055, 87.133(a)	Frequency Stability (Temperature Variation)	Pass	
2.1055, 87.133(a)	Frequency Stability (Voltage Variation)	Pass	

Carrier Output Power (Conducted) Engineer: Poona Saber Test Date: 7/9/2019

Test Procedure

The Equipment Under Test (EUT) was connected through a directional coupler directly to a spectrum analyzer with the RBW > OBW and the VBW set to 3 X RBW which set the RBW greater than the transmit signal ensuring there was no signal suppression while measuring a modulated signal. The peak readings were taken for TCAS and Transponder systems for both ATCRBS(C) and S modes and the result was then compared to the limit. The Average RMS power is the peak power multiplied by duty cycle of the Transponder and TCAS system.

Section 87.131, for Radio navigation equipment Note 7 specifies "Frequency, emission and maximum power will be determined by appropriate standards during the certification process.

TCAS output power is controlled by the requirements of FAA TSO-C118a AND TSO-C147 similarly to the output spectrum. In addition the Transponder output power is controlled by the requirements of FAA TSO C112d.

Output Power for TCAS System

Frequency	Antenna	Mode	Measured Power Peak (dBm)	Measured Power Peak (W)	Duty Cycle	Average power (W)	Average power (dBm)
1030 MHz	TOP	С	53.32	214.78	0.012 %	0.0258	14.1

Output Power for Transponder System

Frequency	Antenna	Mode	Measured Power Peak (dBm)	Measured Power Peak (W)	Duty Cycle	Average power (W)	Average power (dBm)
1090 MHz	TOP	ATCRBS	53.78	238.78	0.33%	0.7879	28.96
1090 MHz	Bottom	ATCRBS	53.98	250.03	0.33%	0.825	29.16
1090 MHz	TOP	S	53.82	240.99	0.239%	0.7952	29
1090 MHz	Bottom	S	53.92	246.60	0.239%	0.8137	29.1

See Appendix A for test plots

Conducted Spurious Emissions Engineer: Poona Saber Test Date: 7/10/19

Test Procedure

The EUT was connected through 3 different directional couplers covering the range from 30MHz- 10GHz with attenuators in line if necessary, to spectrum analyzer to verify that the EUT met the requirements for spurious emissions based on the requirement of FCC part 87.139 (a)(3):

When the frequency is removed from the assigned frequency by more than 250 percent of the authorized bandwidth the attenuation for aircraft station transmitters must be at least 40 dB.

Test Setup

Mode	Antenna	Frequency (MHz)	Average Spurious Power (dBm)	Average Fundamental Power (dBm)	dBc	Limit (dBc)	Result
1030 MHz	Тор	2058	-42.15	14.1	56.25	≥40	PASS
1090 MHz ATCRBS	Тор	2180.15	-11.17	28.96	40.13	≥40	PASS
1090 MHz ATCRBS	Bottom	2179	-18.20	29.16	47.36	≥40	PASS
1090 MHz Mode S	Тор	2179	-14.14	29	43.14	≥40	PASS
1090 MHz Mode S	Bottom	5449	-19.53	29.1	48.63	≥40	PASS

See Appendix B for test results

Radiated Spurious Radiation Engineer: Poona Saber Test Date: 7/12/19

Test Procedure

The EUT was setup and tested in accordance with ANSI C63.26 2015. Both top and bottom antenna ports are connected into the simulator with matched load. The EUT is placed on non-conductive platform at a height of 0.8 meters above the ground plane of the semi-anechoic chambers for emissions below 1 GHz and at a height of 1.5 meter for emissions above 1 GHz. The test distance from measurement antenna is 3 meters and EUT was rotated 360 degrees and the receive antenna raised and lowered to find the maximum emissions from 30MHz to the 10th harmonic of the fundamental. The EUT was set to the maximum power level allowed and RBW is set to 100 KHz for measurements below 1GHz and 1Mhz for measurements above 1GHz.

Radiated measurements are done on both Panel mount and Remote mount units.

See Appendix C for test results

Occupied Bandwidth Engineer: Poona Saber Test Date: 7/8/19

Requirement

Based on rule part 2.1049 the occupied Bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 % of the total mean power of the given emission.

Based on section 87.137 Authorized Bandwidth for Emission M1D is 14 MHz and V1D is 18 MHZ.

Operation of the TCAS (1030 MHz) system is administrated (licensed) by FAA in accordance with FAA TSO C-118a or TSO C-147. TCAS minimum operational performance standards (MOPS) are provided in RTCA document DO-197A. The allowable -20 dB bandwidth is specified in section 2.2.3.2.1 of DO-197a to be less than 40 MHz

Similarly, operation of the transponder (1090 MHz) system is administered by FAA in accordance with FAA TSO C-112d. Transponder MOPS are provided in RTCA document DO-181E. The allowable -20dB bandwidth is specified in section 2.2.4.2.3 of DO-181E to be less than 46 MHz.

Test Procedure

The following procedure shall be used for measuring (99 %) power bandwidth

The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts. The RBW shall be in the range of 1 % to 5 % of the anticipated OBW, and the VBW shall be set \geq 3 × RBW. Set the detection mode to peak, and the trace mode to max-hold.

See Appendix D for Test Results

Emission Masks (Occupied Bandwidth) Engineer: Poona Saber Test Date: 7/9/19

Test Procedure

The EUT was connected with a directional coupler to a spectrum analyzer to verify that the EUT meets the required emissions mask requirements of part 87.139 (a) (1) & (2) as below. The RBW was set as close as possible to 1%-5% of the occupied bandwidth to ensure accurate readings.

a) Except for ELTs and when using single sideband (R3E, H3E, J3E), or frequency modulation (F9) or digital modulation (F9Y) for telemetry or telecommand in the 1435-1525 MHz, 2345-2395 MHz, or 5091-5150 MHz band or digital modulation (G7D) for differential GPS, the mean power of any emissions must be attenuated below the mean power of the transmitter (pY) as follows:

(1) When the frequency is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth the attenuation must be at least 25 dB;

2) When the frequency is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth the attenuation must be at least 35 dB.

Test Setup

See Appendix E for Test Results

Frequency Stability (Temperature Variation) Engineer: Poona Saber Test Date: 7/10/19

Test Procedure

The EUT was placed in an environmental test chamber and the RF output was connected directly to a frequency counter. The temperature was varied from -30°C to 50°C in 10°C increments. After a sufficient time for temperature stabilization the RF output frequency was measured.

The frequency tolerance Limit that is used is based on rule part 87.133 (@) band (7) 960 to 1215 MHz which is 20 PPM

Test Setup

Measurement Results

1030 MHz

Tuned Frequency	Frequency	Upper Limit	Lower Limit	Temperature	Measured	Upper	Lower
(Hz)	Tolerance	(Hz)	(Hz)	centigrade	Frequency	Margin	Margin
	ppm				(Hz)	(Hz)	(Hz)
1,030,000,000	20.0	1030020600	1029979400	-30	1030010000	10600.000000	30600.000000
		1030020600	1029979400	-20	1030005000	15600.000000	25600.000000
		1030020600	1029979400	-10	1030006250	14350.000000	26850.000000
		1030020600	1029979400	0	1030002500	18100.000000	23100.000000
		1030020600	1029979400	10	1029997500	23100.000000	18100.000000
		1030020600	1029979400	20	1029996250	24350.000000	16850.000000
		1030020600	1029979400	30	1029996430	24170.000000	17030.000000
		1030020600	1029979400	40	1029991250	29350.000000	11850.000000
		1030020600	1029979400	50	1029991250	29350.000000	11850.000000

1090 MHz

Tuned Frequency	Frequency	Upper Limit	Lower Limit	Temperature	Measured	Upper	Lower
(Hz)	Tolerance	(Hz)	(Hz)	centigrade	Frequency	Margin	Margin
	ppm				(Hz)	(Hz)	(Hz)
1,090,000,000	20.0	1090021800	1089978200	-30	1089997500	24300.000000	19300.000000
		1090021800	1089978200	-20	1090001250	20550.000000	23050.000000
		1090021800	1089978200	-10	1090005000	16800.000000	26800.000000
		1090021800	1089978200	0	1090002500	19300.000000	24300.000000
		1090021800	1089978200	10	1089996250	25550.000000	18050.000000
		1090021800	1089978200	20	1089996254	25546.000000	18054.000000
		1090021800	1089978200	30	1089997275	24525.000000	19075.000000
		1090021800	1089978200	40	1089993750	28050.000000	15550.000000
		1090021800	1089978200	50	1089988750	33050.000000	10550.000000

Frequency Stability (Voltage Variation) Engineer: Poona Saber Test Date: 8/19/16

Test Procedure

The EUT was placed in a temperature chamber at $20\pm5^{\circ}$ C and connected directly to a spectrum analyzer. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value and the RF output was measured. This was measured with a variable DC voltage source at 14 and 28 Vdc.

The frequency tolerance Limit that is used is based on rule part 87.133 (@) band (7) 950 to 1215 MHz which is 20 PPM

Test Setup

Test Results

28 Vdc									
Tuned	Frequency	Upper Limit	Lower Limit	Nominal	Voltage	Measured	Upper	Lower	
Frequency	Tolerance	(Hz)	(Hz)	Voltatge		Frequency	Margin	Margin	
(Hz)	ppm					(Hz)	(Hz)	(Hz)	
1,030,000,000	20.0	1030020600	1029979400	28.00	23.80	1030002000	18600	22600	
		1030020600	1029979400		28.00	1029995000	25600	15600	
		1030020600	1029979400		32.20	1030010100	10500	30700	
1,090,000,000	20.0	1090021800	1089978200	28.00	23.80	1089992990	28810	14790	
		1090021800	1089978200		28.00	1089993660	28140	15460	
		1090021800	1089978200		32.20	1089993830	27970	15630	

14 Vdc

Tuned	Frequency	Upper Limit	Lower Limit	Nominal	Voltage	Measured	Upper	Lower
Frequency	Tolerance	(Hz)	(Hz)	Voltatge		Frequency	Margin	Margin
(Hz)	ppm					(Hz)	(Hz)	(Hz)
1,030,000,000	20.0	1030020600	1029979400	14.00	11.90	1029998000	22600	18600
		1030020600	1029979400		14.00	1029992000	28600	12600
		1030020600	1029979400		16.10	1030008000	12600	28600
1,090,000,000	20.0	1090021800	1089978200	14.00	11.90	1089993230	28570	15030
		1090021800	1089978200		14.00	1089994570	27230	16370
		1090021800	1089978200		16.10	1089993560	28240	15360

Modulation Characteristics

Section 2.1047 (d) states: "A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed "

See Appendix F for Modulation characteristics screen captures

Modulation Details

1 ATCRBS Interrogations

Interrogations are sent out on an intentionally jittered 1+/- 0.2 second interval in increasing power levels according to the schedules shown in Table 1. By transmitting the weakest signals first, only the closest aircraft will reply. The interrogations progress in a roughly circular pattern weighted toward the front of the aircraft since that is the area from which the greatest closing speeds originate. In areas of high density, the sequence is halted when the computer has reached a limit defined by a complex set of three inequalities. In this manner, interference to other TCAS equipped aircraft in the area is minimized since the strongest interrogations are the first to be dropped.

(in Watts)	Seque	nce #1	Seque	nce #2	Seque	Sequence #3		nce #4	Sequence #5	
	S1	P1/P3	S1	P1/P3	S1	P1/P3	S1	P1/P3	S1	P1/P3
WSL 7									21.88	158.5
WSL 6							21.88	70.79		
WSL 5					9.77	31.62	9.77	31.62	9.77	31.62
WSL 4			4.37	14.13	4.37	14.13	4.37	14.13	4.37	14.13
WSL 3	1.95	6.31	1.95	6.31	1.95	6.31	1.95	6.31	1.95	6.31
WSL 2	0.87	2.82	0.87	2.82	0.87	2.82	0.87	2.82	0.87	2.82
WSL 1		1.26		1.26		1.26		1.26		1.26
P _{iotel} (VV)		10.39		24.51		56.14		126.9		214.6
(in dBm)	Seque	nce #1	Seque	nce #2	Sequence #3		Sequence #4		Sequence #5	
	S1	P1/P3	S1	P1/P3	S1	P1/P3	S1	P1/P3	S1	P1/P3
WSL 7									43.4	52
WSL 6							43.4	48.5		
WSL 5					39.9	45	39.9	45	39.9	45
WSL 4			36.4	41.5	36.4	41.5	36.4	41.5	36.4	41.5
WSL 3	32.9	38	32.9	38	32.9	38	32.9	38	32.9	38
WSL 2	29.4	34.5	29.4	34.5	29.4	34.5	29.4	34.5	29.4	34.5
WSL 1		31		31		31		31		31

Table 1: Whisper Shout Minimum Power Levels

Figure 1: ATCRBS Whisper Shout Interrogations

Time in microseconds.

Figure 2 ATCRBS Mode C Interrogation

Pulse Widths:	0.8 ± 0.05 us
Rise Times (10% to 90%):	\geq 0.05 us, < 0.1 us
Fall Times (90% to 10%):	\geq 0.05 us, < 0.2 us

Pulses P1 and P3 will appear in all interrogation steps of the whisper / shout sequence and will be at the same power level. Pulse S1 will appear in all steps except the initial step on each antenna direction and at a level two or three dB below the level of P1, etc. according to the schedules shown in Figure 1 through Figure 4. The steps occur at intervals of two milliseconds until the entire program is complete. The program length depends upon the individual aircraft installation. Options are available from using either an omni-directional bottom antenna or a directional bottom antenna. The top antenna is always directional.

S1 =	 -2 microseconds
51=	-z microsecon

- P1 = 0 microseconds
- P3 = 21 microseconds

2 ATCRBS Replies

ATCRBS replies are pulse amplitude modulated signals (PAM), and are formed in response to Mode A or Mode C interrogations. Mode A replies consist of a 4096 code which is an identifier and an optional SPI pulse. The Transmitter CCA transmits ATCRBS reply pulse waveforms as shown in Figure 3.

Figure 3: ATCRBS Reply

The designator of the information pulses and their positions from the first framing pulse are as follows:

Pulse	Position (µsec)
FIRST FRAMING PULSE	0.0
C1	1.45
A1	2.90
C2	4.35
A2	5.80
C4	7.25
A4	8.70
X ¹	10.15
B1	11.60
D1	13.05
B2	14.50
D2	15.95
B4	17.40
D4	18.85
LAST FRAMING PULSE	20.30
SPI	24.65

Table 3: ATCRBS Reply Pulse Characteristics/Position

Note 1: The X pulse is referenced here for possible future use.

The ATCRBS Reply Pulse Spacing Tolerance is as follows:

- First framing pulse to information/last framing pulse ± 0.1 µsec
- Last framing pulse to SPI pulse ± 0.1 µsec
- Any 2 pulses in pulse group (except First framing pulse) ± 0.15 µsec

The ATCRBS pulse characteristics are as specified in the table below.

Table 4: ATCRBS Reply Pulses (in microseconds)

		Rise	Time	Decay	7 Time	
Pulse Designator	Pulse Duration	Duration Tolerance	Min.	Max.	Min.	Max
ATCRBS Reply Pulses	0.45	± 0.10	0.05	0.1	0.05	0.2

3 Mode S Replies

Mode S (Short & Long) replies, including preamble, data pulse, pulse shape, pulse spacing tolerance, and delay and jitter characteristics will be as follows.

The Transmitter CCA transmits Mode S reply pulse waveforms as shown in Figure 4.

- 1. Mode S Reply
 - a. The Mode S preamble consists of four 0.5 ± 0.05 microsecond pulses.
 - b. The second, third and fourth pulses are spaced 1.0, 3.5, and 4.5 microseconds respectively from the first transmitted pulse.
 - c. The block of reply data pulses begins 8.0 microseconds after the first transmitted pulse and is either 56 or 112 one microsecond intervals depending on the type of Mode S Reply.
 - d. A pulse with a width of 0.5 ± 0.05 microseconds is transmitted either in the first (data bit "1") or in the second half (data bit "0") of each interval. Also, if a pulse transmitted in the second half of one interval is followed by a pulse transmitted in the first half of the next interval, the two pulses merge. Once the merging occurs, a 1.0 ± 0.05 microsecond pulse is transmitted
- 2. Mode S Reply Pulse Shape
 - a. The pulse rise and decay time are as specified in the table below.

Table 5: Mode S Reply Pulses (in microseconds)

	Rise	e Time	Decay Time		
Pulse Designator	Min.	Max.	Min.	Max	
Mode S Reply Pulses	0.05	0.1	0.05	0.2	

- 3. Mode S Reply Pulse Spacing Tolerance
 - a. Mode S Reply pulses start at a defined multiple of 0.5 microseconds from the first transmitted pulse.
 - b. The pulse position tolerance must be ± 0.05 microseconds, measured from the first pulse of the reply.

Test Equipment Utilized

Description	Manufacturer	Model #	CT Asset #	Last Cal Date	Cal Due Date
Horn Antenna	ARA	DRG-118/A	i00271	6/16/18	6/16/20
Bi-Log Antenna Chase		CBL6111C	i00267	3/8/18	3/8/20
EMI Analyzer Agilent		E7405A	i00379	1/16/19	1/16/20
3 Meter Semi-Anechoic Chamber	Panashield	3 Meter Semi-Anechoic Chamber	i00428	8/15/16	8/15/19
PSA Spectrum Analyzer Agilent		E4445A	i00471	10/16/18	10/16/19
Spectrum Analyzer Rohde & Schwarz		FSU26	i00501	4/2/19	4/2/20
Preamplifier for 1-18GHz horn antenna	Miteq	AFS44 00101 400 23-10P- 44	i00509	N/A	N/A
Temperature Test Chamber	Thermotron	SE-1000-3-3	i00557	Functional Verification	Functional Verification
Hydra Data Bucket Fluke		2635A	100343	5/15/19	5/15/20
Network Analyzer	HP	8722D	100521	7/24/19	7/24/20

In addition to the above listed equipment standard RF connectors, Coupler and cables were utilized in the testing of the described equipment. Prior to testing these components were tested to verify proper operation.

END OF TEST REPORT

Test Setup Photos FCC ID: P8CT3C-16

Radiated Testing 30Mhz-1Ghz

Radiated Testing 1-18Ghz

Conducted Testing setup

Annex A Peak Power at Antenna Port

1030 Mode interogation top.BMP

condspur_b3_1g2g Date: 9.JUL.2019 19:00:45

1090 mode ATCRB bottom.BMP

condspur_b3_1g2g Date: 9.JUL.2019 19:10:20

1090 mode ATCRB top.BMP

condspur_b3_1g2g Date: 9.JUL.2019 18:46:07

1090 mode S bottom.BMP

condspur_b3_1g2g Date: 9.JUL.2019 19:08:39

1090 mode S top.BMP

condspur_b3_1g2g Date: 9.JUL.2019 19:04:17

Annex B

Conducted Spurious Emissions

1030 MHz interrogation mode top @ 2.059 GHz

1-3 GHz 1090 ATCRB top

1-3 GHz 1090 Mode S bottom

1-3 GHz 1090 Mode S top

🔆 Agilent 18:	22 : 45 Ma	ay 21,19	70				L		
				- -				Mkr1 4	.122 GHz
Ket 26.4 dBm		#H	tten 6 di	>				-23	.56 dBM
#HVg L-∵									
dB/									
47.4 dB									
DI									
-13.0									
dBm									
PAva									
M1 S2									
S3 FC	****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		- and the second se	- marine	······································		han the second second	
AA									
£ (f):									
FTun									
Swp 📃									
Start 3.000 GHz								Stop 6.	000 GHz
#Res BW 1 MHz_				₩VBW 3 M	Hz		Sweep 9.	105 ms (6	600 pts)_

3-6 GHz 1030 Mode Interrogation top

3-6 GHz 1090 ATCRB bottom

3-6 GHz 1090 ATCRB top

3-6 GHz 1090 Mode S bottom

Mkr1 5.449 Ref 28.96 dBm Atten 10 dB -19.53	GHz dBm
#Avg Log	
50.6 dB	
DI -13.0	
abm PAvg	
M1 S2 - Management and a second	progentier the
£(†): FTun	
Смр	
Start 3.000 GHz	GHZ

3-6 GHz 1090 Mode S top

30 MHz-1GHz 1030 interrogation top

30 MHz-1GHz 1090 ATCRB bottom

30 MHz-1GHz 1090 ATCRB top

30 MHz-1GHz 1090 Mode S bottom

30 MHz-1GHz 1090 Mode S top

6-10 GHz 1030 interogation top

6-10 GHz 1090 ATCRB bottom

6-10 GHz 1090 ATCRB top

6-10 GHz 1090 Mode S bottom

Ж А	ዡ Agilent 08:41:50 Apr 14, 1970									
			_		_				Mkr1 8	.778 GHz
Ref 22	dBm		#A	tten 6 di	3				25	.92 dBm
#Peak										
LU9 10										
dB/										
0ffst										
45										
dB										
DI										
-13.0 dBm										
							¢			
LAUA	mmMund	we have been been and	and the second	and the second	nyalinda Minaka	approximation and the second	energian and a start of the	and a second second	the second state and	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
M1 S2										
\$3 FC										
AA										
£ (f):										
FTun										
Swp										
A									0. 10	
Start b	Stop 10.000 GHz Stop 10.000 GHz									
#Kes B	WIMHZ				#VBM 3 MI	HZ		з₩еер 6.	669 MS (8	_pts)_טשפ

6-10 GHz 1090 Mode S top

Annex C Radiated Spurious Panel Mount and Remote Mount units

Panel Mount

1-12 GHz `1090 ATCRB Front and Right Side

1-12 GHz `1090 Mode S Back and Left Side

1-12 GHz `1090 Mode S Front and Right Side

1-12 GHz `1030 TCAS Back and Left Side

1-12 GHz `1030 TCAS Front and Right Side

30 MHz-1GHz `1030 TCAS Back

30 MHz-1GHz `1030 TCAS front

30 MHz-1GHz `1030 TCAS left Side

30 MHz-1GHz `1030 TCAS Right Side

30 MHz-1GHz `1090 ATCRB back and left Side

30 MHz-1GHz `1090 ATCRB Front and Right Side

30 MHz-1GHz `1090 Mode S back and left Side

30 MHz-1GHz `1090 Mode S Front and Right Side

Remote Mount

1-12 GH Back 1030 MHz with Notch filter

1-12 GH Back 1090 MHz with Notch filter

1-12 GH Front 1030 MHz with Notch filter

1-12 GH Front 1090 MHz with Notch filter

1-12 GH left 1030 MHz with Notch filter

1-12 GH left 1090 MHz with Notch filter

1-12 GH Right 1030 MHz with Notch filter

1-12 GH Right 1090 MHz with Notch filter

30 MHz-1GHz Back 1030 MHz

30 MHz-1GHz Back 1090 MHz

30 MHz-1GHz Front 1030 MHz

30 MHz-1GHz Front 1090 MHz

30 MHz-1GHz Left 1030 MHz

30 MHz-1GHz left 1090 MHz

30 MHz-1GHz Right 1030 MHz

30 MHz-1GHz Right 1090 MHz

Annex D Occupied Bandwidth

P1960015_Annex D_Rev 1.0 Page 1 of 4

1090 mode ATCRB bottom

1090 mode S bottom

1090 mode S top

Annex E Emission Mask

Mask 1030 interrogation Mode

Mask 1090 Mode S Bottom

Mask 1090 Mode S top

Annex F Modulation Characteristics

1030 MHz Pulse Width 1

1030 MHz Pulse Width 2

1030 MHz period

1090 MHz mode ATCRB period

1090 MHz mode ATCRB pulse width

1090 MHz mode ATCRB pulse width

1090 MHz mode S pulse train

1090 MHz mode S pulse width

1090 MHz mode S P1-P3

* A	gilent 06:	21:26 Ap	or 13, 193	70					L			
Ref 67	dBm		At	ten 30 dE	3					∆ Mkr:	1	20.05 ms 0.13 dB
#Peak Log 10 dB/			1R \$									
dB												
LgAv µ1 s2												
S3 VC	adoutionation	humationality	. Martin april	munited	www.www.	and and a star	tanih ta	www	haanaanaanaa	ng Naph	when	whisterness
£ (f): FTun												
Center	1.090 00	00 GHz									S	oan 0 Hz
Res BW	8 MHz_				VBW 8 M	Hz			Sweep 92	2.52 m	s (6	601 pts)_

1090 MHz mode S period

Document Number	NGT-9000 FCC Test Procedures and Results	Revision
8020133-002	Power Amp Qualification	А

END OF DOCUMENT

ACSS Proprietary	Use or disclosure of the information on this sheet is subject to the proprietary and export notices on the title page.	Page-98
---------------------	---	---------