

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	elease	e Control Record	4
1	C	Certificate of Conformity	5
2	S	ummary of Test Results	6
	2.1 2.2	Measurement Uncertainty Modification Record	
3	G	General Information	7
	3.1	General Description of EUT	7
	3.2	Description of Test Modes	
	3.2.1	Test Mode Applicability and Tested Channel Detail	
	3.3	Duty Cycle of Test Signal	
	3.4	Description of Support Units	
	3.4.1	Configuration of System under Test	
	3.5	General Description of Applied Standards	
4	т	est Types and Results	17
	4.1	Radiated Emission and Bandedge Measurement	
		Limits of Radiated Emission and Bandedge Measurement	
		Test Instruments	
	-	Test Procedures	-
		Deviation from Test Standard	
		Test Setup EUT Operating Conditions	
		Test Results	
	4.1.7	Conducted Emission Measurement	
		Limits of Conducted Emission Measurement	
		Test Instruments	
		Test Procedures	
	4.2.4	Deviation from Test Standard	28
	4.2.5	Test Setup	28
		EUT Operating Conditions	
		Test Results	
	4.3	6dB Bandwidth Measurement	
		Limits of 6dB Bandwidth Measurement	
		Test Setup Test Instruments	31
		Test Procedure	• •
		Deviation fromTest Standard	
		EUT Operating Conditions	
		Test Result	32
	4.4	Conducted Output Power Measurement	
		Limits OF Conducted Output Power Measurement	
		Test Setup	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard EUT Operating Conditions	
		Test Results	
	4.5	Power Spectral Density Measurement	
	4.5.1		
		Test Setup	
		Test Instruments	
		Test Procedure	
		Deviation from Test Standard	
	4.5.6	EUT Operating Condition	35

Ap	pend	lix – Information on the Testing Laboratories	. 40
5	Ρ	Pictures of Test Arrangements	. 39
	4.6.7	Test Results	. 38
		EUT Operating Condition	
	4.6.5	Deviation from Test Standard	. 37
	4.6.4	Test Procedure	. 37
	4.6.3	Test Instruments	. 37
	4.6.2	Test Setup	. 37
	4.6.1	Limits of Conducted Out of Band Emission Measurement	. 37
		Conducted Out of Band Emission Measurement	
	4.5.7	Test Results	. 36

	F	Release Control I	Record	
Issue No.	Description			Date Issued
RF170421E06-2	Original release.			July 31, 2017

Certificate of Conformity 1

Product:	Sophos Access Point
Brand:	SOPHOS
Test Model:	APX 740
Sample Status:	ENGINEERING SAMPLE
Applicant:	Sophos Ltd
Test Date:	May 05 to June 09, 2017
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10: 2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Wendy Wu / Specialist Prepared by :

Approved by :

May Chen / Manager

Date: July 31, 2017

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.247)							
FCC Clause	Test Item	Result	Remarks				
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -6.96dB at 0.42344MHz.				
15.205 & 209 & 15.247(d)	Radiated Emissions & Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -6.3dB at 95.31MHz.				
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.				
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.				
15.247(b)	Conducted power	PASS	Meet the requirement of limit.				
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.				
15.203	Antenna Requirement	PASS	Antenna connector is i-pex(MHF) not a standard connector.				

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.84 dB
Padiated Emissions up to 1 CHz	30MHz ~ 1GHz	5.32 dB
Radiated Emissions up to 1 GHz	1GHz ~ 6GHz	5.14 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	5.04 dB
	18GHz ~ 40GHz	5.25 dB

2.2 Modification Record

There were no modifications required for compliance.

General Information 3

General Description of EUT 3.1

Product	Sophos Access Point
Brand	SOPHOS
Test Model	APX 740
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	DC 55V from POE
Modulation Type	GFSK
Modulation Technology	DTS
Transfer Rate	Up to 1Mbps
Operating Frequency	2402MHz ~ 2480MHz
Number of Channel	40
Output Power	5.07mW (7.05 dBm)
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	NA
Data Cable Supplied	NA

Note:

1. The EUT has three radio transceivers, radio 1 is WLAN technologies for single band (2.4GHz), radio 2 is WLAN technology for single band (5GHz), and radio 3 is Bluetooth low energy (BT-LE) technology only.

	o		0 , (,	0, ,				
2. Simultaneously transmission condition.									
Condition Technology									
1 WLAN 2.4GHz (Radio 1) WLAN 5GHz (Radio 2)									
Note: The emission of	the simultaneous operation h	as been evalu	ated and no non-c	ompliance	was found.				
3. The EUT must be s	upplied with a POE (only for	test not for sa	le) as following tab	le:					
Brand	Model No.	Spec.							
PowerDsine	67A								
FOWEIDSINE	PD-9001GR/AC	Output: 55Vdc, 0.6A							

Radio 1	Radio 1								
2.4GHz									
Antenna No.	Transmitter Circuit	Brand	Model No.	Antenna Net Gain (dBi)	Frequency Range (GHz)	Antenna Type	Connecter Type	*Cable Length	
1	Chain (0)	NA	NA	4.99	2.4~2.4835	PIFA	i-pex(MHF)	176	
2	Chain (1)	NA	NA	4.47	2.4~2.4835	PIFA	i-pex(MHF)	140	
3	Chain (2)	NA	NA	3.71	2.4~2.4835	PIFA	i-pex(MHF)	98	
4	Chain (3)	NA	NA	4.83	2.4~2.4835	PIFA	i-pex(MHF)	70	
Radio 2									
				5GHz					
Antenna No.	Transmitter Circuit	Brand	Model No.	Antenna Net Gain (dBi)	Frequency Range (GHz)	Antenna Type	Connecter Type	*Cable Length	
1	Chain (0)	NA	NA	5.94	5.15~5.85	Dipole	i-pex(MHF)	79	
2	Chain (1)	NA	NA	5.71	5.15~5.85	Dipole	i-pex(MHF)	117	
3	Chain (2)	NA	NA	5.61	5.15~5.85	Dipole	i-pex(MHF)	157	
4	Chain (3)	NA	NA	5.32	5.15~5.85	Dipole	i-pex(MHF)	189	
Radio 3									
				Bluetooth				-	
Antenna No.	Transmitter Circuit	Brand	Model No.	Antenna Net Gain (dBi)	Frequency Range (GHz)	Antenna Type	Connecter Type	*Cable Length	
1	Chain (0)	NA	NA	2.75	2.4~2.4835	PIFA	i-pex(MHF)	121	
Note: For 1	TX configur	ation m	ode, max gai	n was selected f	or the final test.				

4. The antennas provided to the EUT, please refer to the following table:

5. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

40 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

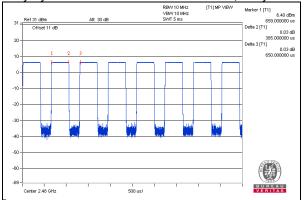
3.2.1 Test Mode Applicability and Tested Channel Detail

	RE≥1G		ТО	DESCRIPTION		
		RE<1G	PLC	APCM	DES	GCRIPTION
	\checkmark	\checkmark	\checkmark	\checkmark	-	
PLC: Power Line Conducted Emission APCM: Antenna Port Conducted Measurement						
			d of each 2	2 axis. The wors	t case was found when p	ositioned on X-plane .
Pre-Scan I between a architectur	has been (available m re).		ates and	antenna por	mode from all possi ts (if EUT with anter s listed below.	
AVAILABLE		TESTED CHANNEL		LATION TYPE	DATA RATE (Mbps)	
0 to 3	39	0, 19, 39		GFSK	1	
between a architectur	available m re).	nodulations, data ra	ates and	antenna por	mode from all possi ts (if EUT with anter	
between a architectur Following	available m re). channel(s	odulations, data ra	ates and ted for th	antenna port	ts (if EUT with anter s listed below.	
between a architectur	available m re). channel(s) CHANNEL	nodulations, data ra	ates and ted for th	antenna por	ts (if EUT with anter	
between a architectur Following AVAILABLE 0 to ower Line C Pre-Scan I between a architectur	available m re). channel(s CHANNEL 39 Conducted has been o available m re).) was (were) selec TESTED CHANNEL 39 39 39 39 39 39 39 39 39 39	ted for the MODU	antenna port ne final test a LATION TYPE GFSK e worst-case antenna port	ts (if EUT with anter s listed below. DATA RATE (Mbps) 1 1 mode from all possi ts (if EUT with anten	na diversity
between a architectur Following AVAILABLE 0 to ower Line C Pre-Scan I between a architectur	Available m re). channel(s CHANNEL 39 Conducted has been of available m re). channel(s	odulations, data ra) was (were) selec TESTED CHANNEL 39 d Emission Test: conducted to deter	Trmine the ates and ted for the ted for the	antenna port ne final test a LATION TYPE GFSK e worst-case antenna port	ts (if EUT with anter s listed below. DATA RATE (Mbps) 1 1 mode from all possi ts (if EUT with anten	na diversity

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
0 to 39	0, 19, 39	GFSK	1


Test Condition:

APPLICABLE TO ENVIRONMENTAL CONDITIONS		INPUT POWER	TESTED BY
RE≥1G	22deg. C, 68%RH	120Vac, 60Hz	Rey Chen
RE<1G	25deg. C, 71%RH	120Vac, 60Hz	Andy Ho
PLC	25deg. C, 75%RH	120Vac, 60Hz	Andy Ho
APCM	25deg. C, 60%RH	120Vac, 60Hz	Anderson Chen

3.3 Duty Cycle of Test Signal

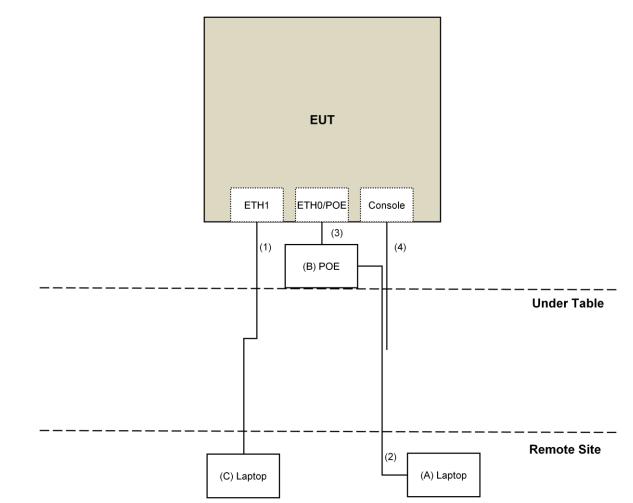
Duty cycle of test signal is < 98 %, duty factor shall be considered. Duty cycle = 0.385 ms/0.65 ms = 0.592, Duty factor = $10 * \log(1/0.592) = 2.27$

3.4 Description of Support Units

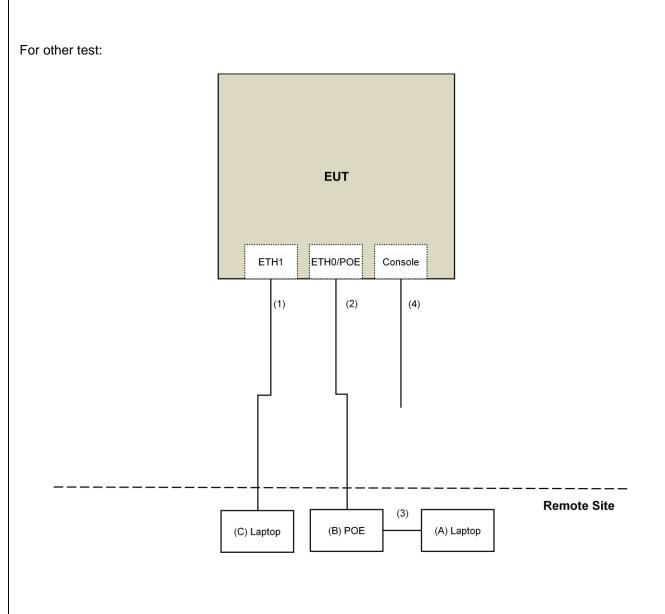
The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Laptop	DELL	E5430	HYV4VY1	FCC DoC	Provided by Lab
В.	POE	PowerDsine	PD-9001GR/AC	NA	NA	Supplied by client
C.	Laptop	LENOVO	E440	PF071LWC	NA	Provided by Lab

Note:


1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	RJ-45 Cable	1	10	No	0	Provided by Lab
2.	RJ-45 Cable	1	10	No	0	Provided by Lab
3.	RJ-45 Cable	1	3	No	0	Provided by Lab
4.	Console Cable	1	1.5	No	0	Provided by Lab



3.4.1 Configuration of System under Test

For Conducted Emission:

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) KDB 558074 D01 DTS Meas Guidance v04

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

NOTE: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

or below 1GHz test:								
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL				
Test Receiver Agilent	N9038A	MY50010156	Aug. 18, 2016	Aug. 17, 2017				
Pre-Amplifier ^(*) EMCI	EMC001340	980142	Jan. 20, 2016	Jan. 19, 2018				
Loop Antenna ^(*) Electro-Metrics	EM-6879	264	Dec. 16, 2016	Dec. 15, 2018				
RF Cable	NA	LOOPCAB-001 LOOPCAB-002	Jan. 17, 2017	Jan. 16, 2018				
Pre-Amplifier Mini-Circuits	ZFL-1000VH2 B	AMP-ZFL-05	May 07, 2016	May 06, 2017				
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Dec. 29, 2016	Dec. 28, 2017				
RF Cable	8D	966-3-1 966-3-2 966-3-3	Apr. 01, 2017	Mar. 31, 2018				
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-3-01	Oct. 05, 2016	Oct. 04, 2017				
Software	ADT_Radiated _V8.7.08	NA	NA	NA				
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA				

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. The test was performed in 966 Chamber No. 3.
- 4. The FCC Site Registration No. is 147459
- 5. The CANADA Site Registration No. is 20331-1
- 6. Loop antenna was used for all emissions below 30 MHz.
- 7. Tested Date: May 05, 2017

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver Agilent	N9038A	MY50010156	Aug. 18, 2016	Aug. 17, 2017
Horn_Antenna SCHWARZBECK	BBHA9120-D	9120D-406	Dec. 28, 2016	Dec. 27, 2017
Pre-Amplifier EMCI	EMC12630SE	980384	Feb. 02, 2017	Feb. 01, 2018
RF Cable	EMC104-SM- SM-1200 EMC104-SM- SM-2000 EMC104-SM- SM-5000	160922 150317 150322	Feb. 02, 2017 Mar. 29, 2017 Mar. 29, 2017	Feb. 01, 2018 Mar. 28, 2018 Mar. 28, 2018
Spectrum Analyzer Keysight	N9030A	MY54490520	July 29, 2016	July 28, 2017
Pre-Amplifier EMCI	EMC184045S E	980386	Feb. 02, 2017	Feb. 01, 2018
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170608	Dec. 15, 2016	Dec. 14, 2017
RF Cable	SUCOFLEX 102	36432/2 36433/2	Jan. 15, 2017	Jan. 14, 2018
Software	ADT_Radiated _V8.7.08	NA	NA	NA
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Spectrum Analyzer R&S	FSv40	100964	June 28, 2016	June 27, 2017
Power meter Anritsu	ML2495A	1014008	May 11, 2017	May 10, 2018
Power sensor Anritsu	MA2411B	0917122	May 11, 2017	May 10, 2018

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2 The test was performed in 966 Chamber No. 3.
- 3. The FCC Site Registration No. is 147459
- 4. The CANADA Site Registration No. is 20331-1
- 5. Tested Date: June 06 to 09, 2017

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both X and Y axes of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

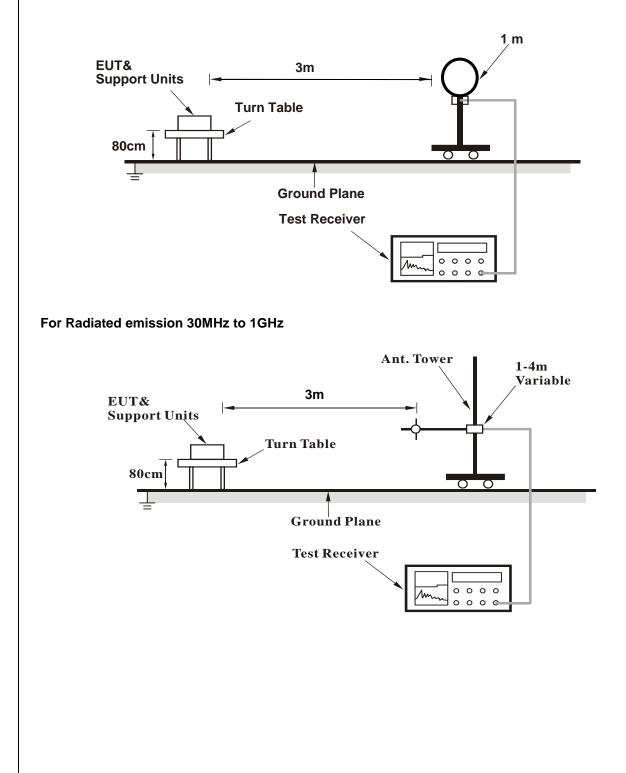
NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

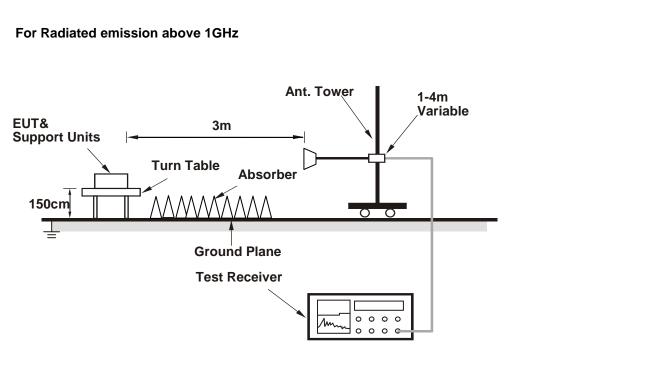
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1GHz. If duty cycle of test signal is < 98%, the duty factor need added to measured value.
- 4. All modes of operation were investigated and the worst-case emissions are reported.



4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For Radiated emission below 30MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

- 4.1.6 EUT Operating Conditions
- a. Connected the EUT with the Laptop which is placed on remote site.
- b. Contorlling software (QDART-QCARCT [Ver3.0.197.0]) has been activated to set the EUT on specific status.

4.1.7 Test Results

Above 1GHz Data:

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	45.2 PK	74.0	-28.8	3.86 H	89	46.8	-1.6	
2	2390.00	42.9 AV	54.0	-11.1	3.86 H	89	44.5	-1.6	
3	*2402.00	100.1 PK			3.86 H	89	101.6	-1.5	
4	*2402.00	98.1 AV			3.86 H	89	99.6	-1.5	
5	4804.00	38.5 PK	74.0	-35.5	1.70 H	226	35.5	3.0	
6	4804.00	26.4 AV	54.0	-27.6	1.70 H	226	23.4	3.0	
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	47.3 PK	74.0	-26.7	3.61 V	141	48.9	-1.6	
2	2390.00	39.9 AV	54.0	-14.1	3.61 V	141	41.5	-1.6	
3	*2402.00	103.8 PK			3.61 V	141	105.3	-1.5	
4	*2402.00	102.7 AV			3.61 V	141	104.2	-1.5	
5	4804.00	39.3 PK	74.0	-34.7	2.35 V	257	36.3	3.0	
6	4804.00	28.5 AV	54.0	-25.5	2.35 V	257	25.5	3.0	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
 The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2440.00	100.0 PK			3.89 H	100	101.5	-1.5
2	*2440.00	98.0 AV			3.89 H	100	99.5	-1.5
3	4880.00	28.3 PK	74.0	-45.7	1.71 H	231	25.1	3.2
4	4880.00	26.4 AV	54.0	-27.6	1.71 H	231	23.2	3.2
5	7320.00	42.9 PK	74.0	-31.1	2.16 H	233	34.0	8.9
6	7320.00	31.7 AV	54.0	-22.3	2.16 H	233	22.8	8.9
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)

	(11112)	(dBuV/m)	(aba v/m)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)
1	*2440.00	104.2 PK			2.09 V	345	105.7	-1.5
2	*2440.00	103.0 AV			2.09 V	345	104.5	-1.5
3	4880.00	39.5 PK	74.0	-34.5	2.37 V	260	36.3	3.2
4	4880.00	28.6 AV	54.0	-25.4	2.37 V	260	25.4	3.2
5	7320.00	50.6 PK	74.0	-23.4	2.10 V	123	41.7	8.9
6	7320.00	40.1 AV	54.0	-13.9	2.10 V	123	31.2	8.9

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2480.00	100.1 PK			3.85 H	110	101.5	-1.4			
2	*2480.00	98.9 AV			3.85 H	110	100.3	-1.4			
3	2483.50	52.0 PK	74.0	-22.0	3.85 H	110	53.4	-1.4			
4	2483.50	40.8 AV	54.0	-13.2	3.85 H	110	42.2	-1.4			
5	4960.00	39.1 PK	74.0	-34.9	1.73 H	235	35.9	3.2			
6	4960.00	26.7 AV	54.0	-27.3	1.73 H	235	23.5	3.2			
7	7440.00	43.0 PK	74.0	-31.0	2.14 H	224	33.8	9.2			
8	7440.00	31.6 AV	54.0	-22.4	2.14 H	224	22.4	9.2			
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2480.00	104.3 PK			2.06 V	360	105.7	-1.4			
2	*2480.00	103.3 AV			2.06 V	360	104.7	-1.4			
3	2483.50	57.3 PK	74.0	-16.7	2.06 V	360	58.7	-1.4			
4	2483.50	46.9 AV	54.0	-7.1	2.06 V	360	48.3	-1.4			
5	4960.00	39.7 PK	74.0	-34.3	2.41 V	253	36.5	3.2			
6	4960.00	28.7 AV	54.0	-25.3	2.41 V	253	25.5	3.2			
7	7440.00	50.1 PK	74.0	-23.9	2.14 V	118	40.9	9.2			
8	7440.00	39.8 AV	54.0	-14.2	2.14 V	118	30.6	9.2			

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

Below 1GHz Data:

CHANNEL	TX Channel 39	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
95.31	37.2 QP	43.5	-6.3	1.50 H	289	50.6	-13.4			
250.70	39.3 QP	46.0	-6.7	1.49 H	178	48.8	-9.5			
281.18	38.2 QP	46.0	-7.8	1.00 H	269	46.2	-8.0			
415.70	35.4 QP	46.0	-10.6	1.50 H	266	40.1	-4.7			
499.96	36.1 QP	46.0	-9.9	1.59 H	281	38.8	-2.7			
665.45	30.4 QP	46.0	-15.6	1.00 H	49	29.9	0.5			
	ANTENNA		& TEST DI	STANCE: V	ERTICAL A	Т 3 М				
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
37.50	33.4 QP	40.0	-6.6	1.43 V	229	42.5	-9.1			
65.24	33.4 QP	40.0	-6.6	1.41 V	257	43.3	-9.9			
110.15	34.7 QP	43.5	-8.8	1.00 V	296	45.9	-11.2			
255.46	35.6 QP	46.0	-10.4	1.00 V	296	44.9	-9.3			
500.01	34.6 QP	46.0	-11.4	1.00 V	214	37.2	-2.6			
941.22	35.6 QP	46.0	-10.4	1.49 V	226	30.9	4.7			
	(MHz) 95.31 250.70 281.18 415.70 499.96 665.45 FREQ. (MHz) 37.50 65.24 110.15 255.46 500.01	FREQ. (MHz) EMISSION LEVEL (dBuV/m) 95.31 37.2 QP 250.70 39.3 QP 281.18 38.2 QP 415.70 35.4 QP 499.96 36.1 QP 665.45 30.4 QP ANTENNA FREQ. (MHz) EMISSION LEVEL (dBuV/m) 37.50 33.4 QP 65.24 33.4 QP 110.15 34.7 QP 255.46 35.6 QP 500.01 34.6 QP	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) 95.31 37.2 QP 43.5 250.70 39.3 QP 46.0 281.18 38.2 QP 46.0 415.70 35.4 QP 46.0 499.96 36.1 QP 46.0 665.45 30.4 QP 46.0 FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) 37.50 33.4 QP 40.0 65.24 33.4 QP 40.0 110.15 34.7 QP 43.5 255.46 35.6 QP 46.0 500.01 34.6 QP 46.0	FREQ. (MHz)EMISSION LEVEL (dBuV/m)LIMIT (dBuV/m)MARGIN (dB)95.31 37.2 QP 43.5 -6.3250.70 39.3 QP 46.0 -6.7281.18 38.2 QP 46.0 -7.8415.70 35.4 QP 46.0 -10.6499.96 36.1 QP 46.0 -15.6MATENNA POLARITY & TEST DIFREQ. (MHz)EMISSION (MHz)LIMIT (dBuV/m)MARGIN (dB) 37.50 33.4 QP 40.0 -6.6 55.24 33.4 QP 40.0 -6.6 110.15 34.7 QP 43.5 -8.8 255.46 35.6 QP 46.0 -10.4 500.01 34.6 QP 46.0 -11.4	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) 95.31 37.2 QP 43.5 -6.3 1.50 H 250.70 39.3 QP 46.0 -6.7 1.49 H 281.18 38.2 QP 46.0 -7.8 1.00 H 415.70 35.4 QP 46.0 -10.6 1.50 H 499.96 36.1 QP 46.0 -9.9 1.59 H 665.45 30.4 QP 46.0 -15.6 1.00 H ANTENNA POLARITY & TEST DISTANCE: V FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) 37.50 33.4 QP 40.0 -6.6 1.43 V 65.24 33.4 QP 40.0 -6.6 1.41 V 110.15 34.7 QP 43.5 -8.8 1.00 V 255.46 35.6 QP 46.0 -10.4 1.00 V 500.01 34.6 QP 46.0 -11.4 1.00 V	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) 95.31 37.2 QP 43.5 -6.3 1.50 H 289 250.70 39.3 QP 46.0 -6.7 1.49 H 178 281.18 38.2 QP 46.0 -7.8 1.00 H 269 415.70 35.4 QP 46.0 -10.6 1.50 H 266 499.96 36.1 QP 46.0 -9.9 1.59 H 281 665.45 30.4 QP 46.0 -15.6 1.00 H 49 ANTENNA POLARITY & TEST DISTANCE: VERTICAL A FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (dB) TABLE ANGLE (Degree) 37.50 33.4 QP 40.0 -6.6 1.43 V 229 65.24 33.4 QP 40.0 -6.6 1.41 V 257 110.15 34.7 QP 43.5 -8.8 1.00 V 296 255.46 35.6 QP 46.0 <td< td=""><td>FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) RAW VALUE (dBuV) 95.31 37.2 QP 43.5 -6.3 1.50 H 289 50.6 250.70 39.3 QP 46.0 -6.7 1.49 H 178 48.8 281.18 38.2 QP 46.0 -7.8 1.00 H 269 46.2 415.70 35.4 QP 46.0 -10.6 1.50 H 266 40.1 499.96 36.1 QP 46.0 -9.9 1.59 H 281 38.8 665.45 30.4 QP 46.0 -15.6 1.00 H 49 29.9 ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) RAW VALUE (dBuV) 37.50 33.4 QP 40.0 -6.6 1.43 V 229 42.5 65.24 33.4 QP 40.0 -6.6 1.41 V 257 43.3</td></td<>	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) RAW VALUE (dBuV) 95.31 37.2 QP 43.5 -6.3 1.50 H 289 50.6 250.70 39.3 QP 46.0 -6.7 1.49 H 178 48.8 281.18 38.2 QP 46.0 -7.8 1.00 H 269 46.2 415.70 35.4 QP 46.0 -10.6 1.50 H 266 40.1 499.96 36.1 QP 46.0 -9.9 1.59 H 281 38.8 665.45 30.4 QP 46.0 -15.6 1.00 H 49 29.9 ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) RAW VALUE (dBuV) 37.50 33.4 QP 40.0 -6.6 1.43 V 229 42.5 65.24 33.4 QP 40.0 -6.6 1.41 V 257 43.3			

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

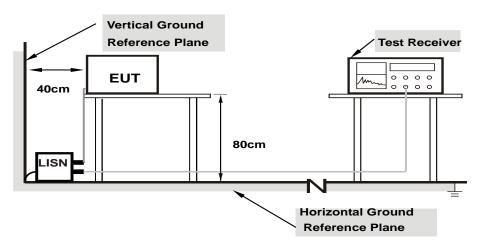
Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 24, 2016	Oct. 23, 2017
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 26, 2016	Oct. 25, 2017
Line-Impedance Stabilization Network (for Peripheral) R&S	ENV216	100072	June 13, 2016	June 12, 2017
50 ohms Terminator	N/A	EMC-02	Sep. 29, 2016	Sep. 28, 2017
RF Cable	5D-FB	COCCAB-001	Sep. 30, 2016	Sep. 29, 2017
10 dB PAD Mini-Circuits	HAT-10+	CONATT-004	June 20, 2016	June 19, 2017
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Shielded Room No. 1.
- 3 Tested Date: May 18, 2017


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

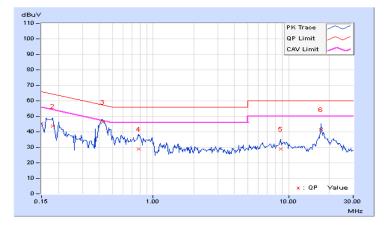
No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN. For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

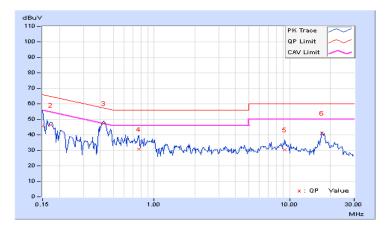
Same as 4.1.6.



4.2.7 Test Results

Phase			ie (L)		D	etector Fu	nction	Quasi- Averag	Peak (QP) e (AV)	/
		Corr.	Readin	g Value	Emissi	on Level	Lir	nit	Mar	gin
No	No Freq. Facto		[dB ((uV)]	[dB	(uV)]	[dB (uV)]	(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.19	35.25	15.77	45.44	25.96	66.00	56.00	-20.56	-30.04
2	0.18125	10.19	33.44	19.46	43.63	29.65	64.43	54.43	-20.80	-24.78
3	0.42600	10.22	36.15	29.22	46.37	39.44	57.33	47.33	-10.96	-7.89
4	0.78672	10.25	18.80	7.67	29.05	17.92	56.00	46.00	-26.95	-28.08
5	8.72656	10.48	18.47	12.52	28.95	23.00	60.00	50.00	-31.05	-27.00
6	17.44425	11.21	30.12	27.99	41.33	39.20	60.00	50.00	-18.67	-10.80

REMARKS:


- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase			Neutral (N)			Detector Function			Quasi-Peak (QP) / Average (AV)		
Corr		Corr.	Readin	Reading Value Emis		nission Level Limit		nit	Margin		
No	No Freq. Fa		[dB ([dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	10.18	35.48	16.88	45.66	27.06	66.00	56.00	-20.34	-28.94	
2	0.17172	10.17	35.95	26.01	46.12	36.18	64.88	54.88	-18.76	-18.70	
3	0.42344	10.21	37.02	30.21	47.23	40.42	57.38	47.38	-10.15	-6.96	
4	0.77500	10.22	20.37	9.07	30.59	19.29	56.00	46.00	-25.41	-26.71	
5	9.25391	10.45	19.95	13.62	30.40	24.07	60.00	50.00	-29.60	-25.93	
6	17.44531	10.99	30.02	27.79	41.01	38.78	60.00	50.00	-18.99	-11.22	

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
 - 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

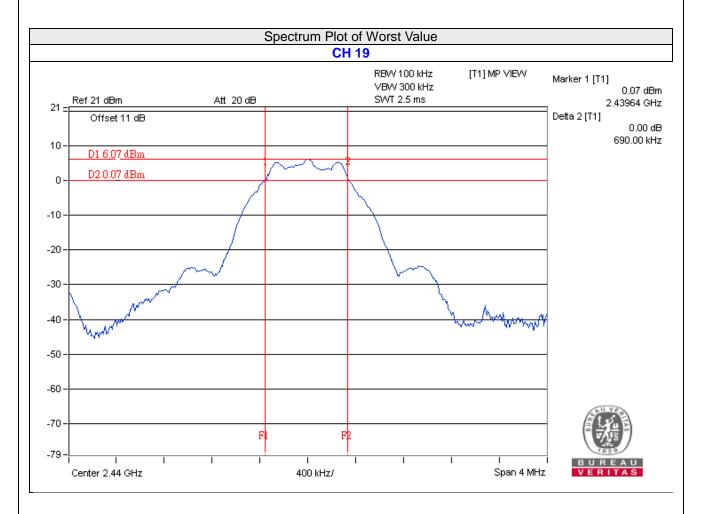
4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission
- 4.3.5 Deviation fromTest Standard

No deviation.


4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Result

Channel	Frequency (MHz)	Frequency (MHz) 6dB Bandwidth (MHz)		Pass / Fail
0	2402	0.70	0.5	Pass
19	2440	0.69	0.5	Pass
39	2480	0.70	0.5	Pass

4.4 Conducted Output Power Measurement

4.4.1 Limits OF Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

A peak / average power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak / average power sensor. Record the power level.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.3.6.

4.4.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
0	2402	3.882	5.89	30	Pass
19	2440	4.732	6.75	30	Pass
39	2480	5.07	7.05	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	3.443	5.37
19	2440	4.385	6.42
39	2480	4.71	6.73

4.5 **Power Spectral Density Measurement**

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm.

4.5.2 Test Setup

4.5.3 Test Instruments

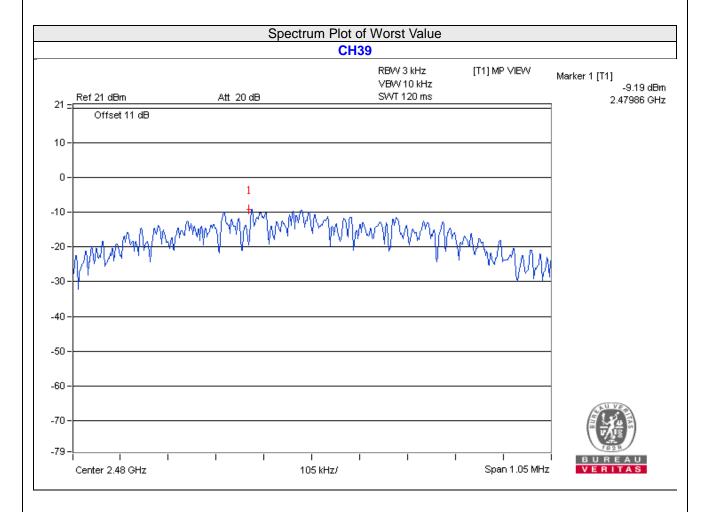
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d. Set the VBW \geq 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.5 Deviation from Test Standard

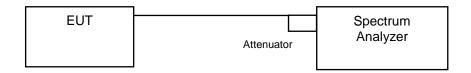
No deviation.


4.5.6 EUT Operating Condition

Same as Item 4.3.6

4.5.7 Test Results

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
0	2402	-10.67	8	Pass
19	2440	-9.48	8	Pass
39	2480	-9.19	8	Pass



4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

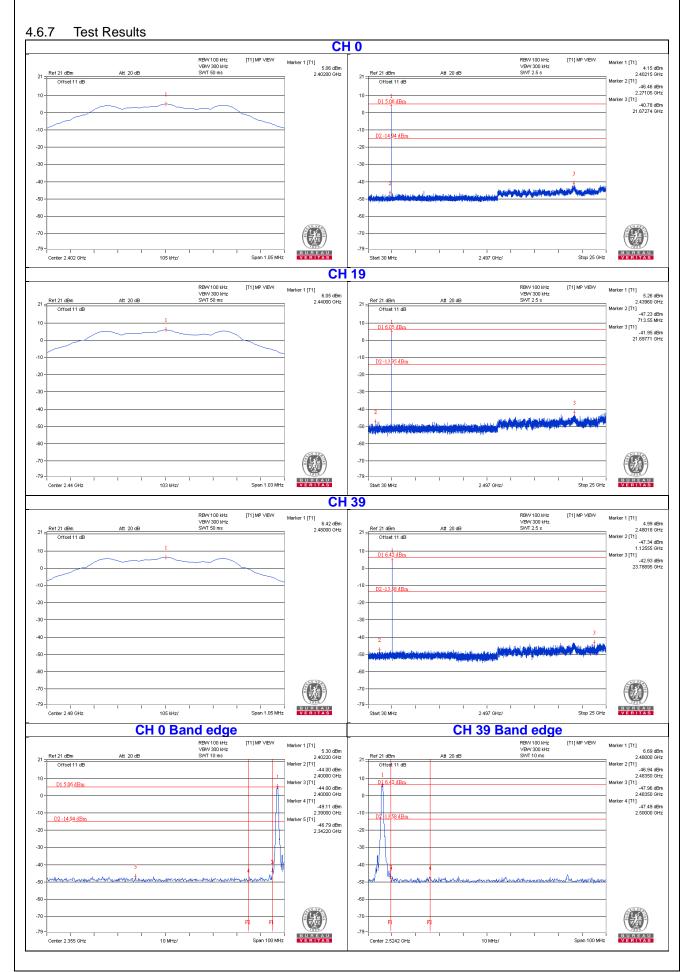
Refer to section 4.1.2 to get information of above instrument.

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.


4.6.5 Deviation from Test Standard

No deviation.

4.6.6 EUT Operating Condition

Same as Item 4.3.6

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----