

# FCC Test Report

Report No.: RFBDQY-WTW-P22040472-1

FCC ID: 2ACTO-APX320X

Test Model: APX 320X

Received Date: Apr. 13, 2022

**Test Date:** May 12 ~ May 13, 2022

Issued Date: Oct. 19, 2022

Applicant: Sophos Ltd

- Address: The Pentagon, Abingdon Science Park, Abingdon OX14 3YP, United Kingdom
- **Issued By:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories
- Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

**Test Location:** No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan

FCC Registration / 788550 / TW0003 Designation Number:



This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at <a href="http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/">http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/</a> and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.



# Table of Contents

| Rel                                                                     | Release Control Record 3                                                                                           |                                                                                                                                                                                                                                               |                                                                            |  |  |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|
| 1                                                                       | C                                                                                                                  | Certificate of Conformity                                                                                                                                                                                                                     | 4                                                                          |  |  |
| 2                                                                       | S                                                                                                                  | Summary of Test Results                                                                                                                                                                                                                       | 5                                                                          |  |  |
| 2<br>2                                                                  | .1<br>.2                                                                                                           | Measurement Uncertainty<br>Modification Record                                                                                                                                                                                                |                                                                            |  |  |
| 3                                                                       | G                                                                                                                  | General Information                                                                                                                                                                                                                           | 6                                                                          |  |  |
| 3<br>3<br>3                                                             | .2<br>.2.1<br>.3<br>.3.1<br>.4                                                                                     | General Description of EUT<br>Description of Test Modes<br>Test Mode Applicability and Tested Channel Detail<br>Description of Support Units<br>Configuration of System under Test<br>General Description of Applied Standards and References | 9<br>.11<br>12<br>12<br>13                                                 |  |  |
| 4                                                                       | Т                                                                                                                  | est Types and Results                                                                                                                                                                                                                         | 14                                                                         |  |  |
| 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | .1.1<br>.1.2<br>.1.3<br>.1.4<br>.1.5<br>.1.6<br>.1.7<br>.2<br>.2.1<br>.2.2<br>.2.3<br>.2.4<br>.2.5<br>.2.6<br>.2.7 | Test Instruments                                                                                                                                                                                                                              | 14<br>15<br>16<br>16<br>17<br>17<br>18<br>24<br>25<br>25<br>25<br>25<br>26 |  |  |
| 5                                                                       |                                                                                                                    | Pictures of Test Arrangements                                                                                                                                                                                                                 |                                                                            |  |  |
| App                                                                     | Appendix – Information of the Testing Laboratories                                                                 |                                                                                                                                                                                                                                               |                                                                            |  |  |



# **Release Control Record**

| Issue No.              | Description      | Date Issued   |
|------------------------|------------------|---------------|
| RFBDQY-WTW-P22040472-1 | Original release | Oct. 19, 2022 |



# **1** Certificate of Conformity

| Product:                                                           | Sophos Access Point   |
|--------------------------------------------------------------------|-----------------------|
| Brand:                                                             | Sophos                |
| Test Model:                                                        | APX 320X              |
| Sample Status:                                                     | Engineering sample    |
| Applicant:                                                         | Sophos Ltd            |
| Test Date:                                                         | May 12 ~ May 13, 2022 |
| Standards: 47 CFR FCC Part 15, Subpart E (Section ANSI C63.10:2013 |                       |

This report is issued as a supplementary report of RF191104C18-2. This report shall be used combined together with its original report.

Prepared by :

| : | Killy Chi                | , Date: | Oct. 19, 2022 |  |
|---|--------------------------|---------|---------------|--|
| _ | Polly Chien / Specialist |         |               |  |

Jeremy Lin, Date: Oct. 19, 2022 Approved by :

Jeremy Lin / Project Engineer

Note: Radiated emission below 1GHz and conducted emission are performed for the addendum. Refer to original report for the other test data.



# 2 Summary of Test Results

| 47 CFR FCC Part 15, Subpart E (Section 15.407) |                                               |                    |                                                                                                 |  |  |  |  |
|------------------------------------------------|-----------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------|--|--|--|--|
| FCC<br>Clause                                  | Test Item                                     | st Item Result Ren |                                                                                                 |  |  |  |  |
| 15.407(b)(9)                                   | AC Power Conducted Emissions                  | Pass               | Meet the requirement of limit.<br>Minimum passing margin is -1.51dB at<br>14.74212MHz.          |  |  |  |  |
| 15.407(b)<br>(1/2/3/4(i/ii)/9)                 | Radiated Emissions & Band<br>Edge Measurement | Pass               | Meet the requirement of limit.<br>Minimum passing margin is -2.8dB at<br>37.76MHz and 38.73MHz. |  |  |  |  |
| 15.407(a)(1/2/3)                               | Max Average Transmit Power                    | N/A                | Refer to Note 1                                                                                 |  |  |  |  |
|                                                | Occupied Bandwidth<br>Measurement             |                    | Reference only.                                                                                 |  |  |  |  |
| 15.407(a)(1/2/3)                               | Peak Power Spectral Density                   | N/A                | Refer to Note 1                                                                                 |  |  |  |  |
| 15.407(e)                                      | 6dB bandwidth                                 | N/A                | Refer to Note 1                                                                                 |  |  |  |  |
| 15.407(g)                                      | Frequency Stability                           | N/A                | Refer to Note 1                                                                                 |  |  |  |  |
| 15.203 Antenna Requirement                     |                                               | Pass               | Antenna connector is N-Type connector not a standard connector.                                 |  |  |  |  |

Note:

- 1. Radiated emission below 1GHz and conducted emission are performed for the addendum. Refer to original report for the other test data.
- 2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

# 2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| Measurement                        | Frequency       | Expanded Uncertainty (k=2) (±) |
|------------------------------------|-----------------|--------------------------------|
| Conducted Emissions at mains ports | 150kHz ~ 30MHz  | 2.79 dB                        |
|                                    | 9kHz ~ 30MHz    | 3.04 dB                        |
| Radiated Emissions up to 1 GHz     | 30MHz ~ 200MHz  | 3.59 dB                        |
|                                    | 200MHz ~1000MHz | 3.60 dB                        |

#### 2.2 Modification Record

There were no modifications required for compliance.



# 3 General Information

# 3.1 General Description of EUT

| Sophos Access Point                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Sophos                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| APX 320X                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Engineering sample                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 55Vdc (PoE)                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 256QAM, 64QAM, 16                             | 256QAM, 64QAM, 16QAM, QPSK, BPSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| OFDM                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 802.11a: 54/48/36/24/18/12/9/6Mbps            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 802.11n: up to 300Mt                          | ops                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 802.11ac: up to 867M                          | 1bps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 5180 ~ 5240MHz, 52                            | 60 ~ 5320MHz, 5500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 ~ 5700MHz, 5745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 ~ 5825MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 5180 ~ 5240MHz:                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 802.11a, 802.11n (HT                          | <sup>-</sup> 20), 802.11ac (VHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20): 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 802.11n (HT40), 802.                          | 11ac (VHT40): 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 802.11ac (VHT80): 1                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 5260 ~ 5320MHz:                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 802.11a, 802.11n (HT                          | <sup>-</sup> 20), 802.11ac (VHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20): 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 802.11n (HT40), 802.11ac (VHT40): 2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 802.11ac (VHT80): 1                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 5500 ~ 5700MHz:                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 802.11a, 802.11n (HT20), 802.11ac (VHT20): 11 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 802.11ac (VHT80): 2                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 5745 ~ 5825MHz:                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 802.11a, 802.11n (HT20), 802.11ac (VHT20): 5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 802.11ac (VHT80): 1                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                               | Dipole antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Directional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sector antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| CDD Mode                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                               | 140.275mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.953mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.953mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51.488mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 49.191mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 49.191mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 5745 ~ 5825MHz                                | 198.616mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 189.930mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 189.930mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Beamforming Mode                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 5180 ~ 5240MHz                                | 69.735mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.445mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.445mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 5260 ~ 5320MHz                                | 156.359mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.805mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.805mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 5500 ~ 5700MHz                                | 130.743mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.654mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.654mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 5745 ~ 5825MHz                                | 198.616mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95.379mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95.379mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                               | Sophos<br>APX 320X<br>Engineering sample<br>55Vdc (PoE)<br>256QAM, 64QAM, 16<br>OFDM<br>802.11a: 54/48/36/24<br>802.11a: 54/48/36/24<br>802.11a: up to 300MB<br>802.11ac: up to 867M<br>5180 ~ 5240MHz, 520<br>5180 ~ 5240MHz;<br>802.11a, 802.11n (HT<br>802.11a (VHT80): 1<br>5260 ~ 5320MHz;<br>802.11a, 802.11n (HT<br>802.11a, 802.11n (HT<br>802.11a (VHT80): 2<br>5745 ~ 5825MHz;<br>802.11ac (VHT80): 1<br>CDD Mode<br>5180 ~ 5240MHz<br>5260 ~ 5320MHz<br>5500 ~ 5700MHz<br>5260 ~ 5320MHz<br>5260 ~ 5320MHz<br>5260 ~ 5320MHz<br>5260 ~ 5320MHz | Sophos           APX 320X           Engineering sample           55Vdc (PoE)           256QAM, 64QAM, 16QAM, QPSK, BPSK           OFDM           802.11a: 54/48/36/24/18/12/9/6Mbps           802.11a: 54/48/36/24/18/12/9/6Mbps           802.11a: 10 to 300Mbps           802.11a: up to 867Mbps           5180 ~ 5240MHz, 5260 ~ 5320MHz, 5500           5180 ~ 5240MHz:           802.11a, 802.11n (HT20), 802.11ac (VHT           802.11ac (VHT80): 1           Dipole antenna           CDD Mode           5180 ~ 5240MHz           140.275mW | Sophos           APX 320X           Engineering sample           55Vdc (PoE)           256QAM, 64QAM, 16QAM, QPSK, BPSK           OFDM           802.11a: 54/48/36/24/18/12/9/6Mbps           802.11a: up to 300Mbps           802.11a: up to 300Mbps           802.11a: up to 867Mbps           5180 ~ 5240MHz, 5260 ~ 5320MHz, 5500 ~ 5700MHz, 5745           5180 ~ 5240MHz:           802.11ac up to 867Mbps           5180 ~ 5240MHz;           802.11ac (VHT20), 802.11ac (VHT20): 4           802.11a, 802.11n (HT20), 802.11ac (VHT20): 4           802.11a, 602.11n (HT20), 802.11ac (VHT20): 4           802.11a, 802.11n (HT20), 802.11ac (VHT20): 4           802.11a, 802.11n (HT20), 802.11ac (VHT20): 4           802.11a, 802.11a (VHT80): 1           5500 ~ 5700MHz:           802.11ac (VHT80): 1           502.11a, 802.11a (VHT40): 5           802.11a, 802.11a (VHT80): 2           5745 ~ 5825MHz:           802.11a (VHT80): 1           1802.11a (VHT80): 1           5802.11a (VHT80): 2           802.11a (VHT80): 2           802.11a (VHT80): 2           802.11a (VHT80): 1           10ipole antenna           Directional antenna           CDD Mode |  |  |  |



| Antenna Type      | Refer to note |
|-------------------|---------------|
| Antenna Connector | Refer to note |
| Accessory Device  | NA            |
| Cable Supplied    | NA            |

Note:

- 1. This report is prepared for FCC class II permissive change. The difference compared with the original report no. RF191104C18-2 is removing TPM IC. Therefore, radiated emission below 1GHz and conducted emission are performed for the addendum. Refer to original report for the other test data.
- 2. The EUT incorporates a MIMO function. Physically, the EUT provides 2 completed transmitters and 2 receivers.

|                  | 5GHz Band   |             |  |  |  |  |  |
|------------------|-------------|-------------|--|--|--|--|--|
| Modulation Mode  | TX Function | Beamforming |  |  |  |  |  |
| 802.11a          | 2TX         | Not Support |  |  |  |  |  |
| 802.11n (HT20)   | 2TX         | Support     |  |  |  |  |  |
| 802.11n (HT40)   | 2TX         | Support     |  |  |  |  |  |
| 802.11ac (VHT20) | 2TX         | Support     |  |  |  |  |  |
| 802.11ac (VHT40) | 2TX         | Support     |  |  |  |  |  |
| 802.11ac (VHT80) | 2TX         | Support     |  |  |  |  |  |

\* The modulation and bandwidth are similar for 802.11n mode for 20MHz/40MHz and 802.11ac mode for 20MHz/40MHz, therefore investigated worst case to representative mode in test report. (Final test mode refer section 3.2.1)

3. The EUT uses the following PoE. (Support unit only)

| Brand        | Microsemi                 |
|--------------|---------------------------|
| Model        | PD-9001GR/AC              |
| Input Power  | 100-240Vac~50/60Hz, 0.67A |
| Output Power | 55Vdc / 0.6A              |

4. The EUT uses the following antennas.

|    | Gain(dBi)   |      |      |      |       |      |      |      |      |           |
|----|-------------|------|------|------|-------|------|------|------|------|-----------|
| NC | ). Type     | 2400 | 2450 | 2500 | 5150  | 5325 | 5500 | 5675 | 5850 | Connector |
|    |             | MHz  | MHz  | MHz  | MHz   | MHz  | MHz  | MHz  | MHz  |           |
| 1  | Dipole      | 3.1  | 3.2  | 3.1  | 5.1   | 5.0  | 5.6  | 5.7  | 6.0  | N type    |
| 2  | Directional | 11.6 | 12.0 | 11.9 | 10.55 | 11.2 | 11.5 | 11.2 | 11.5 | N type    |
| 3  | Sector      | 10.6 | 11.4 | 11.2 | 12.57 | 12.7 | 13.0 | 12.4 | 13.1 | N type    |

\* Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.



5. The EUT will install at outdoor area, the highest antenna gain from the horizon above 30 degrees as below, for more detail information please refer to antenna specification and user manual

| for more detail information please refer to antenna specification and user manual |                              |                                                     |  |  |  |  |  |
|-----------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------|--|--|--|--|--|
| Antenna No.                                                                       | Antenna gain                 | Antenna install degree                              |  |  |  |  |  |
| 1                                                                                 | -0.50dBi                     |                                                     |  |  |  |  |  |
|                                                                                   |                              | ve photo, thus consider to above 30 degrees highest |  |  |  |  |  |
|                                                                                   |                              | antenna specification of 120-240° degrees, for XY   |  |  |  |  |  |
| evaluation.                                                                       | a effect to above 50 degrees | s from the horizon, therefore not required to       |  |  |  |  |  |
| 2                                                                                 | 10.55dBi                     | SOPHOS                                              |  |  |  |  |  |
| 3                                                                                 | 12.57dBi                     | SOPHOS                                              |  |  |  |  |  |



# 3.2 Description of Test Modes

#### For 5180 ~ 5240MHz:

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

| Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|
| 36      | 5180 MHz  | 44      | 5220 MHz  |
| 40      | 5200 MHz  | 48      | 5240 MHz  |

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

| Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|
| 38      | 5190 MHz  | 46      | 5230 MHz  |

1 channel is provided for 802.11ac (VHT80):

| Channel | Frequency |
|---------|-----------|
| 42      | 5210MHz   |

### For 5260 ~ 5320MHz:

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

| Frequency | Channel  | Frequency                                         |
|-----------|----------|---------------------------------------------------|
| 5260 MHz  | 60       | 5300 MHz                                          |
| 5280 MHz  | 64       | 5320 MHz                                          |
|           | 5260 MHz | 5260 MHz         60           5280 MHz         64 |

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

| Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|
| 54      | 5270 MHz  | 62      | 5310 MHz  |

1 channel is provided for 802.11ac (VHT80):

| Channel | Frequency |
|---------|-----------|
| 58      | 5290MHz   |



### For 5500 ~ 5700MHz:

11 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

| Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|
| 100     | 5500 MHz  | 124     | 5620 MHz  |
| 104     | 5520 MHz  | 128     | 5640 MHz  |
| 108     | 5540 MHz  | 132     | 5660 MHz  |
| 112     | 5560 MHz  | 136     | 5680 MHz  |
| 116     | 5580 MHz  | 140     | 5700 MHz  |
| 120     | 5600 MHz  |         |           |

5 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

| Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|
| 102     | 5510 MHz  | 126     | 5630 MHz  |
| 110     | 5550 MHz  | 134     | 5670 MHz  |
| 118     | 5590 MHz  |         |           |

2 channels are provided for 802.11ac (VHT80):

| Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|
| 106     | 5530 MHz  | 122     | 5610      |

#### For 5745 ~ 5825MHz:

5 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

| Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|
| 149     | 5745MHz   | 161     | 5805MHz   |
| 153     | 5765MHz   | 165     | 5825MHz   |
| 157     | 5785MHz   |         |           |

# 2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

| Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|
| 151     | 5755MHz   | 159     | 5795MHz   |

1 channel is provided for 802.11ac (VHT80):

| Channel | Frequency |
|---------|-----------|
| 155     | 5775MHz   |



| 3.2.1 | Test Mode Applicability and Tested Channel Detail |
|-------|---------------------------------------------------|
|-------|---------------------------------------------------|

| EUT<br>CONFIGURE | APPLICABLE TO                                                          |              | DESCRIPTION                  |  |  |
|------------------|------------------------------------------------------------------------|--------------|------------------------------|--|--|
| MODE             | RE<1G                                                                  | PLC          | DESCRIPTION                  |  |  |
| А                | $\checkmark$                                                           | $\checkmark$ | EUT with Dipole antenna      |  |  |
| В                | $\checkmark$                                                           | $\checkmark$ | EUT with Directional antenna |  |  |
| С                | $\checkmark$                                                           | $\checkmark$ | EUT with Sector antenna      |  |  |
| Where RE         | RE<1G: Radiated Emission below 1GHz PLC: Power Line Conducted Emission |              |                              |  |  |

Note:

1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Z-plane**.

2. For radiated emission (below 1GHz) and power line conducted emission test items, the worst maximum power was selected.

# Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

| EUT Configure<br>Mode | Mode             | Frequency<br>Band (MHz) | Available<br>Channel | Tested Channel | Modulation<br>Technology | Data Rate<br>(Mbps) |
|-----------------------|------------------|-------------------------|----------------------|----------------|--------------------------|---------------------|
|                       | 802.11ac (VHT80) | 5180-5240               | 42                   |                | OFDM                     | 29.3                |
|                       | 802.11ac (VHT80) | 5260-5320               | 58                   |                | OFDM                     | 29.3                |
| A, B, C               | 802.11ac (VHT80) | 5500-5700               | 106 to 122           | 155            | OFDM                     | 29.3                |
|                       | 802.11ac (VHT80) | 5745-5825               | 155                  |                | OFDM                     | 29.3                |

#### **Power Line Conducted Emission Test:**

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

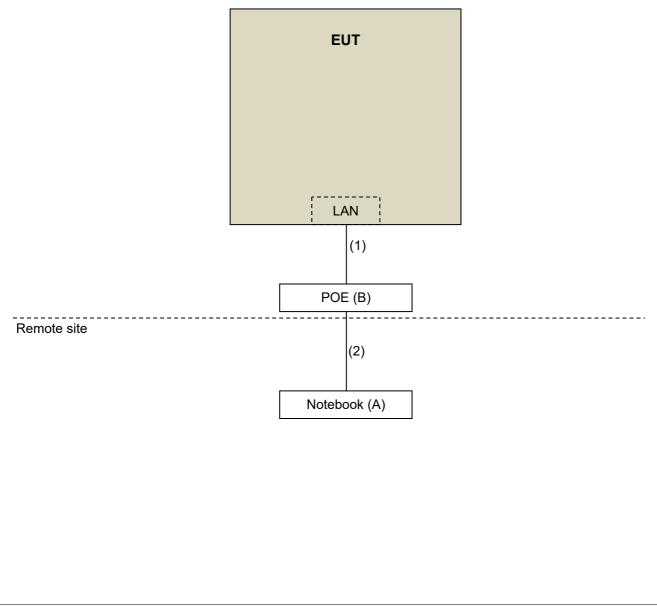
| EUT Configure<br>Mode | Mode             | Frequency<br>Band (MHz) | Available<br>Channel | Tested Channel | Modulation<br>Technology | Data Rate<br>(Mbps) |
|-----------------------|------------------|-------------------------|----------------------|----------------|--------------------------|---------------------|
|                       | 802.11ac (VHT80) | 5180-5240               | 42                   |                | OFDM                     | 29.3                |
|                       | 802.11ac (VHT80) | 5260-5320               | 58                   | 155            | OFDM                     | 29.3                |
| A, B, C               | 802.11ac (VHT80) | 5500-5700               | 106 to 122           |                | OFDM                     | 29.3                |
|                       | 802.11ac (VHT80) | 5745-5825               | 155                  |                | OFDM                     | 29.3                |

# Test Condition:

| APPLICABLE TO | O ENVIRONMENTAL CONDITIONS INPUT POWER (SYSTEM) |              | TESTED BY  |
|---------------|-------------------------------------------------|--------------|------------|
| RE<1G         | 23deg. C, 68%RH                                 | 120Vac, 60Hz | Adair Peng |
| PLC           | 25deg. C, 75%RH                                 | 120Vac, 60Hz | Rex Wang   |



# 3.3 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| ID | Product  | Brand     | Model No.    | Serial No. | FCC ID | Remarks |  |  |
|----|----------|-----------|--------------|------------|--------|---------|--|--|
| Α. | Notebook | Lenovo    | 80Q7         | PF0KUGU6   | NA     | -       |  |  |
| В. | PoE      | Microsemi | PD-9001GR/AC | NA         | NA     | -       |  |  |
|    |          |           |              |            |        |         |  |  |

Note: All power cords of the above support units are non-shielded (1.8m).

| ID | Descriptions | Qty. | Length (m) | Shielding<br>(Yes/No) | Cores (Qty.) | Remarks |
|----|--------------|------|------------|-----------------------|--------------|---------|
| 1. | RJ45 cable   | 1    | 2          | Ν                     | 0            | -       |
| 2. | RJ45 cable   | 1    | 10         | Ν                     | 0            | -       |

# 3.3.1 Configuration of System under Test





# 3.4 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and References:

# Test Standard: FCC Part 15, Subpart E (15.407)

ANSI C63.10:2013

All test items have been performed and recorded as per the above standards.

# References Test Guidance: KDB 789033 D02 General UNII Test Procedure New Rules v02r01 KDB 662911 D01 Multiple Transmitter Output v02r01

All test items have been performed as a reference to the above KDB test guidance.



# 4 Test Types and Results

### 4.1 Radiated Emission and Bandedge Measurement

### 4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

| Frequencies (MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) |
|-------------------|-----------------------------------|-------------------------------|
| 0.009 ~ 0.490     | 2400/F(kHz)                       | 300                           |
| 0.490 ~ 1.705     | 24000/F(kHz)                      | 30                            |
| 1.705 ~ 30.0      | 30                                | 30                            |
| 30 ~ 88           | 100                               | 3                             |
| 88 ~ 216          | 150                               | 3                             |
| 216 ~ 960         | 200                               | 3                             |
| Above 960         | 500                               | 3                             |

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

| Limits of unwanted emission out of the restricted bands              |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                         |                                                                                                                                           |  |  |  |  |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Applic                                                               | able To                                                                                                                                                                                                                                                                                                                 | Lir                                                                                                                                     | nit                                                                                                                                       |  |  |  |  |
| 789033 D02 General UNII Test Procedure<br>New Rules v02r01           |                                                                                                                                                                                                                                                                                                                         | Field Strength at 3m                                                                                                                    |                                                                                                                                           |  |  |  |  |
|                                                                      |                                                                                                                                                                                                                                                                                                                         | PK: 74 (dBμV/m)                                                                                                                         | AV: 54 (dBµV/m)                                                                                                                           |  |  |  |  |
| Frequency Band                                                       | Applicable To                                                                                                                                                                                                                                                                                                           | EIRP Limit                                                                                                                              | Equivalent Field Strength at<br>3m                                                                                                        |  |  |  |  |
| 5150~5250 MHz                                                        | 15.407(b)(1)                                                                                                                                                                                                                                                                                                            |                                                                                                                                         |                                                                                                                                           |  |  |  |  |
| 5250~5350 MHz                                                        | 15.407(b)(2)                                                                                                                                                                                                                                                                                                            | PK: -27 (dBm/MHz)                                                                                                                       | PK: 68.2(dBµV/m)                                                                                                                          |  |  |  |  |
| 5470~5725 MHz                                                        | 15.407(b)(3)                                                                                                                                                                                                                                                                                                            |                                                                                                                                         |                                                                                                                                           |  |  |  |  |
| 5725~5850 MHz                                                        | 15.407(b)(4)(i)                                                                                                                                                                                                                                                                                                         | PK: -27 (dBm/MHz) <sup>*1</sup><br>PK: 10 (dBm/MHz) <sup>*2</sup><br>PK: 15.6 (dBm/MHz) <sup>*3</sup><br>PK: 27 (dBm/MHz) <sup>*4</sup> | PK: 68.2(dBµV/m) <sup>*1</sup><br>PK: 105.2 (dBµV/m) <sup>*2</sup><br>PK: 110.8(dBµV/m) <sup>*3</sup><br>PK: 122.2 (dBµV/m) <sup>*4</sup> |  |  |  |  |
| *3 below the band ed                                                 | <ul> <li><sup>*1</sup> beyond 75 MHz or more above of the band edge.</li> <li><sup>*3</sup> below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.</li> <li><sup>*4</sup> from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.</li> </ul> |                                                                                                                                         |                                                                                                                                           |  |  |  |  |
| Note: The following for                                              | mula is used to convert                                                                                                                                                                                                                                                                                                 | the equipment isotropic radiated                                                                                                        | d power (eirp) to field strength:                                                                                                         |  |  |  |  |
| $E = \frac{1000000\sqrt{30P}}{3}$ µV/m, where P is the eirp (Watts). |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                         |                                                                                                                                           |  |  |  |  |
|                                                                      |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                         |                                                                                                                                           |  |  |  |  |



# 4.1.2 Test Instruments

| Description & Manufacturer              | Model No.                    | Serial No.   | Cal. Date     | Cal. Due      |
|-----------------------------------------|------------------------------|--------------|---------------|---------------|
| Test Receiver<br>KEYSIGHT               | N9038A                       | MY55420137   | Apr. 27, 2022 | Apr. 26, 2023 |
| Spectrum Analyzer<br>ROHDE & SCHWARZ    | FSP40                        | 100039       | Jun. 10, 2021 | Jun. 09, 2022 |
| BILOG Antenna<br>SCHWARZBECK            | VULB9168                     | 9168-160     | Oct. 28, 2021 | Oct. 27, 2022 |
| Loop Antenna<br>TESEQ                   | HLA 6121                     | 45745        | Jul. 21, 2021 | Jul. 20, 2022 |
| Preamplifier<br>Agilent<br>(Below 1GHz) | 8447D                        | 2944A10638   | Jun. 05, 2021 | Jun. 04, 2022 |
| RF signal cable<br>Woken                | 8D-FB                        | Cable-CH9-01 | Jun. 05, 2021 | Jun. 04, 2022 |
| Software<br>BV ADT                      | ADT_Radiated_<br>V7.6.15.9.5 | NA           | NA            | NA            |
| Antenna Tower &Turn<br>BV ADT           | AT100                        | AT93021705   | NA            | NA            |
| Turn Table<br>BV ADT                    | TT100                        | TT93021705   | NA            | NA            |
| Turn Table Controller<br>BV ADT         | SC100                        | SC93021705   | NA            | NA            |
| Boresight Antenna Fixture               | FBA-01                       | FBA-SIP01    | NA            | NA            |

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 9.

3. Tested date: May 12, 2022



#### 4.1.3 Test Procedures

#### For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

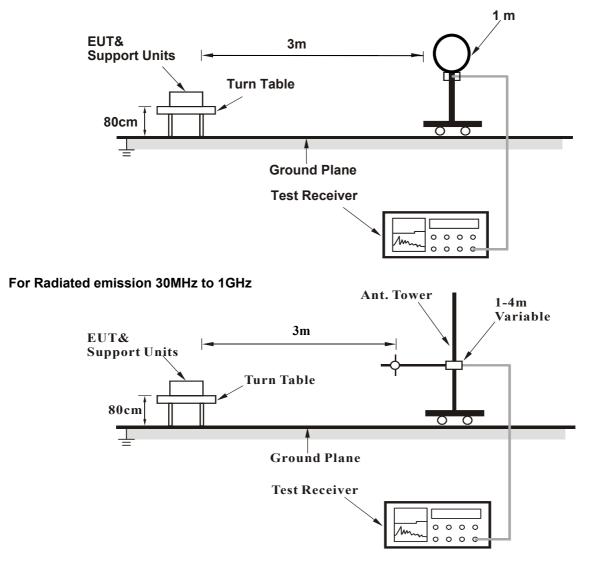
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

#### For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. All modes of operation were investigated and the worst-case emissions are reported.


### 4.1.4 Deviation from Test Standard

No deviation.



### 4.1.5 Test Setup





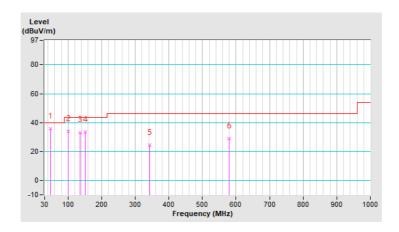
For the actual test configuration, please refer to the attached file (Test Setup Photo).

#### 4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Prepared a notebook to act as a communication partner and placed it outside of testing area.
- c. The communication partner connected with EUT via a RJ45 cable and ran a test program (QRCT3) to enable EUT under transmission condition continuously at specific channel frequency.
- d. The communication partner sent data to EUT by command "PING".



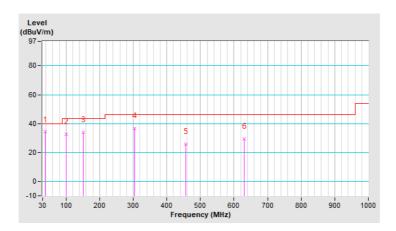
# 4.1.7 Test Results


# Below 1GHz Worst-Case Data:

#### 802.11ac (VHT80)

| CHANNEL         | TX Channel 155 | DETECTOR | Ouesi Bask (OD) |  |
|-----------------|----------------|----------|-----------------|--|
| FREQUENCY RANGE | 9kHz ~ 1GHz    | FUNCTION | Quasi-Peak (QP) |  |
| TEST MODE       | A              |          |                 |  |

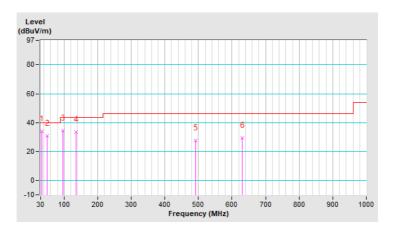
|     | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |                               |                   |             |                       |                            |                     |                                |  |  |
|-----|-----------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|--------------------------------|--|--|
| NO. | FREQ. (MHz)                                         | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |  |  |
| 1   | 47.46                                               | 36.0 QP                       | 40.0              | -4.0        | 1.50 H                | 222                        | 45.0                | -9.0                           |  |  |
| 2   | 100.81                                              | 34.1 QP                       | 43.5              | -9.4        | 1.50 H                | 293                        | 47.5                | -13.4                          |  |  |
| 3   | 135.73                                              | 33.3 QP                       | 43.5              | -10.2       | 1.00 H                | 117                        | 43.0                | -9.7                           |  |  |
| 4   | 152.22                                              | 33.6 QP                       | 43.5              | -9.9        | 2.00 H                | 9                          | 42.5                | -8.9                           |  |  |
| 5   | 342.34                                              | 24.4 QP                       | 46.0              | -21.6       | 1.00 H                | 203                        | 30.5                | -6.1                           |  |  |
| 6   | 579.99                                              | 28.9 QP                       | 46.0              | -17.1       | 1.00 H                | 317                        | 29.7                | -0.8                           |  |  |


- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit of frequency range  $30MHz \sim 1000MHz$
- 4. Margin value = Emission Level Limit value
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report



| CHANNEL         | TX Channel 155 | DETECTOR |                 |  |
|-----------------|----------------|----------|-----------------|--|
| FREQUENCY RANGE | 9kHz ~ 1GHz    | FUNCTION | Quasi-Peak (QP) |  |
| TEST MODE       | A              |          |                 |  |

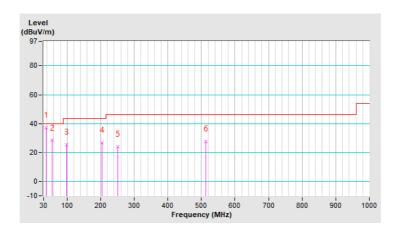
|     | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M |                               |                   |             |                       |                            |                     |                                |  |  |  |
|-----|---------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|--------------------------------|--|--|--|
| NO. | FREQ. (MHz)                                       | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |  |  |  |
| 1   | 38.73                                             | 34.2 QP                       | 40.0              | -5.8        | 1.00 V                | 181                        | 44.1                | -9.9                           |  |  |  |
| 2   | 100.81                                            | 32.6 QP                       | 43.5              | -10.9       | 1.00 V                | 139                        | 46.0                | -13.4                          |  |  |  |
| 3   | 152.22                                            | 34.1 QP                       | 43.5              | -9.4        | 1.50 V                | 216                        | 43.0                | -8.9                           |  |  |  |
| 4   | 303.54                                            | 36.5 QP                       | 46.0              | -9.5        | 1.50 V                | 47                         | 43.3                | -6.8                           |  |  |  |
| 5   | 455.83                                            | 26.0 QP                       | 46.0              | -20.0       | 1.00 V                | 57                         | 29.3                | -3.3                           |  |  |  |
| 6   | 630.43                                            | 29.3 QP                       | 46.0              | -16.7       | 2.00 V                | 195                        | 29.2                | 0.1                            |  |  |  |


- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz
- 4. Margin value = Emission Level Limit value
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report



| CHANNEL         | TX Channel 155 | DETECTOR |                 |  |
|-----------------|----------------|----------|-----------------|--|
| FREQUENCY RANGE | 9kHz ~ 1GHz    | FUNCTION | Quasi-Peak (QP) |  |
| TEST MODE       | В              |          |                 |  |

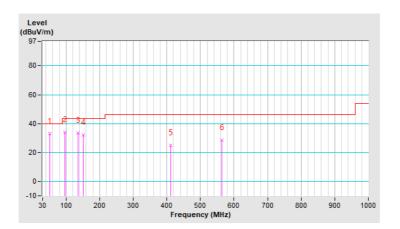
|     | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |                               |                   |             |                       |                            |                     |                                |  |  |  |
|-----|-----------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|--------------------------------|--|--|--|
| NO. | FREQ. (MHz)                                         | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |  |  |  |
| 1   | 33.88                                               | 33.9 QP                       | 40.0              | -6.1        | 1.00 H                | 95                         | 44.5                | -10.6                          |  |  |  |
| 2   | 50.37                                               | 31.0 QP                       | 40.0              | -9.0        | 1.00 H                | 3                          | 40.0                | -9.0                           |  |  |  |
| 3   | 95.96                                               | 34.3 QP                       | 43.5              | -9.2        | 2.00 H                | 297                        | 49.0                | -14.7                          |  |  |  |
| 4   | 135.73                                              | 33.6 QP                       | 43.5              | -9.9        | 1.50 H                | 6                          | 43.3                | -9.7                           |  |  |  |
| 5   | 491.72                                              | 27.7 QP                       | 46.0              | -18.3       | 1.00 H                | 276                        | 30.4                | -2.7                           |  |  |  |
| 6   | 629.46                                              | 29.5 QP                       | 46.0              | -16.5       | 1.50 H                | 6                          | 29.4                | 0.1                            |  |  |  |


- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz
- 4. Margin value = Emission Level Limit value
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report



| CHANNEL         | TX Channel 155 | DETECTOR |                 |  |
|-----------------|----------------|----------|-----------------|--|
| FREQUENCY RANGE | 9kHz ~ 1GHz    | FUNCTION | Quasi-Peak (QP) |  |
| TEST MODE       | В              |          |                 |  |

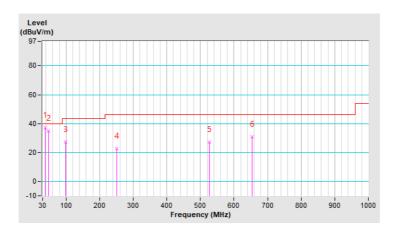
|     | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M |                               |                   |             |                       |                            |                     |                                |  |  |  |
|-----|---------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|--------------------------------|--|--|--|
| NO. | FREQ. (MHz)                                       | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |  |  |  |
| 1   | 37.76                                             | 37.2 QP                       | 40.0              | -2.8        | 1.00 V                | 290                        | 46.9                | -9.7                           |  |  |  |
| 2   | 56.19                                             | 28.3 QP                       | 40.0              | -11.7       | 1.00 V                | 138                        | 37.6                | -9.3                           |  |  |  |
| 3   | 97.90                                             | 25.4 QP                       | 43.5              | -18.1       | 1.50 V                | 230                        | 39.5                | -14.1                          |  |  |  |
| 4   | 203.63                                            | 26.9 QP                       | 43.5              | -16.6       | 1.50 V                | 214                        | 38.4                | -11.5                          |  |  |  |
| 5   | 250.19                                            | 23.8 QP                       | 46.0              | -22.2       | 1.00 V                | 89                         | 32.7                | -8.9                           |  |  |  |
| 6   | 513.06                                            | 27.5 QP                       | 46.0              | -18.5       | 1.00 V                | 284                        | 29.7                | -2.2                           |  |  |  |


- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz
- 4. Margin value = Emission Level Limit value
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report



| CHANNEL         | TX Channel 155 | DETECTOR Output Deals (OB) |                 |  |
|-----------------|----------------|----------------------------|-----------------|--|
| FREQUENCY RANGE | 9kHz ~ 1GHz    | FUNCTION                   | Quasi-Peak (QP) |  |
| TEST MODE       | С              |                            |                 |  |

|     | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |                               |                   |             |                       |                            |                     |                                |  |  |  |
|-----|-----------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|--------------------------------|--|--|--|
| NO. | FREQ. (MHz)                                         | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |  |  |  |
| 1   | 51.34                                               | 32.9 QP                       | 40.0              | -7.1        | 1.50 H                | 72                         | 41.9                | -9.0                           |  |  |  |
| 2   | 95.96                                               | 33.9 QP                       | 43.5              | -9.6        | 1.50 H                | 162                        | 48.6                | -14.7                          |  |  |  |
| 3   | 135.73                                              | 33.7 QP                       | 43.5              | -9.8        | 1.00 H                | 162                        | 43.4                | -9.7                           |  |  |  |
| 4   | 152.22                                              | 32.3 QP                       | 43.5              | -11.2       | 1.00 H                | 34                         | 41.2                | -8.9                           |  |  |  |
| 5   | 411.21                                              | 24.9 QP                       | 46.0              | -21.1       | 1.00 H                | 332                        | 29.7                | -4.8                           |  |  |  |
| 6   | 564.47                                              | 28.6 QP                       | 46.0              | -17.4       | 2.00 H                | 338                        | 29.9                | -1.3                           |  |  |  |


- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz
- 4. Margin value = Emission Level Limit value
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report



| CHANNEL         | TX Channel 155 | DETECTOR |                 |  |
|-----------------|----------------|----------|-----------------|--|
| FREQUENCY RANGE | 9kHz ~ 1GHz    | FUNCTION | Quasi-Peak (QP) |  |
| TEST MODE       | С              |          |                 |  |

|     | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M |                               |                   |             |                       |                            |                     |                                |  |  |  |
|-----|---------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|--------------------------------|--|--|--|
| NO. | FREQ. (MHz)                                       | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |  |  |  |
| 1   | 38.73                                             | 37.2 QP                       | 40.0              | -2.8        | 1.00 V                | 26                         | 47.1                | -9.9                           |  |  |  |
| 2   | 48.43                                             | 35.1 QP                       | 40.0              | -4.9        | 1.50 V                | 9                          | 44.1                | -9.0                           |  |  |  |
| 3   | 97.90                                             | 27.2 QP                       | 43.5              | -16.3       | 1.00 V                | 235                        | 41.3                | -14.1                          |  |  |  |
| 4   | 250.19                                            | 22.8 QP                       | 46.0              | -23.2       | 1.00 V                | 5                          | 31.7                | -8.9                           |  |  |  |
| 5   | 526.64                                            | 27.3 QP                       | 46.0              | -18.7       | 2.00 V                | 15                         | 29.2                | -1.9                           |  |  |  |
| 6   | 653.71                                            | 30.7 QP                       | 46.0              | -15.3       | 1.00 V                | 4                          | 30.5                | 0.2                            |  |  |  |

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz
- 4. Margin value = Emission Level Limit value
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report





# 4.2 Conducted Emission Measurement

# 4.2.1 Limits of Conducted Emission Measurement

| Frequency (MHz) | Conducted Limit (dBuV) |         |  |  |
|-----------------|------------------------|---------|--|--|
|                 | Quasi-peak             | Average |  |  |
| 0.15 - 0.5      | 66 - 56                | 56 - 46 |  |  |
| 0.50 - 5.0      | 56                     | 46      |  |  |
| 5.0 - 30.0      | 60                     | 50      |  |  |

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

#### 4.2.2 Test Instruments

| Description & Manufacturer               | Model No.                | Serial No.     | Cal. Date     | Cal. Due      |
|------------------------------------------|--------------------------|----------------|---------------|---------------|
| Test Receiver<br>ROHDE & SCHWARZ         | ESCI                     | 100613         | Dec. 03, 2021 | Dec. 02, 2022 |
| RF signal cable (with 10dB PAD)<br>Woken | 5D-FB                    | Cable-cond1-01 | Jan. 15, 2022 | Jan. 14, 2023 |
| LISN<br>ROHDE & SCHWARZ<br>(EUT)         | ENV216                   | 101826         | Mar. 14, 2022 | Mar. 13, 2023 |
| LISN<br>ROHDE & SCHWARZ<br>(Peripheral)  | ESH3-Z5                  | 100311         | Sep. 07, 2021 | Sep. 06, 2022 |
| Software<br>ADT                          | BV ADT_Cond_<br>V7.3.7.4 | NA             | NA            | NA            |

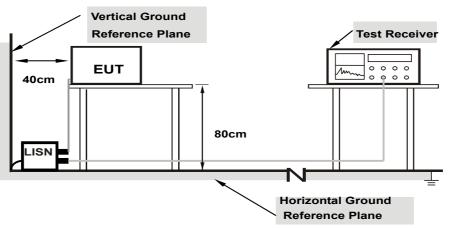
Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 1 (Conduction 1).

3. The VCCI Site Registration No. is C-12040.

4. Test Date: May 13, 2022




### 4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

#### 4.2.4 Deviation from Test Standard

No deviation.

# 4.2.5 Test Setup



Note: 1.Support units were connected to second LISN.

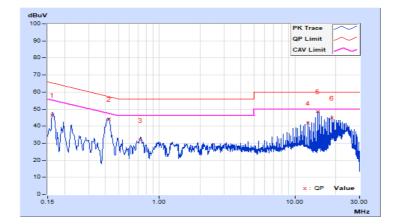
For the actual test configuration, please refer to the attached file (Test Setup Photo).

#### 4.2.6 EUT Operating Conditions

Same as 4.1.6.



# 4.2.7 Test Results


### Worst-case data:

#### 802.11ac (VHT80)

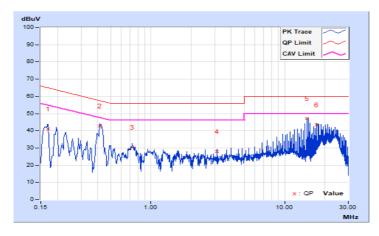
| Phase     | Line (L) | Detector Function | Quasi-Peak (QP) /<br>Average (AV) |
|-----------|----------|-------------------|-----------------------------------|
| Test Mode | A        |                   |                                   |

|    | o Freq. Corr.<br>Factor |      | Readin    | Reading Value |           | Emission Level |           | Limit |        | Margin |  |
|----|-------------------------|------|-----------|---------------|-----------|----------------|-----------|-------|--------|--------|--|
| No |                         |      | [dB (uV)] |               | [dB (uV)] |                | [dB (uV)] |       | (dB)   |        |  |
|    | [MHz]                   | (dB) | Q.P.      | AV.           | Q.P.      | AV.            | Q.P.      | AV.   | Q.P.   | AV.    |  |
| 1  | 0.16173                 | 9.62 | 36.95     | 28.68         | 46.57     | 38.30          | 65.37     | 55.37 | -18.80 | -17.07 |  |
| 2  | 0.42334                 | 9.69 | 34.42     | 28.75         | 44.11     | 38.44          | 57.38     | 47.38 | -13.27 | -8.94  |  |
| 3  | 0.72465                 | 9.70 | 21.85     | 15.41         | 31.55     | 25.11          | 56.00     | 46.00 | -24.45 | -20.89 |  |
| 4  | 12.47432                | 9.83 | 31.98     | 31.83         | 41.81     | 41.66          | 60.00     | 50.00 | -18.19 | -8.34  |  |
| 5  | 14.74212                | 9.84 | 38.71     | 38.65         | 48.55     | 48.49          | 60.00     | 50.00 | -11.45 | -1.51  |  |
| 6  | 18.71077                | 9.86 | 35.05     | 34.50         | 44.91     | 44.36          | 60.00     | 50.00 | -15.09 | -5.64  |  |

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.






| Phase     | Neutral (N) | LIETECTOR FUNCTION | Quasi-Peak (QP) /<br>Average (AV) |
|-----------|-------------|--------------------|-----------------------------------|
| Test Mode | А           |                    |                                   |

|    | No Freq. Corr.<br>Factor |      | Reading Value |       | Emissic   | Emission Level |           | Limit |        | Margin |  |
|----|--------------------------|------|---------------|-------|-----------|----------------|-----------|-------|--------|--------|--|
| No |                          |      | [dB (uV)]     |       | [dB (uV)] |                | [dB (uV)] |       | (dB)   |        |  |
|    | [MHz]                    | (dB) | Q.P.          | AV.   | Q.P.      | AV.            | Q.P.      | AV.   | Q.P.   | AV.    |  |
| 1  | 0.16955                  | 9.63 | 31.29         | 19.29 | 40.92     | 28.92          | 64.98     | 54.98 | -24.06 | -26.06 |  |
| 2  | 0.41560                  | 9.69 | 33.09         | 24.33 | 42.78     | 34.02          | 57.54     | 47.54 | -14.76 | -13.52 |  |
| 3  | 0.72848                  | 9.70 | 20.76         | 14.31 | 30.46     | 24.01          | 56.00     | 46.00 | -25.54 | -21.99 |  |
| 4  | 3.11769                  | 9.74 | 18.11         | 15.90 | 27.85     | 25.64          | 56.00     | 46.00 | -28.15 | -20.36 |  |
| 5  | 14.74212                 | 9.86 | 37.25         | 37.08 | 47.11     | 46.94          | 60.00     | 50.00 | -12.89 | -3.06  |  |
| 6  | 17.29535                 | 9.88 | 33.68         | 33.48 | 43.56     | 43.36          | 60.00     | 50.00 | -16.44 | -6.64  |  |

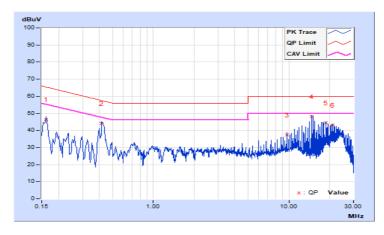
1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.






| Phase     | Line (L) | LIETECTOR FUNCTION | Quasi-Peak (QP) /<br>Average (AV) |
|-----------|----------|--------------------|-----------------------------------|
| Test Mode | В        |                    |                                   |

|    | No Freq. Corr.<br>Factor |      | Reading Value |       | Emissic   | Emission Level |           | Limit |        | Margin |  |
|----|--------------------------|------|---------------|-------|-----------|----------------|-----------|-------|--------|--------|--|
| No |                          |      | [dB (         | (uV)] | [dB (uV)] |                | [dB (uV)] |       | (dB)   |        |  |
|    | [MHz]                    | (dB) | Q.P.          | AV.   | Q.P.      | AV.            | Q.P.      | AV.   | Q.P.   | AV.    |  |
| 1  | 0.16173                  | 9.62 | 36.69         | 28.62 | 46.31     | 38.24          | 65.37     | 55.37 | -19.06 | -17.13 |  |
| 2  | 0.41588                  | 9.69 | 34.33         | 25.75 | 44.02     | 35.44          | 57.53     | 47.53 | -13.51 | -12.09 |  |
| 3  | 9.63957                  | 9.81 | 27.69         | 26.80 | 37.50     | 36.61          | 60.00     | 50.00 | -22.50 | -13.39 |  |
| 4  | 14.74212                 | 9.84 | 38.37         | 38.12 | 48.21     | 47.96          | 60.00     | 50.00 | -11.79 | -2.04  |  |
| 5  | 18.71077                 | 9.86 | 34.42         | 33.16 | 44.28     | 43.02          | 60.00     | 50.00 | -15.72 | -6.98  |  |
| 6  | 20.97857                 | 9.87 | 33.06         | 32.07 | 42.93     | 41.94          | 60.00     | 50.00 | -17.07 | -8.06  |  |

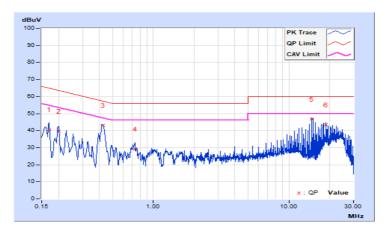
1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.






| Phase     | Neutral (N) | LIETECTOR FUNCTION | Quasi-Peak (QP) /<br>Average (AV) |
|-----------|-------------|--------------------|-----------------------------------|
| Test Mode | В           |                    |                                   |

|    | No Freq. Corr.<br>Factor |      | Reading Value |       | Emissic   | Emission Level |           | Limit |        | Margin |  |
|----|--------------------------|------|---------------|-------|-----------|----------------|-----------|-------|--------|--------|--|
| No |                          |      | [dB (uV)]     |       | [dB (uV)] |                | [dB (uV)] |       | (dB)   |        |  |
|    | [MHz]                    | (dB) | Q.P.          | AV.   | Q.P.      | AV.            | Q.P.      | AV.   | Q.P.   | AV.    |  |
| 1  | 0.16955                  | 9.63 | 31.10         | 19.12 | 40.73     | 28.75          | 64.98     | 54.98 | -24.25 | -26.23 |  |
| 2  | 0.19978                  | 9.64 | 30.08         | 20.27 | 39.72     | 29.91          | 63.62     | 53.62 | -23.90 | -23.71 |  |
| 3  | 0.42370                  | 9.69 | 33.45         | 27.92 | 43.14     | 37.61          | 57.38     | 47.38 | -14.24 | -9.77  |  |
| 4  | 0.73233                  | 9.70 | 19.72         | 12.69 | 29.42     | 22.39          | 56.00     | 46.00 | -26.58 | -23.61 |  |
| 5  | 14.74212                 | 9.86 | 36.84         | 36.78 | 46.70     | 46.64          | 60.00     | 50.00 | -13.30 | -3.36  |  |
| 6  | 18.71077                 | 9.89 | 33.56         | 32.80 | 43.45     | 42.69          | 60.00     | 50.00 | -16.55 | -7.31  |  |

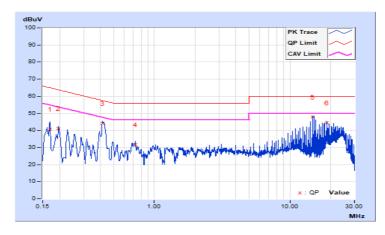
1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.






| Phase     | Line (L) | LIETECTOR FUNCTION | Quasi-Peak (QP) /<br>Average (AV) |
|-----------|----------|--------------------|-----------------------------------|
| Test Mode | С        |                    |                                   |

|    | Erog     |        | Reading Value |       | Emissic   | Emission Level |           | Limit |        | Margin |  |
|----|----------|--------|---------------|-------|-----------|----------------|-----------|-------|--------|--------|--|
| No | Freq.    | Factor | tor [dB (uV)] |       | [dB (uV)] |                | [dB (uV)] |       | (dB)   |        |  |
|    | [MHz]    | (dB)   | Q.P.          | AV.   | Q.P.      | AV.            | Q.P.      | AV.   | Q.P.   | AV.    |  |
| 1  | 0.16955  | 9.63   | 31.06         | 20.00 | 40.69     | 29.63          | 64.98     | 54.98 | -24.29 | -25.35 |  |
| 2  | 0.19692  | 9.64   | 31.41         | 24.06 | 41.05     | 33.70          | 63.74     | 53.74 | -22.69 | -20.04 |  |
| 3  | 0.41560  | 9.69   | 34.42         | 25.70 | 44.11     | 35.39          | 57.54     | 47.54 | -13.43 | -12.15 |  |
| 4  | 0.72477  | 9.70   | 21.91         | 15.42 | 31.61     | 25.12          | 56.00     | 46.00 | -24.39 | -20.88 |  |
| 5  | 14.74212 | 9.84   | 38.03         | 37.68 | 47.87     | 47.52          | 60.00     | 50.00 | -12.13 | -2.48  |  |
| 6  | 18.71077 | 9.86   | 34.66         | 34.16 | 44.52     | 44.02          | 60.00     | 50.00 | -15.48 | -5.98  |  |

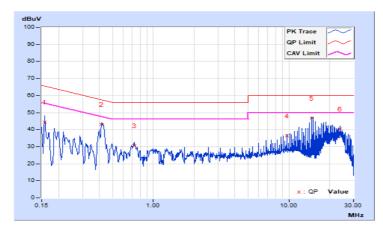
1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.






| Phase     | Neutral (N) | LIETECTOR FUNCTION | Quasi-Peak (QP) /<br>Average (AV) |
|-----------|-------------|--------------------|-----------------------------------|
| Test Mode | С           |                    |                                   |

|    | lo Freq. Corr.<br>Factor |      | Reading Value |       | Emissic   | Emission Level |           | Limit |        | Margin |  |
|----|--------------------------|------|---------------|-------|-----------|----------------|-----------|-------|--------|--------|--|
| No |                          |      | [dB (uV)]     |       | [dB (uV)] |                | [dB (uV)] |       | (dB)   |        |  |
|    | [MHz]                    | (dB) | Q.P.          | AV.   | Q.P.      | AV.            | Q.P.      | AV.   | Q.P.   | AV.    |  |
| 1  | 0.15782                  | 9.62 | 34.81         | 22.87 | 44.43     | 32.49          | 65.58     | 55.58 | -21.15 | -23.09 |  |
| 2  | 0.41588                  | 9.69 | 33.31         | 24.70 | 43.00     | 34.39          | 57.53     | 47.53 | -14.53 | -13.14 |  |
| 3  | 0.72084                  | 9.70 | 21.04         | 14.29 | 30.74     | 23.99          | 56.00     | 46.00 | -25.26 | -22.01 |  |
| 4  | 9.63957                  | 9.81 | 26.71         | 25.81 | 36.52     | 35.62          | 60.00     | 50.00 | -23.48 | -14.38 |  |
| 5  | 14.74212                 | 9.86 | 37.04         | 36.96 | 46.90     | 46.82          | 60.00     | 50.00 | -13.10 | -3.18  |  |
| 6  | 23.81332                 | 9.88 | 30.62         | 28.51 | 40.50     | 38.39          | 60.00     | 50.00 | -19.50 | -11.61 |  |

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.





# 5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).



### Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---