

# **FCC Test Report**

| Equipment                       | :  | Sophos Wireless Access Point AP55                                     |
|---------------------------------|----|-----------------------------------------------------------------------|
| Brand Name                      | :  | Sophos                                                                |
| Model No.                       | :  | AP 55                                                                 |
| FCC ID                          | :  | 2ACTO-AP55                                                            |
| Standard                        | :  | 47 CFR FCC Part 15.407                                                |
| Operating Band                  | :  | 5150 MHz – 5250 MHz<br>5725 MHz – 5850 MHz                            |
|                                 |    |                                                                       |
| FCC Classification              | :  | NII                                                                   |
| FCC Classification<br>Applicant | 57 | NII<br>Sophos Ltd<br>The Pentagon, Abingdon, OX14 3YP, United Kingdom |
|                                 | :  | Sophos Ltd                                                            |

The product sample received on Dec. 05, 2014 and completely tested on Feb. 13, 2015. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

**Reviewed by:** 

Vic Hsiao / Supervisor





# **Table of Contents**

| 1   | GENERAL DESCRIPTION                      | 5  |
|-----|------------------------------------------|----|
| 1.1 | Information                              | 5  |
| 1.2 | Support Equipment                        | 8  |
| 1.3 | Testing Applied Standards                | 9  |
| 1.4 | Testing Location Information             | 9  |
| 1.5 | Measurement Uncertainty                  | 10 |
| 2   | TEST CONFIGURATION OF EUT                | 11 |
| 2.1 | The Worst Case Modulation Configuration  | 11 |
| 2.2 | The Worst Case Power Setting Parameter   | 11 |
| 2.3 | The Worst Case Measurement Configuration | 12 |
| 2.4 | Test Setup Diagram                       | 13 |
| 3   | TRANSMITTER TEST RESULT                  | 15 |
| 3.1 | AC Power-line Conducted Emissions        | 15 |
| 3.2 | Emission Bandwidth                       | 18 |
| 3.3 | RF Output Power                          | 22 |
| 3.4 | Peak Power Spectral Density              | 27 |
| 3.5 | Transmitter Bandedge Emissions           | 31 |
| 3.6 | Transmitter Unwanted Emissions           | 35 |
| 3.7 | Frequency Stability                      | 96 |
| 4   | TEST EQUIPMENT AND CALIBRATION DATA      | 98 |

#### **APPENDIX A. TEST PHOTOS**

APPENDIX B. PHOTOGRAPHS OF EUT



# Summary of Test Result

| Conformance Test Specifications          |           |                                                  |          |
|------------------------------------------|-----------|--------------------------------------------------|----------|
| Report Ref. Std.<br>Clause Clause Descri |           | Description                                      | Result   |
| 1.1.2                                    | 15.203    | Antenna Requirement                              | Complied |
| 3.1                                      | 15.207    | AC Power-line Conducted Emissions                | Complied |
| 3.2                                      | 15.407(a) | Emission Bandwidth                               | Complied |
| 3.3                                      | 15.407(a) | RF Output Power (Maximum Conducted Output Power) | Complied |
| 3.4                                      | 15.407(a) | Peak Power Spectral Density                      | Complied |
| 3.5                                      | 15.407(b) | Transmitter Bandedge Emissions                   | Complied |
| 3.6                                      | 15.407(b) | Transmitter Unwanted Emissions                   | Complied |
| 3.7                                      | 15.407(g) | Frequency Stability                              | Complied |



# **Revision History**

| Report No.    | Version | Description                                                                                                                                                                                   | Issued Date   |
|---------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| FR462324AN    | Rev. 01 | Initial issue of report                                                                                                                                                                       | Sep. 25, 2014 |
| FR462324-02AN | Rev. 01 | <ul><li>Update information as below:</li><li>1. Change Equipment name.</li><li>2. Change model name.</li><li>3. Change the FCC ID.</li><li>4. Change Antenna number to two Antenna.</li></ul> | Feb. 13, 2015 |
|               |         |                                                                                                                                                                                               |               |
|               |         |                                                                                                                                                                                               |               |
|               |         |                                                                                                                                                                                               |               |
|               |         |                                                                                                                                                                                               |               |
|               |         |                                                                                                                                                                                               |               |
|               |         |                                                                                                                                                                                               |               |
|               |         |                                                                                                                                                                                               |               |
|               |         |                                                                                                                                                                                               |               |
|               |         |                                                                                                                                                                                               |               |
|               |         |                                                                                                                                                                                               |               |
|               |         |                                                                                                                                                                                               |               |
|               |         |                                                                                                                                                                                               |               |
|               |         |                                                                                                                                                                                               |               |
|               |         |                                                                                                                                                                                               |               |
|               |         |                                                                                                                                                                                               |               |
|               |         |                                                                                                                                                                                               |               |
|               |         |                                                                                                                                                                                               |               |
|               |         |                                                                                                                                                                                               |               |
|               |         |                                                                                                                                                                                               |               |
|               |         |                                                                                                                                                                                               |               |
|               |         |                                                                                                                                                                                               |               |
|               |         |                                                                                                                                                                                               |               |



# **1** General Description

# 1.1 Information

### 1.1.1 RF General Information

| RF General Information   |                     |                    |                   |                                       |                          |             |
|--------------------------|---------------------|--------------------|-------------------|---------------------------------------|--------------------------|-------------|
| Frequency<br>Range (MHz) | IEEE Std.<br>802.11 | Ch. Freq.<br>(MHz) | Channel<br>Number | Transmit<br>Chains (N <sub>TX</sub> ) | RF Output<br>Power (dBm) | Co-location |
| 5150-5250                |                     | 5180-5240          | 36-48 [4]         | 1                                     | 21.69                    | Yes         |
| 5725-5850                | а                   | 5745-5825          | 149-165 [5]       | 1                                     | 22.47                    | Yes         |
| 5150-5250                | n (HT20)            | 5180-5240          | 36-48 [4]         | 2/2                                   | 24.78 / 24.78            | Yes         |
| 5725-5850                | ac (VHT20)          | 5745-5825          | 149-165 [5]       | 2/2                                   | 22.83 / 22.94            | Yes         |
| 5150-5250                | n (HT40)            | 5190-5230          | 38-46 [2]         | 2/2                                   | 25.03 / 25.09            | Yes         |
| 5725-5850                | ac (VHT40)          | 5755-5795          | 151-159 [2]       | 2/2                                   | 23.14 / 23.18            | Yes         |
| 5150-5250                |                     | 5210               | 48 [1]            | 2                                     | 17.24                    | Yes         |
| 5725-5850                | ac (VHT80)          | 5775               | 155 [1]           | 2                                     | 13.89                    | Yes         |
| Note 1: RF out           |                     | fies that Maxim    | um Conducted      |                                       |                          |             |

Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

Note 3: 802.11ac uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation.

Note 4: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)



#### 1.1.2 Antenna Information

|             | Antenna Category                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| $\boxtimes$ | External antenna (antenna permanently attached)                                                                                                                                                                                                                                                                         |  |  |  |  |
|             | Temporary RF connector provided                                                                                                                                                                                                                                                                                         |  |  |  |  |
|             | No temporary RF connector provided<br>Transmit chains bypass antenna and soldered temporary RF connector provided for connected<br>measurement. In case of conducted measurements the transmitter shall be connected to the<br>measuring equipment via a suitable attenuator and correct for all losses in the RF path. |  |  |  |  |

| Antenna General Information |                                                                                                                             |           |                       |  |  |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------|--|--|--|
| No.                         | Ant. Cat.                                                                                                                   | Ant. Type | Gain <sub>(dBi)</sub> |  |  |  |
| 1                           | External                                                                                                                    | Dinala    | 2.58                  |  |  |  |
| 2                           | External                                                                                                                    | Dipole    | 2.58                  |  |  |  |
| 1. 11a o                    | Remark:<br>1. 11a only include 1TX and Port1 for emission.<br>2. HT20 and HT40 ank include 2TX and Data Pate are MCS0 MCS15 |           |                       |  |  |  |

HT20 and HT40 only include 2TX and Data Rate are MCS0 ~ MCS15.
 VHT20 only include 2TX and Data Rate are MCS0 ~ MCS8.
 VHT40 and VHT80 only include 2TX and Data Rate are MCS0 ~ MCS9.

### 1.1.3 Type of EUT

|           | Identify EUT                                                                  |                                         |  |  |
|-----------|-------------------------------------------------------------------------------|-----------------------------------------|--|--|
| EUT       | Serial Number                                                                 | N/A                                     |  |  |
| Pre       | sentation of Equipment                                                        | Production ; Pre-Production ; Prototype |  |  |
|           |                                                                               | Type of EUT                             |  |  |
| $\square$ | Stand-alone                                                                   |                                         |  |  |
|           | Combined (EUT where the radio part is fully integrated within another device) |                                         |  |  |
|           | Combined Equipment - Brand Name / Model No.:                                  |                                         |  |  |
|           | Plug-in radio (EUT intended for a variety of host systems)                    |                                         |  |  |
|           | Host System - Brand Name / Model No.:                                         |                                         |  |  |
|           | Other:                                                                        |                                         |  |  |



# 1.1.4 Test Signal Duty Cycle

| Operated Mode for Worst Duty Cycle                             |                                             |  |  |  |  |
|----------------------------------------------------------------|---------------------------------------------|--|--|--|--|
| Operated normally mode for worst duty cycle                    | Operated normally mode for worst duty cycle |  |  |  |  |
| Operated test mode for worst duty cycle                        |                                             |  |  |  |  |
| Test Signal Duty Cycle (x)Power Duty Factor[dB] - (10 log 1/x) |                                             |  |  |  |  |
| ⊠ 100% - IEEE 802.11a                                          | 0                                           |  |  |  |  |
| 🔀 100% - IEEE 802.11n (HT20)                                   | 0                                           |  |  |  |  |
| 🔀 100% - IEEE 802.11n (HT40)                                   | 0                                           |  |  |  |  |
| ⊠ 100% - IEEE 802.11ac (VHT20)                                 | 0                                           |  |  |  |  |
| ⊠ 100% - IEEE 802.11ac (VHT40)                                 | 0                                           |  |  |  |  |
| ☑ 100% - IEEE 802.11ac (VHT80)                                 | 0                                           |  |  |  |  |

# 1.1.5 EUT Operational Condition

| Supply Voltage    | AC mains           | DC DC            | System           |
|-------------------|--------------------|------------------|------------------|
| Type of DC Source | Internal DC supply | From PoE         | External adapter |
| Test Voltage      | Vnom (110 V)       | 🛛 Vmax (126.5 V) | 🛛 Vmin (93.5 V)  |
| Test Climatic     | Tnom (20°C)        | 🖂 Tmax (50°C)    | ⊠ Tmin (-20°C)   |



# 1.2 Support Equipment

| Support Equipment - AC Conducted |                      |            |                    |        |  |
|----------------------------------|----------------------|------------|--------------------|--------|--|
| No.                              | Equipment            | Brand Name | Model Name         | FCC ID |  |
| 1                                | PoE                  | Bothhand   | SA06L48-V          | -      |  |
| 2                                | Adapter              | APD        | DA-48T12           | -      |  |
| 3                                | Notebook<br>(Remote) | DELL       | E5530              | DoC    |  |
| 4                                | HUB<br>(Remote)      | DELL       | Power Connect 2816 | DoC    |  |
| 5                                | UTM<br>(Remote)      | SOPHOS     | UTM110/120         | DoC    |  |

|     | Support Equipment - RF Conducted           |      |       |   |  |  |
|-----|--------------------------------------------|------|-------|---|--|--|
| No. | No. Equipment Brand Name Model Name FCC ID |      |       |   |  |  |
| 1   | Notebook                                   | DELL | E5500 | - |  |  |

|     | Support Equipment - Radiated Emission |            |                    |        |  |  |  |  |  |
|-----|---------------------------------------|------------|--------------------|--------|--|--|--|--|--|
| No. | Equipment                             | Brand Name | Model Name         | FCC ID |  |  |  |  |  |
| 1   | PoE                                   | Bothhand   | SA06L48-V          | -      |  |  |  |  |  |
| 2   | Adapter                               | APD        | DA-48T12           | -      |  |  |  |  |  |
| 3   | Notebook<br>(Remote)                  | DELL       | E5530              | DoC    |  |  |  |  |  |
| 4   | HUB<br>(Remote)                       | DELL       | Power Connect 2816 | DoC    |  |  |  |  |  |
| 5   | UTM<br>(Remote)                       | SOPHOS     | UTM110/120         | DoC    |  |  |  |  |  |



# **1.3 Testing Applied Standards**

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 789033 D02 v01
- FCC KDB 644545 D03 v01
- FCC KDB 662911 v02r01
- FCC-14-30A1-UNII

# **1.4 Testing Location Information**

| Testing Location            |                                                                                                                              |       |                                     |                   |                  |  |  |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|-------------------|------------------|--|--|--|--|
| $\boxtimes$                 | HWA YA ADD : No. 52, Hwa Ya 1 <sup>st</sup> Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang,<br>Tao Yuan Hsien, Taiwan, R.O.C. |       |                                     |                   |                  |  |  |  |  |
|                             |                                                                                                                              | TEL : | 886-3-327-3456 FAX : 886-3-327-0973 |                   |                  |  |  |  |  |
|                             | Test Cond                                                                                                                    | ition | Test Site No.                       | Test Engineer     | Test Environment |  |  |  |  |
|                             | AC Conduction                                                                                                                |       | CO04-HY                             | Zeus              | 26°C / 39%       |  |  |  |  |
|                             | RF Condu                                                                                                                     | cted  | TH06-HY                             | Morgan 22°C / 61% |                  |  |  |  |  |
| Radiated Emission 03CH02-HY |                                                                                                                              |       |                                     | Daniel            | 24.5°C / 58%     |  |  |  |  |



# **1.5 Measurement Uncertainty**

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

| IV                                 | leasurement Uncertainty |             |  |  |  |
|------------------------------------|-------------------------|-------------|--|--|--|
| Test Item                          |                         | Uncertainty |  |  |  |
| AC power-line conducted emissions  |                         | ±2.3 dB     |  |  |  |
| Emission bandwidth, 26dB bandwidth |                         | ±1.4 %      |  |  |  |
| RF output power, conducted         |                         | ±0.6 dB     |  |  |  |
| Power density, conducted           |                         | ±0.8 dB     |  |  |  |
| Unwanted emissions, conducted      | 9 – 150 kHz             | ±0.4 dB     |  |  |  |
|                                    | 0.15 – 30 MHz           | ±0.4 dB     |  |  |  |
|                                    | 30 – 1000 MHz           | ±0.5 dB     |  |  |  |
|                                    | 1 – 18 GHz              | ±0.7 dB     |  |  |  |
|                                    | 18 – 40 GHz             | ±0.8 dB     |  |  |  |
|                                    | 40 – 200 GHz            | N/A         |  |  |  |
| All emissions, radiated            | 9 – 150 kHz             | ±2.5 dB     |  |  |  |
|                                    | 0.15 – 30 MHz           | ±2.3 dB     |  |  |  |
|                                    | 30 – 1000 MHz           | ±2.6 dB     |  |  |  |
|                                    | 1 – 18 GHz              | ±3.6 dB     |  |  |  |
|                                    | 18 – 40 GHz             | ±3.8 dB     |  |  |  |
|                                    | 40 – 200 GHz            | N/A         |  |  |  |
| Temperature                        |                         | ±0.8 °C     |  |  |  |
| Humidity                           |                         | ±3 %        |  |  |  |
| DC and low frequency voltages      |                         | ±3 %        |  |  |  |
| Time                               |                         | ±1.4 %      |  |  |  |
| Duty Cycle                         |                         | ±1.4 %      |  |  |  |



# 2 Test Configuration of EUT

# 2.1 The Worst Case Modulation Configuration

| Worst Modulation Used for Conformance Testing |                              |                 |                       |  |  |  |  |  |  |
|-----------------------------------------------|------------------------------|-----------------|-----------------------|--|--|--|--|--|--|
| Modulation Mode                               | Transmit Chains ( $N_{TX}$ ) | Data Rate / MCS | Worst Data Rate / MCS |  |  |  |  |  |  |
| 11a                                           | 1                            | 6-54Mbps        | 6 Mbps                |  |  |  |  |  |  |
| HT20                                          | HT20 2                       |                 | MCS 0                 |  |  |  |  |  |  |
| HT40                                          | HT40 2                       |                 | MCS 0                 |  |  |  |  |  |  |
| VHT20                                         | 2                            | MCS 0-8         | MCS 0                 |  |  |  |  |  |  |
| VHT40                                         | 2                            | MCS 0-9         | MCS 0                 |  |  |  |  |  |  |
| VHT80                                         | 2                            | MCS 0-9         | MCS 0                 |  |  |  |  |  |  |

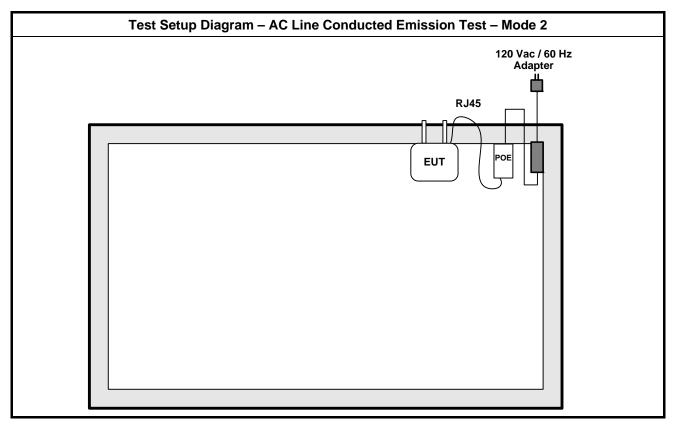
# 2.2 The Worst Case Power Setting Parameter

| The Worst Case Power Setting Parameter (5150-5250MHz band) |                      |             |           |      |                 |      |            |  |
|------------------------------------------------------------|----------------------|-------------|-----------|------|-----------------|------|------------|--|
| Test Software Version                                      |                      | DOS Command |           |      |                 |      |            |  |
|                                                            | Test Frequency (MHz) |             |           |      |                 |      |            |  |
| Modulation Mode                                            | N <sub>TX</sub>      | I           | NCB: 20MH | z    | NCB: 40MHz NCB: |      | NCB: 80MHz |  |
|                                                            |                      | 5180        | 5200      | 5240 | 5190            | 5230 | 5210       |  |
| 11a                                                        | 1                    | 20.5        | 20.5      | 21   | -               | -    | -          |  |
| HT20                                                       | 2                    | 20          | 21        | 21   | -               | -    | -          |  |
| HT40                                                       | 2                    | -           | -         | -    | 18              | 22   | -          |  |
| VHT20                                                      | 2                    | 20          | 21        | 21   | -               | -    | -          |  |
| VHT40                                                      | 2                    | -           | -         | -    | 18              | 22   | -          |  |
| VHT80                                                      | 2                    | -           | -         | -    | -               | -    | 14.5       |  |

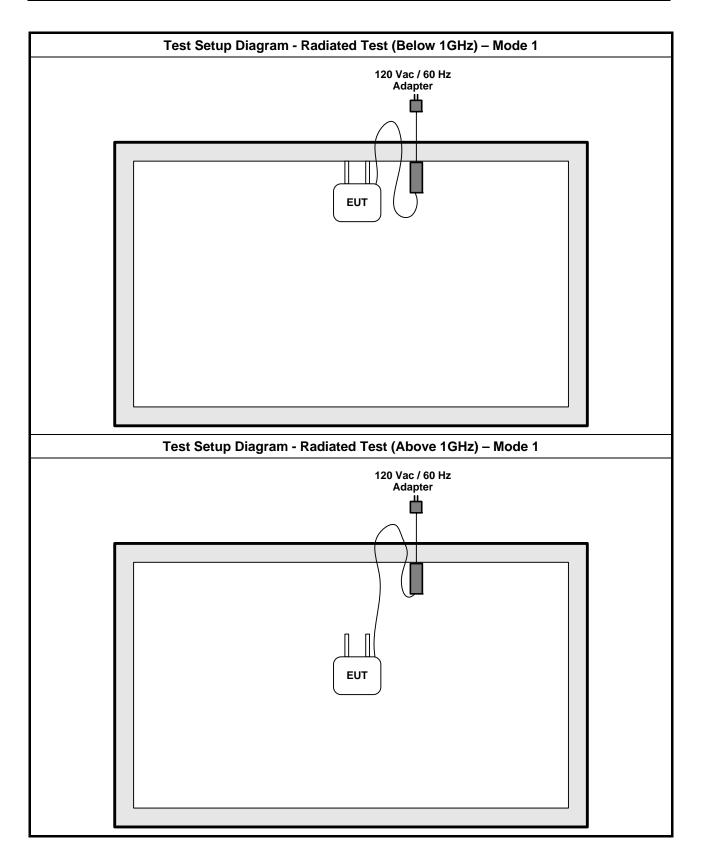
| The Worst Case Power Setting Parameter (5725-5850MHz band) |                      |             |           |      |                |      |            |  |
|------------------------------------------------------------|----------------------|-------------|-----------|------|----------------|------|------------|--|
| Test Software Version                                      |                      | DOS Command |           |      |                |      |            |  |
|                                                            | Test Frequency (MHz) |             |           |      |                |      |            |  |
| Modulation Mode                                            | Ντχ                  |             | NCB: 20MH | łz   | NCB: 40MHz NCB |      | NCB: 80MHz |  |
|                                                            |                      | 5745        | 5785      | 5825 | 5755           | 5795 | 5775       |  |
| 11a                                                        | 1                    | 21          | 20.5      | 18   | -              | -    | -          |  |
| HT20                                                       | 2                    | 15          | 19        | 16.5 | -              | -    | -          |  |
| HT40                                                       | 2                    | -           | -         | -    | 13             | 20   | -          |  |
| VHT20                                                      | 2                    | 15          | 19        | 16.5 | -              | -    | -          |  |
| VHT40                                                      | 2                    | -           | -         | -    | 13             | 20   | -          |  |
| VHT80                                                      | 2                    | -           | -         | -    | -              | -    | 11         |  |



#### The Worst Case Measurement Configuration 2.3


| Th                         | The Worst Case Mode for Following Conformance Tests                                     |  |  |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Tests Item                 | AC power-line conducted emissions                                                       |  |  |  |  |  |  |
| Condition                  | AC power-line conducted measurement for line and neutral<br>Test Voltage: 120Vac / 60Hz |  |  |  |  |  |  |
| Operating Mode             | Operating Mode Description                                                              |  |  |  |  |  |  |
| 1                          | EUT with AC power (Transmitter)                                                         |  |  |  |  |  |  |
| 2                          | EUT with PoE (Transmitter)                                                              |  |  |  |  |  |  |
| For operating mode 2 is th | e worst case and it was record in this test report.                                     |  |  |  |  |  |  |

| The Worst Case Mode for Following Conformance Tests |                                                                                                                                                                           |  |  |  |  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Tests Item                                          | RF Output Power, Peak Power Spectral Density, Emission Bandwidth,<br>Peak Excursion, Transmitter Conducted Unwanted Emissions<br>Transmitter Conducted Bandedge Emissions |  |  |  |  |
| Test Condition                                      | Conducted measurement at transmit chains                                                                                                                                  |  |  |  |  |
| Modulation Mode                                     | 11a, HT20, HT40, VHT20, VHT40, VHT80                                                                                                                                      |  |  |  |  |


| Th                          | e Worst Case Mode for Fo                                                                       | ollowing Conformance Te                                                                | sts                          |  |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------|--|--|--|
| Tests Item                  | Transmitter Radiated Unwa<br>Transmitter Radiated Band                                         |                                                                                        |                              |  |  |  |
| Test Condition              | regardless of spatial multi                                                                    | antenna assembly (multiple<br>plexing MIMO configuratior<br>antenna gain of each anter | n), the radiated test should |  |  |  |
|                             | EUT will be placed in                                                                          | fixed position.                                                                        |                              |  |  |  |
| User Position               | EUT will be placed in mobile position and operating multiple positions.                        |                                                                                        |                              |  |  |  |
|                             | EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. |                                                                                        |                              |  |  |  |
| Operating Mode < 1GHz       | Operating Mode Description                                                                     |                                                                                        |                              |  |  |  |
| 1                           | EUT with AC power (Transmitter)                                                                |                                                                                        |                              |  |  |  |
| 2                           | EUT with PoE (Transmitter                                                                      | ·)                                                                                     |                              |  |  |  |
| For operating mode 1 is th  | e worst case and it was rec                                                                    | ord in this test report.                                                               |                              |  |  |  |
| Operating Mode > 1GHz       | Operating Mode Description                                                                     | n                                                                                      |                              |  |  |  |
| 1                           | EUT with AC power (Trans                                                                       | mitter)                                                                                |                              |  |  |  |
| Modulation Mode             | 11a, HT20, HT40, VHT20,                                                                        | VHT40, VHT80                                                                           |                              |  |  |  |
|                             | X Plane                                                                                        | Y Plane                                                                                | Z Plane                      |  |  |  |
| Orthogonal Planes of<br>EUT |                                                                                                |                                                                                        |                              |  |  |  |
| Worst Planes of EUT         |                                                                                                |                                                                                        | V                            |  |  |  |



# 2.4 Test Setup Diagram









#### **Transmitter Test Result** 3

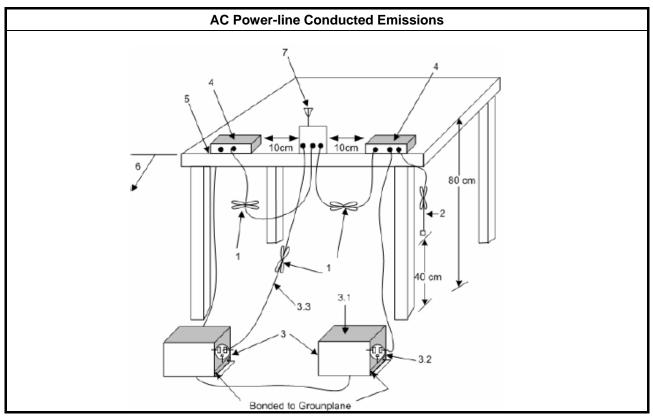
#### 3.1 **AC Power-line Conducted Emissions**

#### 3.1.1 **AC Power-line Conducted Emissions Limit**

| AC Power-line Conducted Emissions Limit |                     |           |  |  |  |  |
|-----------------------------------------|---------------------|-----------|--|--|--|--|
| Frequency Emission (MHz)                | Quasi-Peak          | Average   |  |  |  |  |
| 0.15-0.5                                | 66 - 56 *           | 56 - 46 * |  |  |  |  |
| 0.5-5                                   | 56                  | 46        |  |  |  |  |
| 5-30                                    | 60                  | 50        |  |  |  |  |
| Note 1: * Decreases with the logarithn  | n of the frequency. |           |  |  |  |  |

creases with the logarithm of the frequency

#### 3.1.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

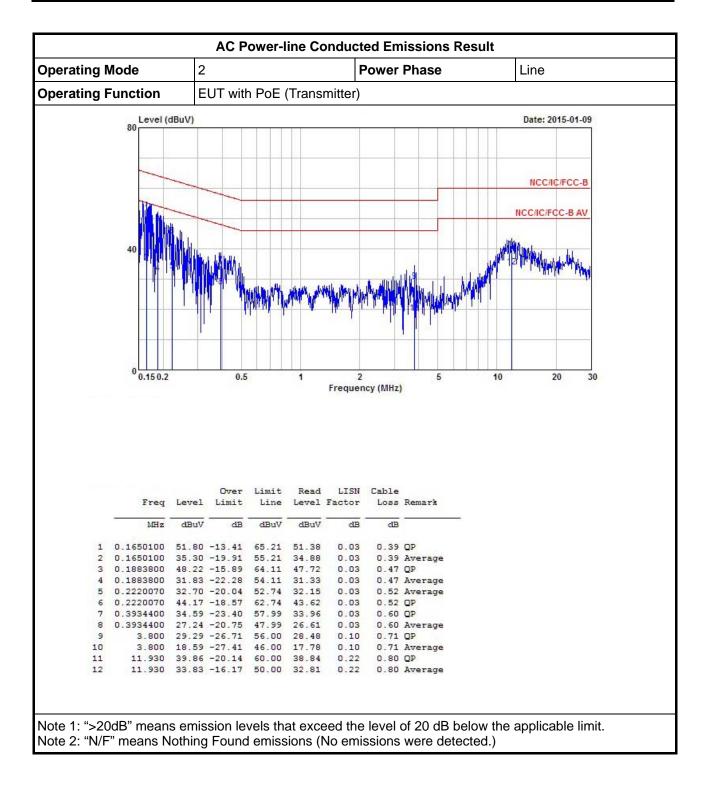
#### 3.1.3 Test Procedures

**Test Method** 

Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

#### 3.1.4 **Test Setup**






| erating Mode                                     |                                                                                                                                           | 2                                                                                                       |                                                                                                                  |                                                                                                         |                                                                                                         | F                                                                 | ower                                                                                       | Phase                                                                  |          |       | Neut   | tral     |      |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------|-------|--------|----------|------|
| ting F                                           | unction                                                                                                                                   | E                                                                                                       | UT with                                                                                                          | n PoE                                                                                                   | (Trans                                                                                                  | mitter)                                                           |                                                                                            |                                                                        |          |       |        |          |      |
|                                                  | Level (                                                                                                                                   | (BuV)                                                                                                   |                                                                                                                  |                                                                                                         |                                                                                                         |                                                                   |                                                                                            |                                                                        |          |       | Date:  | 2015-01  | -09  |
|                                                  | 80                                                                                                                                        |                                                                                                         |                                                                                                                  |                                                                                                         |                                                                                                         |                                                                   |                                                                                            |                                                                        |          |       |        |          |      |
|                                                  |                                                                                                                                           |                                                                                                         |                                                                                                                  |                                                                                                         |                                                                                                         |                                                                   |                                                                                            |                                                                        |          |       |        |          |      |
|                                                  | -                                                                                                                                         |                                                                                                         |                                                                                                                  |                                                                                                         |                                                                                                         |                                                                   |                                                                                            |                                                                        |          |       |        |          |      |
|                                                  |                                                                                                                                           |                                                                                                         | _                                                                                                                |                                                                                                         |                                                                                                         |                                                                   |                                                                                            |                                                                        |          | _     | NCO    | C/IC/FCC | -В   |
|                                                  | 1                                                                                                                                         |                                                                                                         |                                                                                                                  |                                                                                                         |                                                                                                         |                                                                   |                                                                                            |                                                                        |          |       |        |          |      |
|                                                  |                                                                                                                                           |                                                                                                         |                                                                                                                  |                                                                                                         |                                                                                                         |                                                                   |                                                                                            |                                                                        |          | -     | NCC/IC | /FCC-B   | AV   |
|                                                  |                                                                                                                                           |                                                                                                         |                                                                                                                  |                                                                                                         |                                                                                                         |                                                                   |                                                                                            |                                                                        |          | Au    |        |          |      |
|                                                  | 40                                                                                                                                        |                                                                                                         | _                                                                                                                |                                                                                                         |                                                                                                         |                                                                   |                                                                                            |                                                                        |          | ALL D | MALL   |          | 1000 |
|                                                  | 2                                                                                                                                         |                                                                                                         | 4                                                                                                                |                                                                                                         |                                                                                                         |                                                                   |                                                                                            |                                                                        | Julia    | 1 III |        | Wales A  | MM   |
|                                                  |                                                                                                                                           | 'H' 264.                                                                                                |                                                                                                                  |                                                                                                         |                                                                                                         |                                                                   | -                                                                                          | . Int                                                                  | NUMBER 1 |       | 114    |          | 1    |
|                                                  |                                                                                                                                           |                                                                                                         | MIM                                                                                                              | din.                                                                                                    |                                                                                                         |                                                                   | id and                                                                                     |                                                                        | Lib.     |       |        |          |      |
|                                                  |                                                                                                                                           |                                                                                                         |                                                                                                                  | Walk                                                                                                    | MANL I                                                                                                  | LAN LOUR                                                          | AND MY                                                                                     | Willing 1                                                              | -1-1-1   | 127   |        |          | _    |
|                                                  |                                                                                                                                           | 1   <b>[</b> ]                                                                                          | ada da                                                                                                           | , in the second                                                                                         |                                                                                                         | AL MUL                                                            |                                                                                            |                                                                        |          |       |        |          |      |
|                                                  |                                                                                                                                           |                                                                                                         |                                                                                                                  |                                                                                                         | d. to di                                                                                                |                                                                   | -                                                                                          |                                                                        |          |       |        |          | _    |
|                                                  |                                                                                                                                           |                                                                                                         |                                                                                                                  |                                                                                                         |                                                                                                         |                                                                   |                                                                                            |                                                                        |          |       |        |          |      |
|                                                  | 0.150.2                                                                                                                                   |                                                                                                         | 0.5                                                                                                              |                                                                                                         | 1                                                                                                       | 2                                                                 | ( page and                                                                                 | 5                                                                      |          | 10    |        | 20       | 30   |
|                                                  |                                                                                                                                           |                                                                                                         |                                                                                                                  |                                                                                                         |                                                                                                         | Frequen                                                           | cy (MHz)                                                                                   |                                                                        |          |       |        |          |      |
|                                                  |                                                                                                                                           |                                                                                                         |                                                                                                                  |                                                                                                         |                                                                                                         |                                                                   |                                                                                            |                                                                        |          |       |        |          |      |
|                                                  |                                                                                                                                           |                                                                                                         |                                                                                                                  |                                                                                                         |                                                                                                         |                                                                   |                                                                                            |                                                                        |          |       |        |          |      |
|                                                  |                                                                                                                                           |                                                                                                         |                                                                                                                  |                                                                                                         |                                                                                                         |                                                                   |                                                                                            |                                                                        |          |       |        |          |      |
|                                                  |                                                                                                                                           |                                                                                                         |                                                                                                                  |                                                                                                         |                                                                                                         |                                                                   |                                                                                            |                                                                        |          |       |        |          |      |
|                                                  |                                                                                                                                           |                                                                                                         |                                                                                                                  |                                                                                                         |                                                                                                         |                                                                   |                                                                                            |                                                                        |          |       |        |          |      |
|                                                  |                                                                                                                                           |                                                                                                         | Over                                                                                                             | Limit                                                                                                   | Read                                                                                                    | LISN                                                              | Cable                                                                                      |                                                                        |          |       |        |          |      |
|                                                  |                                                                                                                                           |                                                                                                         |                                                                                                                  |                                                                                                         |                                                                                                         |                                                                   | CODIC                                                                                      |                                                                        |          |       |        |          |      |
|                                                  | Freq                                                                                                                                      | Level                                                                                                   | Limit                                                                                                            | Line                                                                                                    | Level                                                                                                   | Factor                                                            |                                                                                            | Remark                                                                 |          |       |        |          |      |
|                                                  | Freq                                                                                                                                      | Level<br>dBuV                                                                                           | Limit<br>dB                                                                                                      | Line<br>dBuV                                                                                            | dBuV                                                                                                    | Hactor<br>dB                                                      |                                                                                            | Remark                                                                 | -        |       |        |          |      |
| 1                                                |                                                                                                                                           | dBuV                                                                                                    | dB                                                                                                               |                                                                                                         |                                                                                                         |                                                                   | Loss                                                                                       |                                                                        | -        |       |        |          |      |
| 2                                                | MHz<br>0.1540270<br>0.1540270                                                                                                             | dBuV<br>53.01<br>34.54                                                                                  | dB<br>-12.77<br>-21.24                                                                                           | dBuV<br>65.78<br>55.78                                                                                  | dBuV<br>52.64<br>34.17                                                                                  | dB<br>0.02<br>0.02                                                | Loss<br>dB<br>0.35<br>0.35                                                                 | <u>O</u> P<br>Average                                                  | -        |       |        |          |      |
| 2<br>3                                           | MHz<br>0.1540270<br>0.1540270<br>0.1694400                                                                                                | dBuV<br>53.01<br>34.54<br>52.20                                                                         | dB<br>-12.77<br>-21.24<br>-12.79                                                                                 | dBuV<br>65.78<br>55.78<br>64.99                                                                         | dBuV<br>52.64<br>34.17<br>51.77                                                                         | dB<br>0.02<br>0.02<br>0.02                                        | Loss<br>dB<br>0.35<br>0.41                                                                 | OP<br>Average<br>OP                                                    | -        |       |        |          |      |
| 2<br>3<br>4                                      | MHz<br>0.1540270<br>0.1540270                                                                                                             | dBuV<br>53.01<br>34.54<br>52.20<br>36.43                                                                | dB<br>-12.77<br>-21.24<br>-12.79<br>-18.56                                                                       | dBuV<br>65.78<br>55.78<br>64.99<br>54.99                                                                | dBuV<br>52.64<br>34.17<br>51.77<br>36.00                                                                | dB<br>0.02<br>0.02                                                | Loss<br>dB<br>0.35<br>0.41                                                                 | OP<br>Average<br>OP<br>Average                                         | -        |       |        |          |      |
| 2<br>3<br>4<br>5<br>6                            | MHz<br>0.1540270<br>0.1540270<br>0.1694400<br>0.1694400<br>0.2094380<br>0.2094380                                                         | dBuV<br>53.01<br>34.54<br>52.20<br>36.43<br>46.23<br>29.78                                              | dB<br>-12.77<br>-21.24<br>-12.79<br>-18.56<br>-17.00<br>-23.45                                                   | dBuV<br>65.78<br>55.78<br>64.99<br>54.99<br>63.23<br>53.23                                              | dBuV<br>52.64<br>34.17<br>51.77<br>36.00<br>45.70<br>29.25                                              | dB<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02        | Loss<br>dB<br>0.35<br>0.41<br>0.41<br>0.51<br>0.51                                         | OP<br>Average<br>OP<br>Average<br>OP<br>Average                        | -        |       |        |          |      |
| 2<br>3<br>4<br>5<br>6<br>7                       | MHz<br>0.1540270<br>0.1540270<br>0.1694400<br>0.1694400<br>0.2094380<br>0.2094380<br>0.2094380<br>0.2094380                               | dBuV<br>53.01<br>34.54<br>52.20<br>36.43<br>46.23<br>29.78<br>24.88                                     | dB<br>-12.77<br>-21.24<br>-12.79<br>-18.56<br>-17.00<br>-23.45<br>-26.54                                         | dBuV<br>65.78<br>55.78<br>64.99<br>54.99<br>63.23<br>53.23<br>53.23<br>51.42                            | dBuV<br>52.64<br>34.17<br>51.77<br>36.00<br>45.70<br>29.25<br>24.32                                     | dB<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.0 | Loss<br>dB<br>0.35<br>0.41<br>0.41<br>0.51<br>0.51<br>0.54                                 | OP<br>Average<br>OP<br>Average<br>OP<br>Average<br>Average             | -        |       |        |          |      |
| 2<br>3<br>4<br>5<br>6<br>7                       | MHz<br>0.1540270<br>0.1540270<br>0.1694400<br>0.2094380<br>0.2094380<br>0.2094380<br>0.2602550<br>0.2602550                               | dBuV<br>53.01<br>34.54<br>52.20<br>36.43<br>46.23<br>29.78<br>24.88<br>40.59                            | dB<br>-12.77<br>-21.24<br>-12.79<br>-18.56<br>-17.00<br>-23.45<br>-26.54                                         | dBuV<br>65.78<br>55.78<br>64.99<br>54.99<br>63.23<br>53.23<br>51.42<br>61.42                            | dBuV<br>52.64<br>34.17<br>51.77<br>36.00<br>45.70<br>29.25<br>24.32<br>40.03                            | dB<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.0 | Loss<br>dB<br>0.35<br>0.41<br>0.41<br>0.51<br>0.51<br>0.54<br>0.54                         | QP<br>Average<br>QP<br>Average<br>QP<br>Average<br>Average<br>QP       | -        |       |        |          |      |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10       | MHz<br>0.1540270<br>0.1540270<br>0.1694400<br>0.2094380<br>0.2094380<br>0.2602550<br>0.2602550<br>11.200<br>11.200                        | dBuV<br>53.01<br>34.54<br>52.20<br>36.43<br>46.23<br>29.78<br>24.88<br>40.59<br>40.70<br>35.21          | -12.77<br>-21.24<br>-12.79<br>-18.56<br>-17.00<br>-23.45<br>-26.54<br>-20.83<br>-19.30<br>-14.79                 | dBuV<br>65.78<br>64.99<br>63.23<br>53.23<br>51.42<br>61.42<br>60.00<br>50.00                            | dBuV<br>52.64<br>34.17<br>51.77<br>36.00<br>45.70<br>29.25<br>24.32<br>40.03<br>39.69<br>34.20          | dB<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.0 | Loss<br>dB<br>0.35<br>0.41<br>0.41<br>0.51<br>0.51<br>0.54<br>0.54<br>0.54<br>0.80<br>0.80 | OP<br>Average<br>OP<br>Average<br>Average<br>OP<br>OP<br>OP<br>Average | -        |       |        |          |      |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | MHz<br>0.1540270<br>0.1540270<br>0.1694400<br>0.2094380<br>0.2094380<br>0.2094380<br>0.2602550<br>0.2602550<br>11.200<br>11.200<br>15.470 | dBuV<br>53.01<br>34.54<br>52.20<br>36.43<br>46.23<br>29.78<br>24.88<br>40.59<br>40.70<br>35.21<br>35.85 | dB<br>-12.77<br>-21.24<br>-12.79<br>-18.56<br>-17.00<br>-23.45<br>-26.54<br>-20.83<br>-19.30<br>-14.79<br>-24.15 | dBuV<br>65.78<br>55.78<br>64.99<br>63.23<br>53.23<br>51.42<br>61.42<br>61.42<br>60.00<br>50.00<br>60.00 | dBuV<br>52.64<br>34.17<br>51.77<br>36.00<br>45.70<br>29.25<br>24.32<br>40.03<br>39.69<br>34.20<br>34.79 | dB<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.0 | Loss<br>dB<br>0.35<br>0.41<br>0.51<br>0.51<br>0.54<br>0.54<br>0.80<br>0.80<br>0.79         | OP<br>Average<br>OP<br>Average<br>Average<br>OP<br>OP<br>Average<br>OP |          |       |        |          |      |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10       | MHz<br>0.1540270<br>0.1540270<br>0.1694400<br>0.2094380<br>0.2094380<br>0.2094380<br>0.2602550<br>0.2602550<br>11.200<br>11.200<br>15.470 | dBuV<br>53.01<br>34.54<br>52.20<br>36.43<br>46.23<br>29.78<br>24.88<br>40.59<br>40.70<br>35.21<br>35.85 | -12.77<br>-21.24<br>-12.79<br>-18.56<br>-17.00<br>-23.45<br>-26.54<br>-20.83<br>-19.30<br>-14.79                 | dBuV<br>65.78<br>55.78<br>64.99<br>63.23<br>53.23<br>51.42<br>61.42<br>61.42<br>60.00<br>50.00<br>60.00 | dBuV<br>52.64<br>34.17<br>51.77<br>36.00<br>45.70<br>29.25<br>24.32<br>40.03<br>39.69<br>34.20<br>34.79 | dB<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.0 | Loss<br>dB<br>0.35<br>0.41<br>0.51<br>0.51<br>0.54<br>0.54<br>0.80<br>0.80<br>0.79         | OP<br>Average<br>OP<br>Average<br>Average<br>OP<br>OP<br>OP<br>Average | -        |       |        |          |      |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | MHz<br>0.1540270<br>0.1540270<br>0.1694400<br>0.2094380<br>0.2094380<br>0.2094380<br>0.2602550<br>0.2602550<br>11.200<br>11.200<br>15.470 | dBuV<br>53.01<br>34.54<br>52.20<br>36.43<br>46.23<br>29.78<br>24.88<br>40.59<br>40.70<br>35.21<br>35.85 | dB<br>-12.77<br>-21.24<br>-12.79<br>-18.56<br>-17.00<br>-23.45<br>-26.54<br>-20.83<br>-19.30<br>-14.79<br>-24.15 | dBuV<br>65.78<br>55.78<br>64.99<br>63.23<br>53.23<br>51.42<br>61.42<br>61.42<br>60.00<br>50.00<br>60.00 | dBuV<br>52.64<br>34.17<br>51.77<br>36.00<br>45.70<br>29.25<br>24.32<br>40.03<br>39.69<br>34.20<br>34.79 | dB<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.0 | Loss<br>dB<br>0.35<br>0.41<br>0.51<br>0.51<br>0.54<br>0.54<br>0.80<br>0.80<br>0.79         | OP<br>Average<br>OP<br>Average<br>Average<br>OP<br>OP<br>Average<br>OP | -        |       |        |          |      |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | MHz<br>0.1540270<br>0.1540270<br>0.1694400<br>0.2094380<br>0.2094380<br>0.2094380<br>0.2602550<br>0.2602550<br>11.200<br>11.200<br>15.470 | dBuV<br>53.01<br>34.54<br>52.20<br>36.43<br>46.23<br>29.78<br>24.88<br>40.59<br>40.70<br>35.21<br>35.85 | dB<br>-12.77<br>-21.24<br>-12.79<br>-18.56<br>-17.00<br>-23.45<br>-26.54<br>-20.83<br>-19.30<br>-14.79<br>-24.15 | dBuV<br>65.78<br>55.78<br>64.99<br>63.23<br>53.23<br>51.42<br>61.42<br>61.42<br>60.00<br>50.00<br>60.00 | dBuV<br>52.64<br>34.17<br>51.77<br>36.00<br>45.70<br>29.25<br>24.32<br>40.03<br>39.69<br>34.20<br>34.79 | dB<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.0 | Loss<br>dB<br>0.35<br>0.41<br>0.51<br>0.51<br>0.54<br>0.54<br>0.80<br>0.80<br>0.79         | OP<br>Average<br>OP<br>Average<br>Average<br>OP<br>OP<br>Average<br>OP | -        |       |        |          |      |

## 3.1.5 Test Result of AC Power-line Conducted Emissions







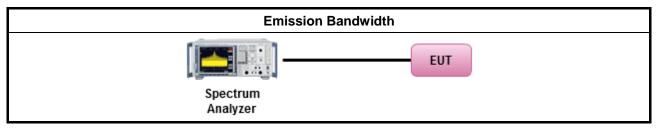


# 3.2 Emission Bandwidth

#### 3.2.1 Emission Bandwidth Limit

| Emission Bandwidth Limit                                                                                                                                                    |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| UNII Devices                                                                                                                                                                |  |  |  |  |  |  |
| For the 5.15-5.25 GHz band, N/A                                                                                                                                             |  |  |  |  |  |  |
| For the 5.25-5.35 GHz band, the maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz.  |  |  |  |  |  |  |
| For the 5.47-5.725 GHz band, the maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. |  |  |  |  |  |  |
| For the 5.725-5.85 GHz band, 6 dB emission bandwidth $\geq$ 500kHz.                                                                                                         |  |  |  |  |  |  |
|                                                                                                                                                                             |  |  |  |  |  |  |

#### **3.2.2 Measuring Instruments**


Refer a test equipment and calibration data table in this test report.

#### 3.2.3 Test Procedures

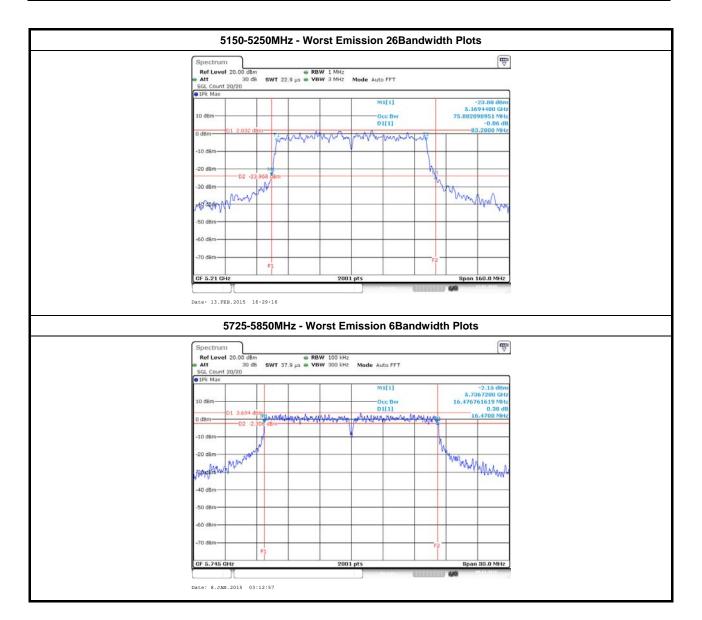
|           |                                                                              | Test Method                                                                                                                                                                           |  |  |  |  |
|-----------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| $\square$ | For the emission bandwidth shall be measured using one of the options below: |                                                                                                                                                                                       |  |  |  |  |
|           | $\square$                                                                    | Refer as FCC KDB 789033 D02 v01, clause C for EBW and clause D for OBW measurement.                                                                                                   |  |  |  |  |
|           |                                                                              | Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.                                                                                                                    |  |  |  |  |
|           |                                                                              | Refer as IC RSS-Gen, clause 4.6 for bandwidth testing.                                                                                                                                |  |  |  |  |
| $\square$ | For conducted measurement.                                                   |                                                                                                                                                                                       |  |  |  |  |
|           | $\boxtimes$                                                                  | The EUT supports single transmit chain and measurements performed on this transmit chain port 1.                                                                                      |  |  |  |  |
|           |                                                                              | The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.                                                                                   |  |  |  |  |
|           | $\square$                                                                    | The EUT supports multiple transmit chains using options given below:                                                                                                                  |  |  |  |  |
|           |                                                                              | Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.   |  |  |  |  |
|           |                                                                              | Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains. |  |  |  |  |



### 3.2.4 Test Setup



#### 3.2.5 Test Result of Emission Bandwidth


|                 | UNII Emission Bandwidth Result (5150-5250MHz band) |       |                          |               |               |               |  |  |
|-----------------|----------------------------------------------------|-------|--------------------------|---------------|---------------|---------------|--|--|
| Condition       |                                                    |       | Emission Bandwidth (MHz) |               |               |               |  |  |
| Madulation Mada |                                                    | Freq. | 99% Ba                   | ndwidth       | 26dB Ba       | andwidth      |  |  |
| Modulation Mode | Ντχ                                                | (MHz) | Chain- Port 1            | Chain- Port 2 | Chain- Port 1 | Chain- Port 2 |  |  |
| 11a             | 1                                                  | 5180  | 16.51                    | -             | 21.85         | -             |  |  |
| 11a             | 1                                                  | 5200  | 16.69                    | -             | 24.95         | -             |  |  |
| 11a             | 1                                                  | 5240  | 16.54                    | -             | 21.70         | -             |  |  |
| HT20            | 2                                                  | 5180  | 17.79                    | 17.89         | 21.47         | 22.62         |  |  |
| HT20            | 2                                                  | 5200  | 17.96                    | 17.89         | 24.67         | 21.27         |  |  |
| HT20            | 2                                                  | 5240  | 18.04                    | 17.81         | 23.62         | 21.35         |  |  |
| HT40            | 2                                                  | 5190  | 36.46                    | 36.34         | 40.64         | 39.20         |  |  |
| HT40            | 2                                                  | 5230  | 36.86                    | 36.62         | 49.68         | 42.36         |  |  |
| VHT20           | 2                                                  | 5180  | 17.71                    | 17.84         | 22.45         | 21.55         |  |  |
| VHT20           | 2                                                  | 5200  | 17.86                    | 18.04         | 28.45         | 21.80         |  |  |
| VHT20           | 2                                                  | 5240  | 17.99                    | 17.66         | 25.15         | 21.65         |  |  |
| VHT40           | 2                                                  | 5190  | 36.18                    | 36.18         | 39.32         | 42.16         |  |  |
| VHT40           | 2                                                  | 5230  | 36.74                    | 36.42         | 50.84         | 42.28         |  |  |
| VHT80           | 2                                                  | 5210  | 75.72                    | 75.80         | 83.20         | 83.20         |  |  |
| Resu            | ılt                                                | -     |                          | Com           | plied         |               |  |  |



|                 |      | UN    | II Emission Bandwidt     | h Result (5725-5850MF | Iz band)      |               |  |
|-----------------|------|-------|--------------------------|-----------------------|---------------|---------------|--|
| Condition       |      |       | Emission Bandwidth (MHz) |                       |               |               |  |
| Modulation Mode | Ντχ  | Freq. | 99% Ba                   | ndwidth               | 6dB Ba        | ndwidth       |  |
| modulation mode | INIX | (MHz) | Chain- Port 1            | Chain- Port 2         | Chain- Port 1 | Chain- Port 2 |  |
| 11a             | 1    | 5745  | 16.47                    | -                     | 16.47         | -             |  |
| 11a             | 1    | 5785  | 16.41                    | -                     | 16.50         | -             |  |
| 11a             | 1    | 5825  | 16.38                    | -                     | 16.47         | -             |  |
| HT20            | 2    | 5745  | 17.67                    | 17.64                 | 17.70         | 17.73         |  |
| HT20            | 2    | 5785  | 17.67                    | 17.64                 | 17.59         | 17.73         |  |
| HT20            | 2    | 5825  | 17.64                    | 17.63                 | 17.70         | 17.67         |  |
| HT40            | 2    | 5755  | 36.18                    | 36.18                 | 36.44         | 36.40         |  |
| HT40            | 2    | 5795  | 36.18                    | 36.26                 | 36.44         | 36.40         |  |
| VHT20           | 2    | 5745  | 17.64                    | 17.63                 | 17.68         | 17.77         |  |
| VHT20           | 2    | 5785  | 17.64                    | 17.63                 | 17.71         | 17.70         |  |
| VHT20           | 2    | 5825  | 17.66                    | 17.67                 | 17.67         | 17.79         |  |
| VHT40           | 2    | 5755  | 36.22                    | 36.18                 | 36.52         | 36.36         |  |
| VHT40           | 2    | 5795  | 36.18                    | 36.26                 | 36.36         | 36.44         |  |
| VHT80           | 2    | 5775  | 75.64                    | 75.80                 | 76.40         | 76.40         |  |
| Limi            | it   |       |                          | -                     | ≥ 50          | ) kHz         |  |
| Resu            | lt   |       |                          | Com                   | plied         |               |  |







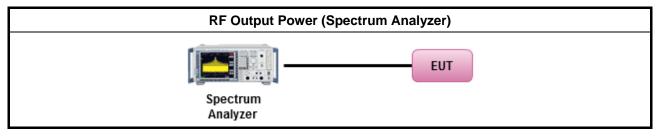


# 3.3 RF Output Power

#### 3.3.1 RF Output Power Limit

|             | Maximum Conducted Output Power Limit                                                                                                                                                                                                                |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UN          | I Devices                                                                                                                                                                                                                                           |
| $\boxtimes$ | For the 5.15-5.25 GHz band:                                                                                                                                                                                                                         |
|             | Outdoor AP: the maximum conducted output power ( $P_{Out}$ ) shall not exceed the lesser of 1 W. If $G_{TX}$ > 6 dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ . e.i.r.p. at any elevation angle above 30 degrees $\leq$ 125mW [21dBm]                    |
|             | Indoor AP: the maximum conducted output power ( $P_{Out}$ ) shall not exceed the lesser of 1 W. If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$                                                                                             |
|             | Point-to-point AP: the maximum conducted output power ( $P_{Out}$ ) shall not exceed the lesser of 1 W If $G_{TX} > 23$ dBi, then $P_{Out} = 30 - (G_{TX} - 23)$ .                                                                                  |
|             | $\label{eq:model} \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                              |
|             | For the 5.25-5.35 GHz band, the maximum conducted output power ( $P_{Out}$ ) shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 24 - (G_{TX} - 6)$ .  |
|             | For the 5.47-5.725 GHz band, the maximum conducted output power ( $P_{Out}$ ) shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 24 - (G_{TX} - 6)$ . |
| $\boxtimes$ | For the 5.725-5.85 GHz band:                                                                                                                                                                                                                        |
|             | Point-to-multipoint systems (P2M): the maximum conducted output power ( $P_{Out}$ ) shall not exceed the lesser of 1 W. If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ .                                                                   |
|             | Point-to-point systems (P2P): the maximum conducted output power (P <sub>Out</sub> ) shall not exceed the lesser of 1 W.                                                                                                                            |
|             | <ul> <li>maximum conducted output power in dBm,</li> <li>the maximum transmitting antenna directional gain in dBi.</li> </ul>                                                                                                                       |

#### 3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.



#### 3.3.3 Test Procedures

|           |             | Test Method                                                                                                                                                                                                                                                                                                            |
|-----------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\square$ | Max         | imum Conducted Output Power                                                                                                                                                                                                                                                                                            |
|           | [dut        | y cycle ≥ 98% or external video / power trigger]                                                                                                                                                                                                                                                                       |
|           | $\square$   | Refer as FCC KDB 789033 D02 v01, clause E Method SA-1 (spectral trace averaging).                                                                                                                                                                                                                                      |
|           |             | Refer as FCC KDB 789033 D02 v01, clause E Method SA-1 Alt. (RMS detection with slow sweep speed)                                                                                                                                                                                                                       |
|           | duty        | cycle < 98% and average over on/off periods with duty factor                                                                                                                                                                                                                                                           |
|           |             | Refer as FCC KDB 789033 D02 v01, clause E Method SA-2 (spectral trace averaging).                                                                                                                                                                                                                                      |
|           |             | Refer as FCC KDB 789033 D02 v01, clause E Method SA-2 Alt. (RMS detection with slow sweep speed)                                                                                                                                                                                                                       |
|           | Wid         | eband RF power meter and average over on/off periods with duty factor                                                                                                                                                                                                                                                  |
|           |             | Refer as FCC KDB 789033 D02 v01, clause E Method PM (using an RF average power meter).                                                                                                                                                                                                                                 |
| $\square$ | For         | conducted measurement.                                                                                                                                                                                                                                                                                                 |
|           | $\boxtimes$ | The EUT supports single transmit chain and measurements performed on this transmit chain.                                                                                                                                                                                                                              |
|           |             | The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.                                                                                                                                                                                                                    |
|           |             | The EUT supports multiple transmit chains using options given below:<br>Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum<br>approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW)<br>of all ports for each individual sample and save them. |
|           |             | If multiple transmit chains, EIRP calculation could be following as methods:<br>$P_{total} = P_1 + P_2 + + P_n$<br>(calculated in linear unit [mW] and transfer to log unit [dBm])<br>EIRP <sub>total</sub> = P <sub>total</sub> + DG                                                                                  |

## 3.3.4 Test Setup



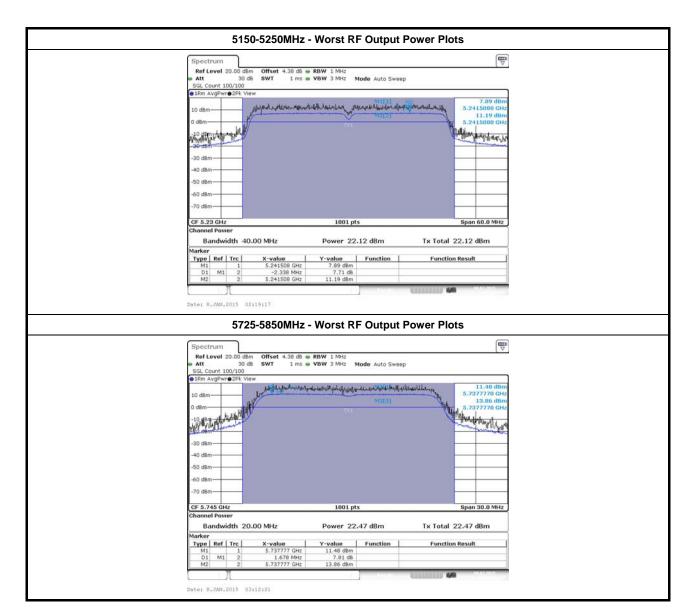


|                                                                                                                                                                                                                                                                                                                           | Directiona                                                                                                                                                                                                                     | al Gain (DG) R                                                                                                                                                                           | esult                                                                                                                                                                                      |                                                                                                                            |                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------|
| Transmit Chain                                                                                                                                                                                                                                                                                                            | s No.                                                                                                                                                                                                                          | 1                                                                                                                                                                                        | 2                                                                                                                                                                                          | -                                                                                                                          | -                  |
| Maximum G <sub>ANT</sub>                                                                                                                                                                                                                                                                                                  | (dBi)                                                                                                                                                                                                                          | 2.58                                                                                                                                                                                     | 2.58                                                                                                                                                                                       | -                                                                                                                          | -                  |
| Modulation Mode                                                                                                                                                                                                                                                                                                           | DG (dBi)<br>(See the Note 3)                                                                                                                                                                                                   | Ν <sub>τχ</sub>                                                                                                                                                                          | N <sub>ss</sub> (Min.)                                                                                                                                                                     | STBC                                                                                                                       | Array Gain<br>(dB) |
| 11a                                                                                                                                                                                                                                                                                                                       | 2.58                                                                                                                                                                                                                           | 1                                                                                                                                                                                        | 1                                                                                                                                                                                          | -                                                                                                                          | -                  |
| HT20                                                                                                                                                                                                                                                                                                                      | 5.59                                                                                                                                                                                                                           | 2                                                                                                                                                                                        | 1 / 2                                                                                                                                                                                      | -                                                                                                                          | 3.01               |
| HT40                                                                                                                                                                                                                                                                                                                      | 5.59                                                                                                                                                                                                                           | 2                                                                                                                                                                                        | 1 / 2                                                                                                                                                                                      | -                                                                                                                          | 3.01               |
| VHT20                                                                                                                                                                                                                                                                                                                     | 5.59                                                                                                                                                                                                                           | 2                                                                                                                                                                                        | 1 / 2                                                                                                                                                                                      | -                                                                                                                          | 3.01               |
| VHT40                                                                                                                                                                                                                                                                                                                     | 5.59                                                                                                                                                                                                                           | 2                                                                                                                                                                                        | 1 / 2                                                                                                                                                                                      | -                                                                                                                          | 3.01               |
| VHT80                                                                                                                                                                                                                                                                                                                     | 5.59                                                                                                                                                                                                                           | 2                                                                                                                                                                                        | 1 / 2                                                                                                                                                                                      | -                                                                                                                          | 3.01               |
| Note 1: For all transmitter out<br>Any transmit signals a<br>All transmit signals ar<br>Note 2: For all transmitter out<br>Any transmit signals a<br>All transmit signals ar<br>Note 3: For Spatial Multiplexir<br>where Nss = the num<br>Note 4: For CDD transmission<br>Directional Gain (DG)<br>Array Gain = 0 dB (i.e | are correlated, Direct<br>e completely uncorre-<br>puts with unequal are<br>are correlated, Direct<br>e completely uncorre-<br>ng, Directional Gain<br>ber of independent<br>ns, directional gain i<br>$= G_{ANT} + Array Gai$ | ctional Gain = C<br>related, Direction<br>ntenna gains, c<br>ctional Gain =10<br>related, Direction<br>(DG) = G <sub>ANT</sub> +<br>spatial streams<br>s calculated as<br>n, where Array | $G_{ANT} + 10$ log(N-<br>bonal Gain = $G_{AN}$<br>directional gain<br>0 log[( $10^{G1/20}$ +.<br>bonal Gain = 10 l<br>10 log(N <sub>TX</sub> /N <sub>SS</sub><br>5 data.<br>5 power measur | <sub>TX</sub> )<br>is to be compu<br>+ 10 <sup>GN/20</sup> ) <sup>2</sup> /I<br>og[(10 <sup>G1/10</sup> +<br>),<br>ements: | ited as follows    |

### 3.3.5 Directional Gain for Power Measurement

Array Gain = 0 dB (i.e., no array gain) for  $N_{TX} \le 4$ ; Array Gain = 0 dB (i.e., no array gain) for channel widths  $\ge$  40 MHz for any  $N_{TX}$ ;




|                 |     | Maxim | um Conducted O | utput Power (5150 | )-5250MHz band) |              |               |
|-----------------|-----|-------|----------------|-------------------|-----------------|--------------|---------------|
| Modulation Mode | N   | Freq. | C              | Output Power (dBn | n)              | Antenna Gain | Devuen Linsit |
| Modulation Mode | Ντχ | (MHz) | Chain Port 1   | Chain Port 2      | Sum Chain       | (dBi)        | Power Limit   |
| 11a             | 1   | 5180  | 21.29          | -                 | 21.29           | 2.58         | 30.00         |
| 11a             | 1   | 5200  | 21.52          | -                 | 21.52           | 2.58         | 30.00         |
| 11a             | 1   | 5240  | 21.69          | -                 | 21.69           | 2.58         | 30.00         |
| HT20            | 2   | 5180  | 20.93          | 20.31             | 23.64           | 5.59         | 30.00         |
| HT20            | 2   | 5200  | 21.93          | 21.61             | 24.78           | 5.59         | 30.00         |
| HT20            | 2   | 5240  | 21.66          | 21.49             | 24.59           | 5.59         | 30.00         |
| HT40            | 2   | 5190  | 18.18          | 17.87             | 21.04           | 5.59         | 30.00         |
| HT40            | 2   | 5230  | 22.03          | 22.00             | 25.03           | 5.59         | 30.00         |
| VHT20           | 2   | 5180  | 20.96          | 20.35             | 23.68           | 5.59         | 30.00         |
| VHT20           | 2   | 5200  | 21.96          | 21.57             | 24.78           | 5.59         | 30.00         |
| VHT20           | 2   | 5240  | 21.74          | 21.47             | 24.62           | 5.59         | 30.00         |
| VHT40           | 2   | 5190  | 18.19          | 17.94             | 21.08           | 5.59         | 30.00         |
| VHT40           | 2   | 5230  | 22.12          | 22.04             | 25.09           | 5.59         | 30.00         |
| VHT80           | 2   | 5210  | 14.41          | 14.04             | 17.24           | 5.59         | 30.00         |
| Resu            | ult |       |                |                   | Complied        | ·            |               |

# 3.3.6 Test Result of Maximum Conducted Output Power

|                 |     | Maxim | um Conducted O | utput Power (572  | 5-5850MHz band) |              |             |
|-----------------|-----|-------|----------------|-------------------|-----------------|--------------|-------------|
| Modulation Mode | N   | Freq. | C              | output Power (dBr | n)              | Antenna Gain | Power Limit |
| modulation mode | Ντχ | (MHz) | Chain Port 1   | Chain Port 2      | Sum Chain       | (dBi)        | Power Limit |
| 11a             | 1   | 5745  | 22.47          | -                 | 22.47           | 2.58         | 30.00       |
| 11a             | 1   | 5785  | 21.81          | -                 | 21.81           | 2.58         | 30.00       |
| 11a             | 1   | 5825  | 19.11          | -                 | 19.11           | 2.58         | 30.00       |
| HT20            | 2   | 5745  | 16.43          | 14.95             | 18.76           | 5.59         | 30.00       |
| HT20            | 2   | 5785  | 20.52          | 18.98             | 22.83           | 5.59         | 30.00       |
| HT20            | 2   | 5825  | 17.82          | 16.64             | 20.28           | 5.59         | 30.00       |
| HT40            | 2   | 5755  | 13.68          | 12.72             | 16.24           | 5.59         | 30.00       |
| HT40            | 2   | 5795  | 20.69          | 19.48             | 23.14           | 5.59         | 30.00       |
| VHT20           | 2   | 5745  | 16.57          | 15.13             | 18.92           | 5.59         | 30.00       |
| VHT20           | 2   | 5785  | 20.57          | 19.17             | 22.94           | 5.59         | 30.00       |
| VHT20           | 2   | 5825  | 17.87          | 16.70             | 20.33           | 5.59         | 30.00       |
| VHT40           | 2   | 5755  | 13.76          | 12.76             | 16.30           | 5.59         | 30.00       |
| VHT40           | 2   | 5795  | 20.75          | 19.50             | 23.18           | 5.59         | 30.00       |
| VHT80           | 2   | 5775  | 11.39          | 10.30             | 13.89           | 5.59         | 30.00       |
| Resu            | ılt |       |                |                   | Complied        |              |             |









# 3.4 Peak Power Spectral Density

### 3.4.1 Peak Power Spectral Density Limit

|             | Peak Power Spectral Density Limit                                                                                                                                                                                                                               |      |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| UN          | II Devices                                                                                                                                                                                                                                                      |      |
| $\boxtimes$ | For the 5.15-5.25 GHz band:                                                                                                                                                                                                                                     |      |
|             | Outdoor AP: the peak power spectral density (PPSD) shall not exceed the lesser of 17dBm/MHz.<br>$G_{TX} > 6$ dBi, then $P_{Out} = 17 - (G_{TX} - 6)$ .                                                                                                          | . If |
|             | Indoor AP: the peak power spectral density (PPSD) shall not exceed the lesser of 17dBm/MHz.<br>$G_{TX} > 6$ dBi, then $P_{Out} = 17 - (G_{TX} - 6)$ .                                                                                                           | . If |
|             | Point-to-point AP: the peak power spectral density (PPSD) shall not exceed the lesser of $17$ dBm/MHz. If G <sub>TX</sub> > 23 dBi, then P <sub>Out</sub> = $17 - (G_{TX} - 23)$ .                                                                              | of   |
|             |                                                                                                                                                                                                                                                                 | Зi,  |
|             | For the 5.25-5.35 GHz band, the peak power spectral density (PPSD) $\leq$ 11 dBm/MHz. If G <sub>TX</sub> > 6 dB then PPSD= 11 – (G <sub>TX</sub> – 6).                                                                                                          | Зi,  |
|             | For the 5.47-5.725 GHz band, the peak power spectral density (PPSD) $\leq$ 11 dBm/MHz. If G <sub>TX</sub> > 6 dB then PPSD= 11 – (G <sub>TX</sub> – 6).                                                                                                         | Зi,  |
| $\square$   | For the 5.725-5.85 GHz band:                                                                                                                                                                                                                                    |      |
|             | Point-to-multipoint systems (P2M): the peak power spectral density (PPSD) $\leq$ 30 dBm/500kHz.<br>G <sub>TX</sub> > 6 dBi, then PPSD= 30 - (G <sub>TX</sub> - 6).                                                                                              | lf   |
|             | Point-to-point systems (P2P): the peak power spectral density (PPSD) $\leq$ 30 dBm/500kHz.                                                                                                                                                                      |      |
| pov         | SD = peak power spectral density that he same method as used to determine the conducted output wer shall be used to determine the power spectral density. And power spectral density in dBm/MHz $c$ = the maximum transmitting antenna directional gain in dBi. | out  |

#### 3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

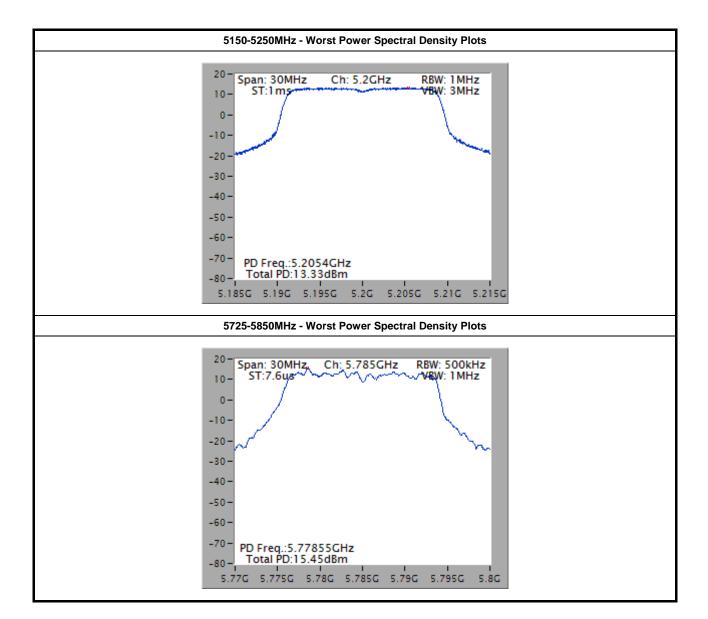


### 3.4.3 Test Procedures

|             |              | Test Method                                                                                                                                                                                                                                                                                                                                               |
|-------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\boxtimes$ | outp<br>func | c power spectral density procedures that the same method as used to determine the conducted<br>ut power shall be used to determine the peak power spectral density and use the peak search<br>tion on the spectrum analyzer to find the peak of the spectrum. For the peak power spectral density<br>be measured using below options:                     |
|             |              | Refer as FCC KDB 789033 D02 v01, F)5) power spectral density can be measured using resolution bandwidths < 1 MHz provided that the results are integrated over 1 MHz bandwidth                                                                                                                                                                            |
|             | [duty        | v cycle ≥ 98% or external video / power trigger]                                                                                                                                                                                                                                                                                                          |
|             | $\boxtimes$  | Refer as FCC KDB 789033 D02 v01, clause E Method SA-1 (spectral trace averaging).                                                                                                                                                                                                                                                                         |
|             |              | Refer as FCC KDB 789033 D02 v01, clause E Method SA-1 Alt. (RMS detection with slow sweep speed)                                                                                                                                                                                                                                                          |
|             | duty         | cycle < 98% and average over on/off periods with duty factor                                                                                                                                                                                                                                                                                              |
|             |              | Refer as FCC KDB 789033 D02 v01, clause E Method SA-2 (spectral trace averaging).                                                                                                                                                                                                                                                                         |
|             |              | Refer as FCC KDB 789033 D02 v01, clause E Method SA-2 Alt. (RMS detection with slow sweep speed)                                                                                                                                                                                                                                                          |
| $\boxtimes$ | For          | conducted measurement.                                                                                                                                                                                                                                                                                                                                    |
|             | $\boxtimes$  | The EUT supports single transmit chain and measurements performed on this transmit chain port 1.                                                                                                                                                                                                                                                          |
|             |              | The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.                                                                                                                                                                                                                                                       |
|             | $\boxtimes$  | The EUT supports multiple transmit chains using options given below:                                                                                                                                                                                                                                                                                      |
|             |              | Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911,<br>In-band power measurements. Using the measure-and-sum approach, measured all transmit<br>ports individually. Sum the power (in linear power units e.g., mW) of all ports for each<br>individual sample and save them.                                               |
|             |              | Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit. |
|             |              | If multiple transmit chains, EIRP PPSD calculation could be following as methods:<br>$PPSD_{total} = PPSD_1 + PPSD_2 + + PPSD_n$<br>(calculated in linear unit [mW] and transfer to log unit [dBm])<br>$EIRP_{total} = PPSD_{total} + DG$                                                                                                                 |
|             |              | Each individually PPSD plots refer as test report clause 3.3.5 with each individually PPSD plots.                                                                                                                                                                                                                                                         |

# 3.4.4 Test Setup

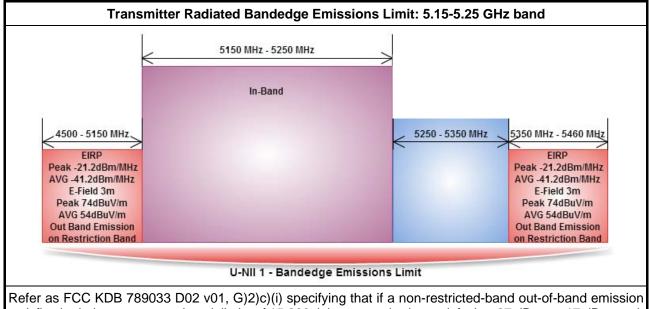
| Power Spectral Densit | y   |
|-----------------------|-----|
|                       | EUT |
| Spectrum<br>Analyzer  |     |



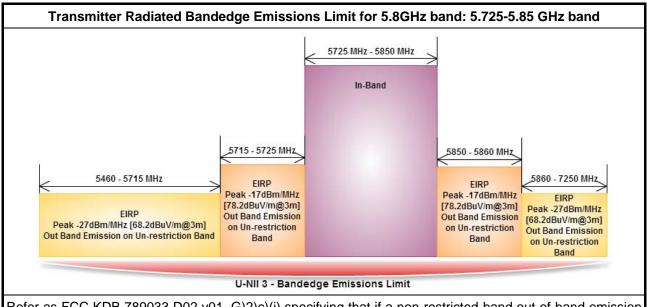

|                 |     | Peak P         | ower Spectral Density Result              | (5150-5250MHz band) |                    |
|-----------------|-----|----------------|-------------------------------------------|---------------------|--------------------|
| Modulation Mode | Ντχ | Freq.<br>(MHz) | Peak Power Spectral<br>Density (dBm/1MHz) | PSD Limit           | Antenna Gain (dBi) |
| 11a             | 1   | 5180           | 10.18                                     | 17.00               | 2.58               |
| 11a             | 1   | 5200           | 10.34                                     | 17.00               | 2.58               |
| 11a             | 1   | 5240           | 10.59                                     | 17.00               | 2.58               |
| HT20            | 2   | 5180           | 12.00                                     | 17.00               | 5.59               |
| HT20            | 2   | 5200           | 13.28                                     | 17.00               | 5.59               |
| HT20            | 2   | 5240           | 12.94                                     | 17.00               | 5.59               |
| HT40            | 2   | 5190           | 6.44                                      | 17.00               | 5.59               |
| HT40            | 2   | 5230           | 10.39                                     | 17.00               | 5.59               |
| VHT20           | 2   | 5180           | 12.21                                     | 17.00               | 5.59               |
| VHT20           | 2   | 5200           | 13.33                                     | 17.00               | 5.59               |
| VHT20           | 2   | 5240           | 13.18                                     | 17.00               | 5.59               |
| VHT40           | 2   | 5190           | 6.70                                      | 17.00               | 5.59               |
| VHT40           | 2   | 5230           | 10.45                                     | 17.00               | 5.59               |
| VHT80           | 2   | 5210           | -0.38                                     | 17.00               | 5.59               |
| Resu            | ılt |                |                                           | Complied            |                    |

# 3.4.5 Test Result of Peak Power Spectral Density

| Peak Power Spectral Density Result (5725-5850MHz band) |   |      |                                                          |          |                    |  |
|--------------------------------------------------------|---|------|----------------------------------------------------------|----------|--------------------|--|
| Modulation Mode N <sub>TX</sub> Freq. (MHz)            |   |      | Peak Power SpectralPSD LimitDensity (dBm/500KHz)(500kHz) |          | Antenna Gain (dBi) |  |
| 11a                                                    | 1 | 5745 | 14.86                                                    | 30.00    | 2.58               |  |
| 11a                                                    | 1 | 5785 | 13.54                                                    | 30.00    | 2.58               |  |
| 11a                                                    | 1 | 5825 | 11.20                                                    | 30.00    | 2.58               |  |
| HT20                                                   | 2 | 5745 | 9.82                                                     | 30.00    | 5.59               |  |
| HT20                                                   | 2 | 5785 | 14.13                                                    | 30.00    | 5.59               |  |
| HT20                                                   | 2 | 5825 | 11.69                                                    | 30.00    | 5.59               |  |
| HT40                                                   | 2 | 5755 | 4.98                                                     | 30.00    | 5.59               |  |
| HT40                                                   | 2 | 5795 | 12.07                                                    | 30.00    | 5.59               |  |
| VHT20                                                  | 2 | 5745 | 7.51                                                     | 30.00    | 5.59               |  |
| VHT20                                                  | 2 | 5785 | 15.45                                                    | 30.00    | 5.59               |  |
| VHT20                                                  | 2 | 5825 | 11.38                                                    | 30.00    | 5.59               |  |
| VHT40                                                  | 2 | 5755 | 4.76                                                     | 30.00    | 5.59               |  |
| VHT40                                                  | 2 | 5795 | 11.45                                                    | 30.00    | 5.59               |  |
| VHT80                                                  | 2 | 5775 | -0.80                                                    | 30.00    | 5.59               |  |
| Result                                                 |   |      |                                                          | Complied | ÷                  |  |






# 3.5 Transmitter Bandedge Emissions

#### 3.5.1 Transmitter Radiated Bandedge Emissions Limit



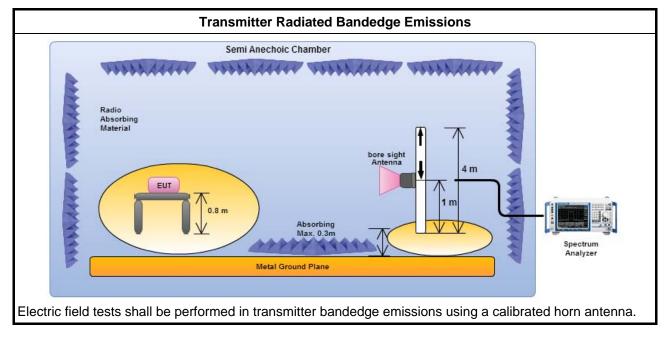
Refer as FCC KDB 789033 D02 v01, G)2)c)(I) specifying that if a non-restricted-band out-of-band emission satisfies both the average and peak limits of 15.209, it is not required to satisfy the -27 dBm or -17 dBm peak emission limit. Reason for change: to ensure that emission requirements in the non-restricted bands are not more stringent than those in the restricted bands.



Refer as FCC KDB 789033 D02 v01, G)2)c)(i) specifying that if a non-restricted-band out-of-band emission satisfies both the average and peak limits of 15.209, it is not required to satisfy the -27 dBm or -17 dBm peak emission limit. Reason for change: to ensure that emission requirements in the non-restricted bands are not more stringent than those in the restricted bands.

#### 3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.




### 3.5.3 Test Procedures

|             | Test Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| $\square$   | The average emission levels shall be measured in [duty cycle $\geq$ 98 or duty factor].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| $\boxtimes$ | Refer as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|             | If EUT operate in adjacent contiguous bands, bandedge testing performed at the lowest frequency channel at lower-band and highest frequency channel at higher-band. Transmitter in-band emissions will consist of adjacent contiguous bands (e.g., IEEE 802.11ac VHT160 The lowest frequency channel at lower-band and highest frequency channel at higher-band in-band emissions will consist of two adjacent contiguous bands.)                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|             | Operating in 5.15-5.25 GHz band (lower-band) and 5.25-5.35 GHz band (higher-band).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|             | Operating in 5.47-5.725 GHz band (lower-band) and 5.725-5.85 GHz band (higher-band).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|             | If EUT operate in individual non-contiguous bands, bandedge testing performed at the lowest frequency channel and highest frequency channel within lower-band and higher-band. (e.g., (e.g., IEEE 802.11ac VHT160)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|             | Operating in 5.25-5.35 GHz band (lower-band) and 5.47-5.725 GHz band (higher-band).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|             | Operating in 5.15-5.25 GHz band (lower-band) and 5.725-5.85 GHz band (higher-band).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| $\square$   | For the transmitter unwanted emissions shall be measured using following options below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|             | Refer as FCC KDB 789033 D02 v01, clause G)2) for unwanted emissions into non-restricted bands.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|             | Refer as FCC KDB 789033 D02 v01, clause G)1) for unwanted emissions into restricted bands.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|             | Refer as FCC KDB 789033 D02 v01, G)6) Method AD (Trace Averaging).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|             | Refer as FCC KDB 789033 D02 v01, G)6) Method VB (Reduced VBW).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|             | Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW $\geq$ 1/T, where T is pulse time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|             | Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|             | Refer as FCC KDB 789033 D02 v01, clause G)5) measurement procedure peak limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|             | Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| $\square$   | For the transmitter bandedge emissions shall be measured using following options below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|             | <ul> <li>Refer as FCC KDB 789033 D02 v01, clause G)3)d) for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|             | Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|             | Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| $\square$   | For radiated measurement, refer as ANSI C63.10, clause 6.6. Test distance is 3m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|             | Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements). Measurements in the bandedge are typically made at a closer distance 3m, because the instrumentation noise floor is typically close to the radiated emission limit. |  |  |  |  |  |  |



### 3.5.4 Test Setup





# 3.5.5 Transmitter Radiated Bandedge Emissions (with Antenna)

| U-NII 5150-5250MHz Transmitter Radiated Bandedge (with Antenna) |     |                |                            |                      |                         |                         |                      |                         |                         |      |
|-----------------------------------------------------------------|-----|----------------|----------------------------|----------------------|-------------------------|-------------------------|----------------------|-------------------------|-------------------------|------|
| Modulation<br>Mode                                              | Ντχ | Freq.<br>(MHz) | Measure<br>Distance<br>(m) | Freq.<br>(MHz)<br>PK | Level<br>(dBuV/m)<br>PK | Limit<br>(dBuV/m)<br>PK | Freq.<br>(MHz)<br>AV | Level<br>(dBuV/m)<br>AV | Limit<br>(dBuV/m)<br>AV | Pol. |
| 11a                                                             | 1   | 5180           | 3                          | 5149.60              | 70.58                   | 74                      | 5149.80              | 52.98                   | 54                      | V    |
| 11a                                                             | 1   | 5240           | 3                          | 5392.20              | 59.90                   | 74                      | 5393.40              | 46.74                   | 54                      | V    |
| HT20                                                            | 2   | 5180           | 3                          | 5148.80              | 67.75                   | 74                      | 5149.60              | 52.35                   | 54                      | V    |
| HT20                                                            | 2   | 5240           | 3                          | 5370.60              | 60.53                   | 74                      | 5397.60              | 47.14                   | 54                      | V    |
| HT40                                                            | 2   | 5190           | 3                          | 5149.94              | 67.96                   | 74                      | 5149.94              | 52.48                   | 54                      | V    |
| HT40                                                            | 2   | 5230           | 3                          | 5391.00              | 60.79                   | 74                      | 5398.20              | 47.27                   | 54                      | V    |
| VHT20                                                           | 2   | 5180           | 3                          | 5148.20              | 67.88                   | 74                      | 5149.80              | 52.46                   | 54                      | V    |
| VHT20                                                           | 2   | 5240           | 3                          | 5393.40              | 60.37                   | 74                      | 5392.80              | 47.08                   | 54                      | V    |
| VHT40                                                           | 2   | 5190           | 3                          | 5149.72              | 67.41                   | 74                      | 5149.72              | 52.53                   | 54                      | V    |
| VHT40                                                           | 2   | 5230           | 3                          | 5391.60              | 60.32                   | 74                      | 5388.00              | 47.15                   | 54                      | V    |
| VHT80                                                           | 2   | 5210           | 3                          | 5146.20              | 69.05                   | 74                      | 5148.00              | 52.64                   | 54                      | V    |
| VHT80                                                           | 2   | 5210           | 3                          | 5389.80              | 59.82                   | 74                      | 5388.60              | 46.09                   | 54                      | V    |

| Modulation<br>Mode | N <sub>TX</sub> | Freq.<br>(MHz) | Measure<br>Distance<br>(m) | Freq. (MHz)<br>PK |       |       | Pol. |
|--------------------|-----------------|----------------|----------------------------|-------------------|-------|-------|------|
| 11a                | 1               | 5745           | 3                          | 5713.84           | 65.96 | 68.20 | V    |
| 11a                | 1               | 5825           | 3                          | 5860.36           | 63.99 | 68.20 | V    |
| HT20               | 2               | 5745           | 3                          | 5714.26           | 66.31 | 68.20 | V    |
| HT20               | 2               | 5825           | 3                          | 5861.20           | 66.40 | 68.20 | V    |
| HT40               | 2               | 5755           | 3                          | 5713.44           | 65.90 | 68.20 | V    |
| HT40               | 2               | 5795           | 3                          | 5868.70           | 66.18 | 68.20 | V    |
| VHT20              | 2               | 5745           | 3                          | 5714.68           | 66.54 | 68.20 | V    |
| VHT20              | 2               | 5825           | 3                          | 5860.57           | 66.93 | 68.20 | V    |
| VHT40              | 2               | 5755           | 3                          | 5715.00           | 66.81 | 68.20 | V    |
| VHT40              | 2               | 5795           | 3                          | 5869.60           | 66.52 | 68.20 | V    |
| VHT80              | 2               | 5775           | 3                          | 5714.80           | 66.66 | 68.20 | V    |
| VHT80              | 2               | 5775           | 3                          | 5876.80           | 59.45 | 68.20 | V    |



# 3.6 Transmitter Unwanted Emissions

#### 3.6.1 Transmitter Radiated Unwanted Emissions Limit

| Unwanted emissions below 1 GHz and restricted band emissions above 1GHz limit |                                                                                                                           |                                                                                                                                                                                                                                               |  |  |  |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Field Strength (uV/m)                                                         | Field Strength (dBuV/m)                                                                                                   | Measure Distance (m)                                                                                                                                                                                                                          |  |  |  |
| 2400/F(kHz)                                                                   | 48.5 - 13.8                                                                                                               | 300                                                                                                                                                                                                                                           |  |  |  |
| 24000/F(kHz)                                                                  | 33.8 - 23                                                                                                                 | 30                                                                                                                                                                                                                                            |  |  |  |
| 30                                                                            | 29                                                                                                                        | 30                                                                                                                                                                                                                                            |  |  |  |
| 100                                                                           | 40                                                                                                                        | 3                                                                                                                                                                                                                                             |  |  |  |
| 150                                                                           | 43.5                                                                                                                      | 3                                                                                                                                                                                                                                             |  |  |  |
| 200                                                                           | 46                                                                                                                        | 3                                                                                                                                                                                                                                             |  |  |  |
| 500                                                                           | 54                                                                                                                        | 3                                                                                                                                                                                                                                             |  |  |  |
|                                                                               | Field Strength (uV/m)           2400/F(kHz)           24000/F(kHz)           30           100           150           200 | Field Strength (uV/m)         Field Strength (dBuV/m)           2400/F(kHz)         48.5 - 13.8           24000/F(kHz)         33.8 - 23           30         29           100         40           150         43.5           200         46 |  |  |  |

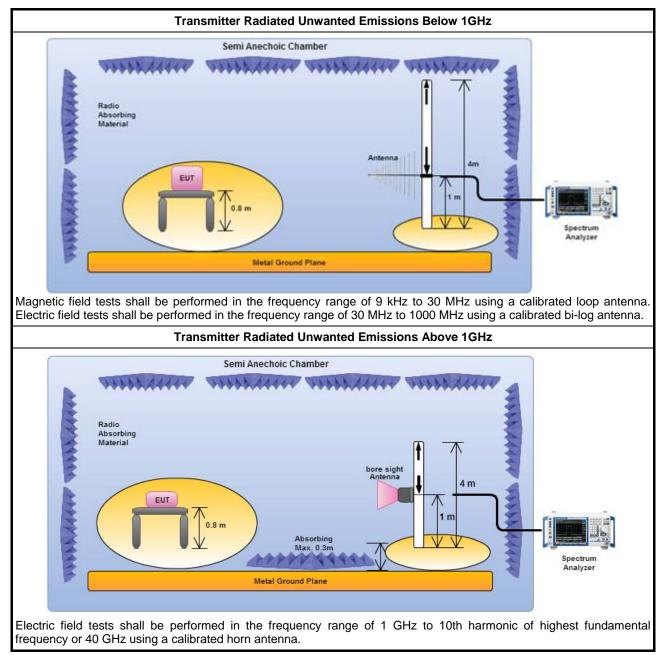
Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

| Un-restricted band emissions above 1GHz Limit               |                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Operating Band                                              | Limit                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 5.15 - 5.25 GHz                                             | e.i.r.p27 dBm [68.2 dBuV/m@3m]                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 5.725 - 5.85 GHz                                            | 5.715 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m]<br>5.85 5.86 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m]<br>Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m]                                                                                                                                                                                                                                                                      |  |  |
| performed in the n<br>equipment. When<br>be extrapolated to | by be performed at a distance other than the limit distance provided they are not<br>ear field and the emissions to be measured can be detected by the measurement<br>performing measurements at a distance other than that specified, the results shall<br>the specified distance using an extrapolation factor of 20 dB/decade (inverse of<br>field-strength measurements, inverse of linear distance-squared for power-density |  |  |

#### 3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.




### 3.6.3 Test Procedures

|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Test Method                                                                                                               |  |  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|             | Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 m for frequencies above 30 MHz, unless it can be further demonstrated that measurements at a distance of 30 m or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements). |                                                                                                                           |  |  |  |  |  |  |
| $\square$   | The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | average emission levels shall be measured in [duty cycle $\geq$ 98 or duty factor].                                       |  |  |  |  |  |  |
| $\boxtimes$ | For the transmitter unwanted emissions shall be measured using following options below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Refer as FCC KDB 789033 D02 v01, clause G)2) for unwanted emissions into non-restricted bands.                            |  |  |  |  |  |  |
|             | $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Refer as FCC KDB 789033 D02 v01, clause G)1) for unwanted emissions into restricted bands.                                |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Refer as FCC KDB 789033 D02 v01, G)6) Method AD (Trace Averaging).                                                        |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Refer as FCC KDB 789033 D02 v01, G)6) Method VB (Reduced VBW).                                                            |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW $\geq$ 1/T, where T is pulse time.                              |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.                                                 |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Refer as FCC KDB 789033 D02 v01, clause G)5) measurement procedure peak limit.                                            |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.                                                  |  |  |  |  |  |  |
| $\boxtimes$ | For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | radiated measurement.                                                                                                     |  |  |  |  |  |  |
|             | $\boxtimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3m.                             |  |  |  |  |  |  |
|             | $\boxtimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3m.                          |  |  |  |  |  |  |
|             | $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1GHz. For 1 GHz to 40 GHz, test distance is 3m.             |  |  |  |  |  |  |
| $\square$   | The any unwanted emissions level shall not exceed the fundamental emission level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                           |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value no need to be reported. |  |  |  |  |  |  |

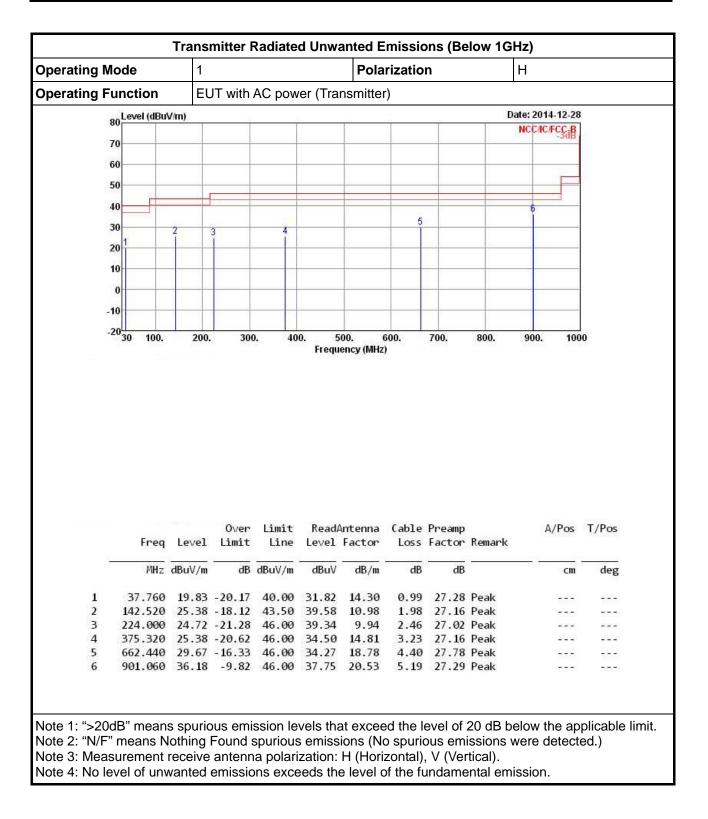


## 3.6.4 Test Setup



## 3.6.5 Transmitter Radiated Unwanted Emissions-with Antenna (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

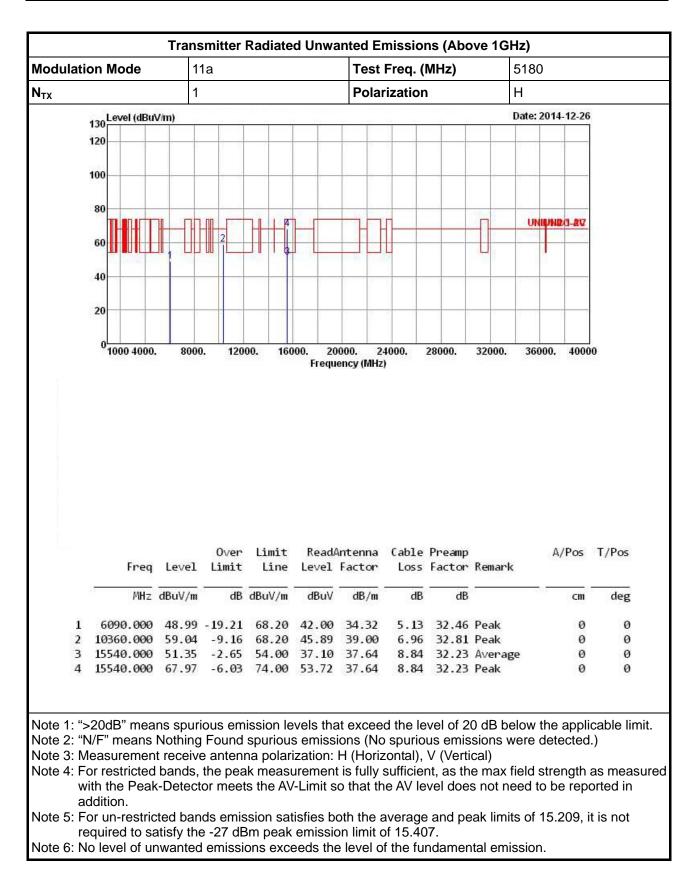



| Unction           |                | JT with                    | AC pow | ver (Tra        | nsmitter       | ;)<br>       |                                                                                                                 | Da     | nte: 2014-12-2<br>NCC4C/FCC-B |       |
|-------------------|----------------|----------------------------|--------|-----------------|----------------|--------------|-----------------------------------------------------------------------------------------------------------------|--------|-------------------------------|-------|
|                   |                |                            |        |                 |                |              |                                                                                                                 | Di     |                               |       |
|                   |                |                            |        |                 |                |              |                                                                                                                 |        | NCCAC/FCC-B                   |       |
|                   | 3              |                            |        |                 |                |              |                                                                                                                 |        |                               | 1     |
|                   | 3              |                            |        |                 |                | -            |                                                                                                                 |        |                               |       |
| 0                 | 3              |                            |        |                 |                |              |                                                                                                                 |        |                               | 1     |
| 0                 | 3              |                            |        |                 | 100            |              |                                                                                                                 |        |                               |       |
| 0                 | 3              |                            |        |                 |                | -            | _                                                                                                               |        | 6                             |       |
| 0                 | 3              |                            |        |                 |                | 4            |                                                                                                                 | -      | Ĩ                             |       |
|                   |                |                            |        |                 | -              | 1            | -                                                                                                               | 5      |                               | -     |
| 0                 |                |                            |        |                 | -              | _            | _                                                                                                               |        |                               | _     |
|                   |                |                            |        |                 |                |              |                                                                                                                 |        |                               |       |
| 11                |                |                            |        |                 |                |              |                                                                                                                 |        |                               |       |
| 0                 |                |                            |        |                 |                |              | -                                                                                                               |        |                               |       |
| 0                 |                |                            |        |                 |                | -            |                                                                                                                 |        |                               | -     |
| 0<br>30 100.      |                |                            | ). 40  |                 |                |              |                                                                                                                 |        |                               | 000   |
|                   |                | 0ver                       | Limit  |                 | Antenna        |              |                                                                                                                 |        | A/Pos                         | T/Pos |
|                   | Level          | Limit                      | Line   | 1000 March 1000 | Factor         | Loss         | Factor                                                                                                          | Remark |                               |       |
| MHz               | dBuV/m         | dB                         | dBuV/m | dBuV            | dB/m           | dB           | dB                                                                                                              |        | cm                            | deg   |
|                   | 36.16          | -3.84                      | 40.00  | 46.92           | 15.52          | 0.96         | The second se |        |                               |       |
| 35.820            | 35.67          |                            | 43.50  |                 | 9.55           |              | 27.24                                                                                                           |        |                               |       |
| 92.080            |                |                            | 113 54 | 45.8/           | 10.67          | 2.00         |                                                                                                                 |        |                               |       |
| 92.080<br>146.400 | 29.38          |                            |        |                 |                | 4 15         | 27 76                                                                                                           | Peak   |                               |       |
| 92.080<br>146.400 | 29.38<br>30.65 | - 15 . 35                  | 46.00  | 35.80           | 18.46<br>19.75 | 4.15<br>4.78 | 27.76                                                                                                           |        |                               |       |
|                   |                | on second of high-ratio of |        |                 |                |              |                                                                                                                 |        |                               |       |

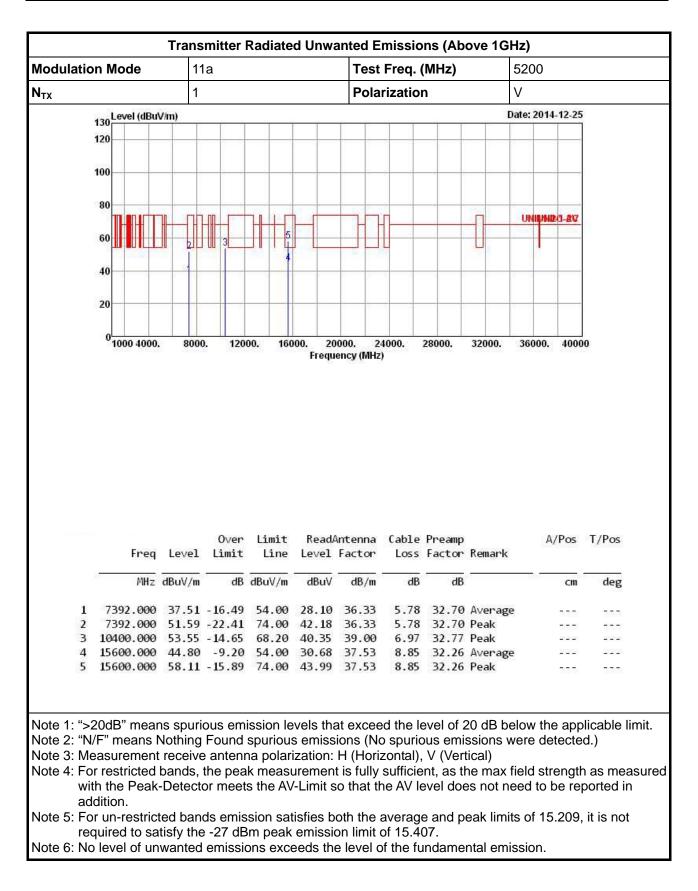
## 3.6.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)



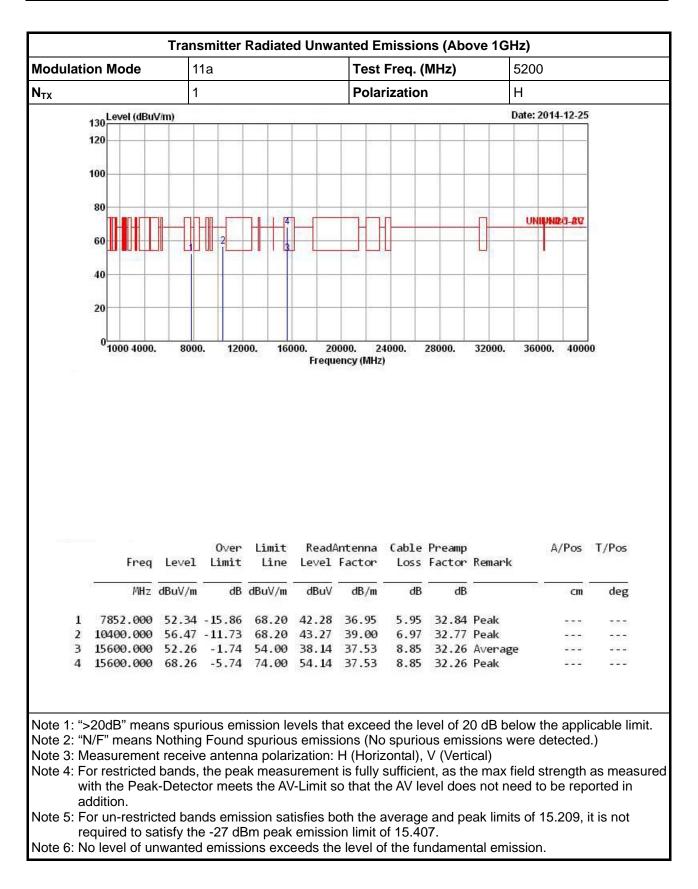




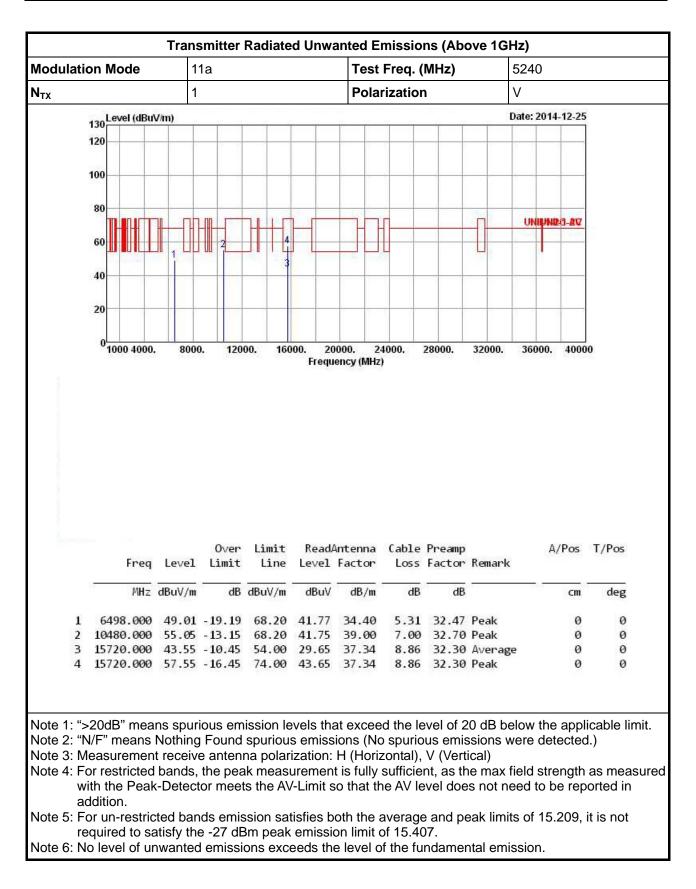




| 3.6.7 | <b>Transmitter Radiated Unwanted Emissions (Above 1GHz) for 5150-5250MHz</b> |
|-------|------------------------------------------------------------------------------|
|-------|------------------------------------------------------------------------------|

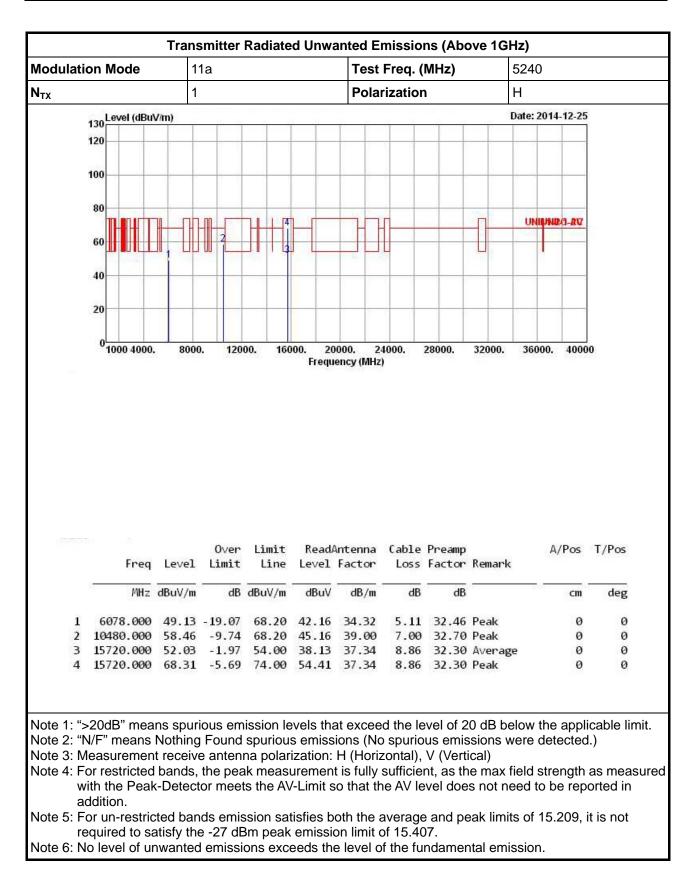
| 1 7404.000 37.13 -16.87 54.00 27.68 36.38 5.78 32.71 Average 0<br>2 7404.000 52.02 -21.98 74.00 42.57 36.38 5.78 32.71 Peak 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | n Mode                                         | 11                               | а                         |                         |                         | Test                    | Freq. (              | (MHz)                   |                         | 5180            |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------|----------------------------------|---------------------------|-------------------------|-------------------------|-------------------------|----------------------|-------------------------|-------------------------|-----------------|--------|
| $\frac{120}{100}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Х           |                                                | 1                                |                           |                         |                         | Pola                    | rizatio              | n                       |                         | V               |        |
| $\frac{120}{100}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 130 Level (dBu                                 | V/m)                             |                           | NI 14                   | 5 54                    |                         |                      |                         | D                       | ate: 2014-12-26 |        |
| $\frac{100}{100} \frac{1}{100} \frac{1}{1000} \frac{1}{1000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 2.63.                                          |                                  |                           |                         |                         |                         |                      |                         |                         |                 |        |
| $\frac{1}{1} \frac{1}{7404.000} \frac{1}{37.13} \cdot 16.87 \cdot 54.00 \cdot 27.68 \cdot 36.38 \cdot 5.78 \cdot 32.71 \cdot Verage 0 \\ 2 \cdot 7404.000 \cdot 52.02 \cdot -21.98 \cdot 74.00 \cdot 42.57 \cdot 36.38 \cdot 5.78 \cdot 32.71 \cdot Verage 0 \\ 3 \cdot 7404.000 \cdot 52.02 \cdot -21.98 \cdot 74.00 \cdot 42.57 \cdot 36.38 \cdot 5.78 \cdot 32.71 \cdot Verage 0 \\ 3 \cdot 7404.000 \cdot 52.02 \cdot -21.98 \cdot 74.00 \cdot 42.57 \cdot 36.38 \cdot 5.78 \cdot 32.71 \cdot Verage 0 \\ 3 \cdot 7404.000 \cdot 52.02 \cdot -21.98 \cdot 74.00 \cdot 42.57 \cdot 36.38 \cdot 5.78 \cdot 32.71 \cdot Verage 0 \\ 3 \cdot 7404.000 \cdot 52.02 \cdot -21.98 \cdot 74.00 \cdot 42.57 \cdot 36.38 \cdot 5.78 \cdot 32.71 \cdot Verage 0 \\ 3 \cdot 7404.000 \cdot 52.02 \cdot -21.98 \cdot 74.00 \cdot 42.57 \cdot 36.38 \cdot 5.78 \cdot 32.71 \cdot Verage 0 \\ 3 \cdot 7404.000 \cdot 52.02 \cdot -21.98 \cdot 74.00 \cdot 42.57 \cdot 36.38 \cdot 5.78 \cdot 32.71 \cdot Verage 0 \\ 3 \cdot 7404.000 \cdot 52.02 \cdot -21.98 \cdot 74.00 \cdot 42.57 \cdot 36.38 \cdot 5.78 \cdot 32.71 \cdot Verage 0 \\ 3 \cdot 7404.000 \cdot 52.02 \cdot -21.98 \cdot 74.00 \cdot 42.57 \cdot 36.38 \cdot 5.78 \cdot 32.71 \cdot Verage 0 \\ 3 \cdot 7404.000 \cdot 52.02 \cdot -21.98 \cdot 74.00 \cdot 42.57 \cdot 36.38 \cdot 5.78 \cdot 32.71 \cdot Verage 0 \\ 3 \cdot 7404.000 \cdot 52.02 \cdot -21.98 \cdot 74.00 \cdot 42.57 \cdot 36.38 \cdot 5.78 \cdot 32.71 \cdot Verage 0 \\ 4 \cdot 7404.000 \cdot 52.02 \cdot -21.98 \cdot 74.00 \cdot 42.57 \cdot 36.38 \cdot 5.78 \cdot 32.71 \cdot Verage 0 \\ 4 \cdot 7404.000 \cdot 52.02 \cdot -21.98 \cdot 74.00 \cdot 42.57 \cdot 36.38 \cdot 5.78 \cdot 32.71 \cdot Verage 0 \\ 5 \cdot 78 \cdot 32.71 \cdot 78 \cdot 32.71 \cdot 78 \cdot 32.71 \cdot 78 \cdot 32.71 \cdot 78 \cdot 30 \cdot 32 \cdot 78 \cdot 32.71 \cdot 78 \cdot 30 \cdot 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                |                                  |                           |                         |                         |                         |                      |                         |                         |                 |        |
| $\frac{1}{1} \frac{1}{1} \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 100                                            | _                                |                           |                         |                         |                         |                      | _                       |                         |                 |        |
| $\frac{60}{40} \underbrace{1}_{2} $ |             |                                                |                                  |                           |                         |                         |                         |                      |                         |                         |                 |        |
| $\frac{60}{40} \frac{1}{40} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 80                                             | _                                |                           |                         |                         |                         |                      |                         |                         |                 |        |
| $\frac{40}{90} \underbrace{40}_{0} 40$                                                                                                                                                                                                                                         |             |                                                |                                  |                           |                         |                         |                         |                      |                         |                         | UNIUNIZG-BU     |        |
| 20       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | 60                                             |                                  | 3                         | 5                       |                         |                         |                      | -                       |                         |                 |        |
| 20       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                                |                                  |                           |                         |                         |                         |                      |                         |                         |                 |        |
| 0<br>1000 4000. 8000. 12000. 16000. 20000. 24000. 28000. 32000. 36000. 40000<br>Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 40                                             |                                  |                           |                         | -                       | 20 - G                  | 2 1                  | -                       |                         |                 |        |
| Over         Limit         ReadAntenna         Cable         Preamp         A/Pos         T/Po           Frequency         MHz         MHz         ABuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                                |                                  |                           |                         |                         |                         |                      |                         |                         |                 |        |
| Over         Limit         ReadAntenna         Cable         Preamp         A/Pos         T/Po           Freq         Level         Limit         Line         Level         Factor         Loss         Factor         Remark         A/Pos         T/Po           MHz         dBuV/m         dB         dBuV/m         dBuV         dB/m         dB         dB         cm         de           1         7404.000         37.13         -16.87         54.00         27.68         36.38         5.78         32.71         Average         0           2         7404.000         52.02         -21.98         74.00         42.57         36.38         5.78         32.71         Average         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 20                                             |                                  | 10 5-                     |                         |                         | 171                     | 5                    |                         |                         | <u></u>         |        |
| Over         Limit         ReadAntenna         Cable         Preamp         A/Pos         T/Po           Freq         Level         Limit         Line         Level         Factor         Loss         Factor         Remark         A/Pos         T/Po           MHz         dBuV/m         dB         dBuV/m         dBuV         dB/m         dB         dB         cm         de           1         7404.000         37.13         -16.87         54.00         27.68         36.38         5.78         32.71         Average         0           2         7404.000         52.02         -21.98         74.00         42.57         36.38         5.78         32.71         Average         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                                |                                  |                           |                         |                         |                         |                      |                         |                         |                 |        |
| Frequency (MHz)         End       Over       Limit       ReadAntenna       Cable       Preamp       A/Pos       T/Po         Freq       Level       Limit       Line       Level       Factor       Loss       Factor       Remark       A/Pos       T/Po         MHz       dBuV/m       dB       dBuV/m       dBuV       dBuV       dBuV       dB       dB       cm       de         1       7404.000       37.13       -16.87       54.00       27.68       36.38       5.78       32.71       Average       0         2       7404.000       52.02       -21.98       74.00       42.57       36.38       5.78       32.71       Average       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | <sup>0</sup> 1000 4000                         | 8000                             | 120                       | 00. 160                 | 00. 20                  | 000. 2                  | 4000.                | 28000.                  | 32000.                  | 36000. 4000     | 0      |
| MHz         dBuV/m         dB         dBuV/m         dBuV         dB/m         dB         dB         cm         de           1         7404.000         37.13         -16.87         54.00         27.68         36.38         5.78         32.71         Average         0           2         7404.000         52.02         -21.98         74.00         42.57         36.38         5.78         32.71         Peak         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                |                                  |                           |                         |                         |                         |                      | 1232-011-00128-11       |                         | A/Pos           | T/Pos  |
| 1 7404.000 37.13 -16.87 54.00 27.68 36.38 5.78 32.71 Average 0<br>2 7404.000 52.02 -21.98 74.00 42.57 36.38 5.78 32.71 Peak 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | Freq                                           | Level                            | Limit                     | Line                    | Level                   | Factor                  | Loss                 | Factor                  | Remark                  |                 |        |
| 2 7404.000 52.02 -21.98 74.00 42.57 36.38 5.78 32.71 Peak 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | MU-                                            | dBuV/m                           | dB                        | dBuV/m                  | dBuV                    | dB/m                    | dB                   | dB                      | 0                       | cm              | deg    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | PINZ                                           | 12.000                           |                           |                         |                         |                         |                      |                         |                         |                 |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1           | 7404.000                                       | 37.13                            |                           |                         |                         |                         | 5.78                 | 32.71                   | Average                 | . 0             | ø      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2           | 7404.000<br>7404.000                           | 37.13<br>52.02                   | -21.98                    | 74.00                   | 42.57                   | 36.38                   | 5.78                 | 32.71                   | Peak                    | 0               | ø      |
| 그는 것들이 물건에 들고 있는 것을 많다. 이 것을 하는 이 물건에서 이 것을 하는 것을 하는 것을 하는 것을 수 있는 것을 하는 것을 수 있다. 것을 하는 것을 하는 것을 하는 것을 수 있는 것을 수 있다. 것을 하는 것을 수 있는 것을 하는 것을 수 있는 것을 것을 수 있는 것을 것을 수 있는 것을 것을 것을 수 있는 것을 것을 수 있는 것을 것을 수 있는 것을 수 있는 것을 것을 것을 것을 수 있는 것을 것을 것을 것 같이 않는 것을 것을 것을 것 같이 않는 것 않는 것 같이 않는 것 않는                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2<br>3      | 7404.000<br>7404.000<br>10360.000              | 37.13<br>52.02<br>55.18          | -21.98<br>-13.02          | 74.00<br>68.20          | 42.57<br>42.03          | 36.38<br>39.00          | 5.78<br>6.96         | 32.71<br>32.81          | Peak<br>Peak            | 0<br>0          | 0<br>0 |
| 5 15540.000 59.05 -14.55 /4.00 45.40 5/.04 6.64 52.25 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2<br>3<br>4 | 7404.000<br>7404.000<br>10360.000<br>15540.000 | 37.13<br>52.02<br>55.18<br>45.07 | -21.98<br>-13.02<br>-8.93 | 74.00<br>68.20<br>54.00 | 42.57<br>42.03<br>30.82 | 36.38<br>39.00<br>37.64 | 5.78<br>6.96<br>8.84 | 32.71<br>32.81<br>32.23 | Peak<br>Peak<br>Average | 0<br>0<br>0     | ø      |



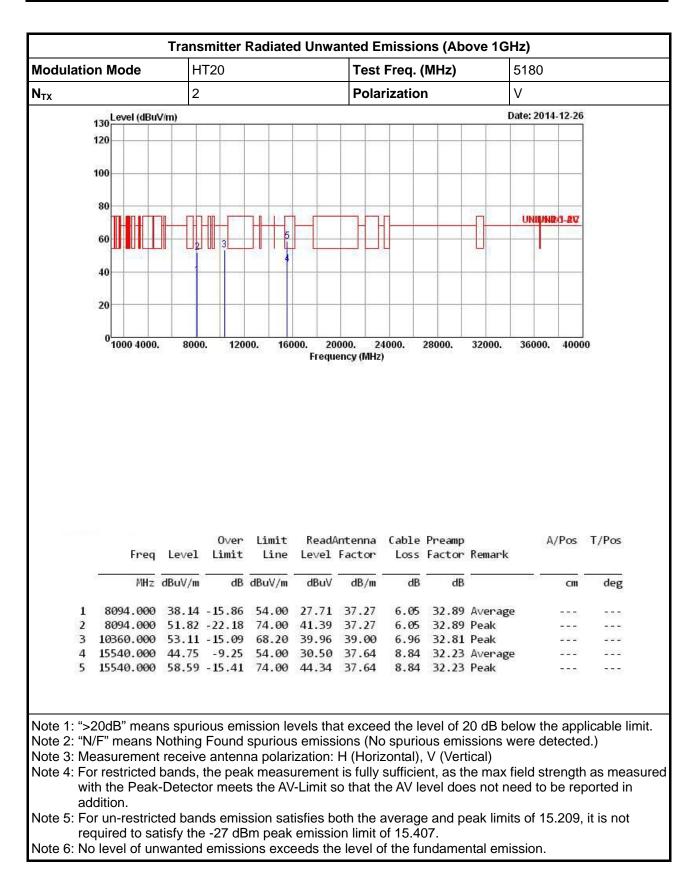


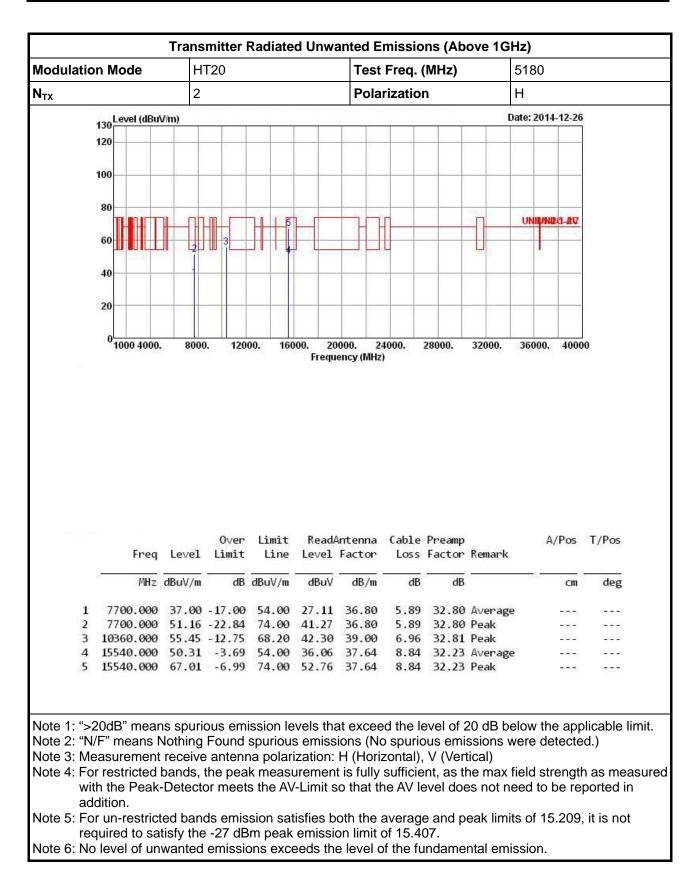


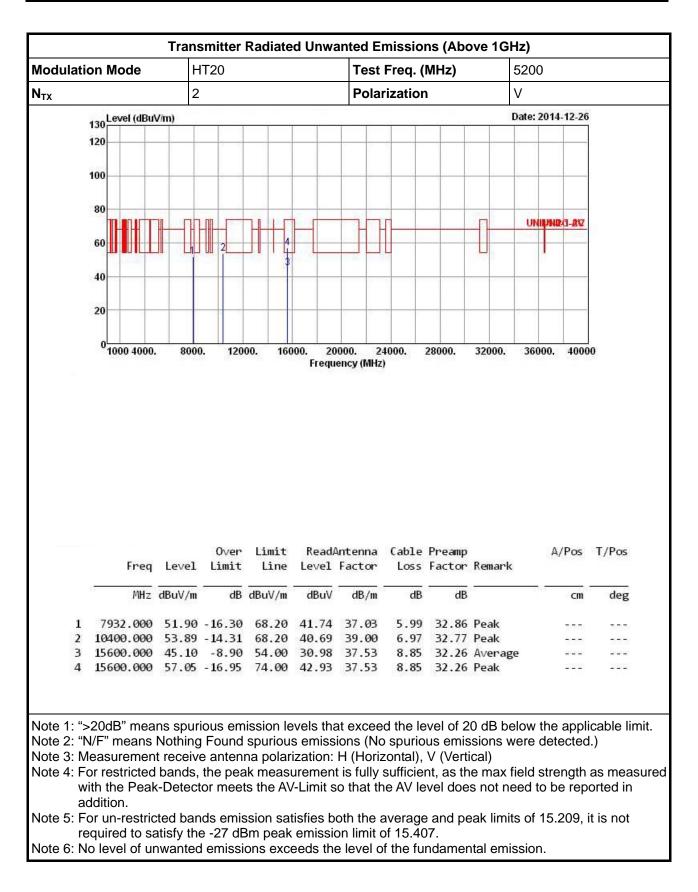


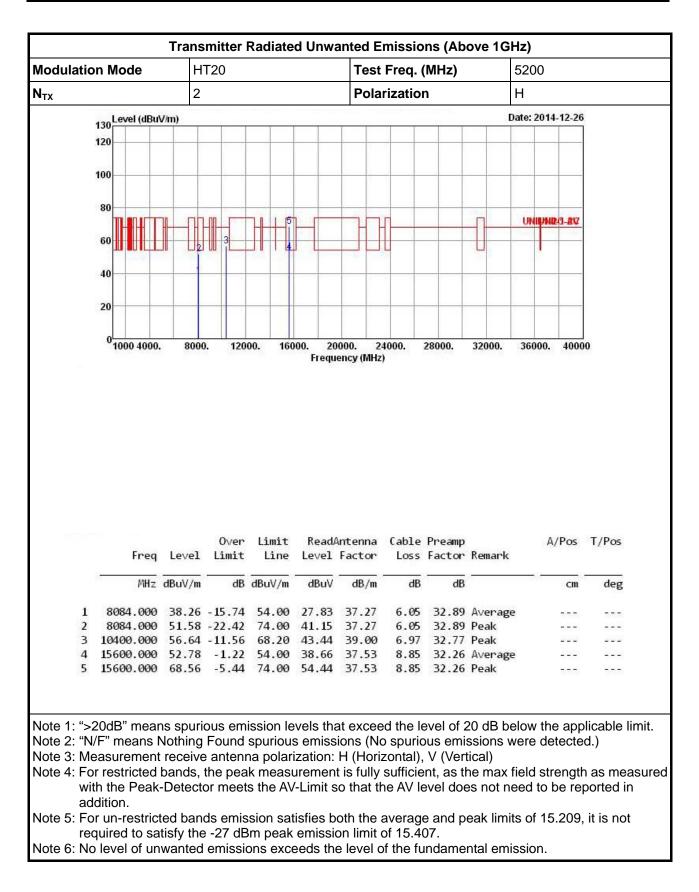


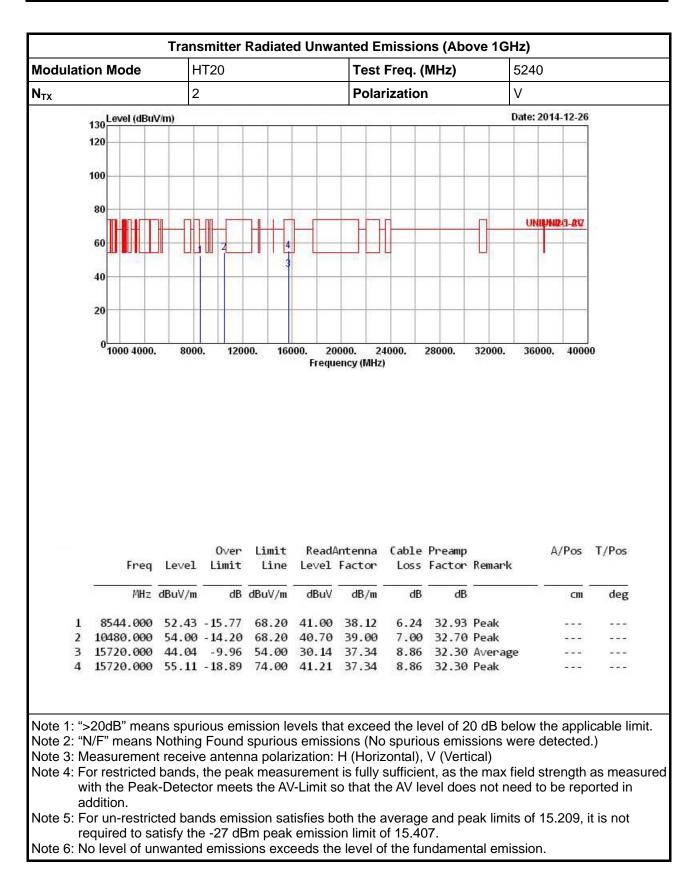


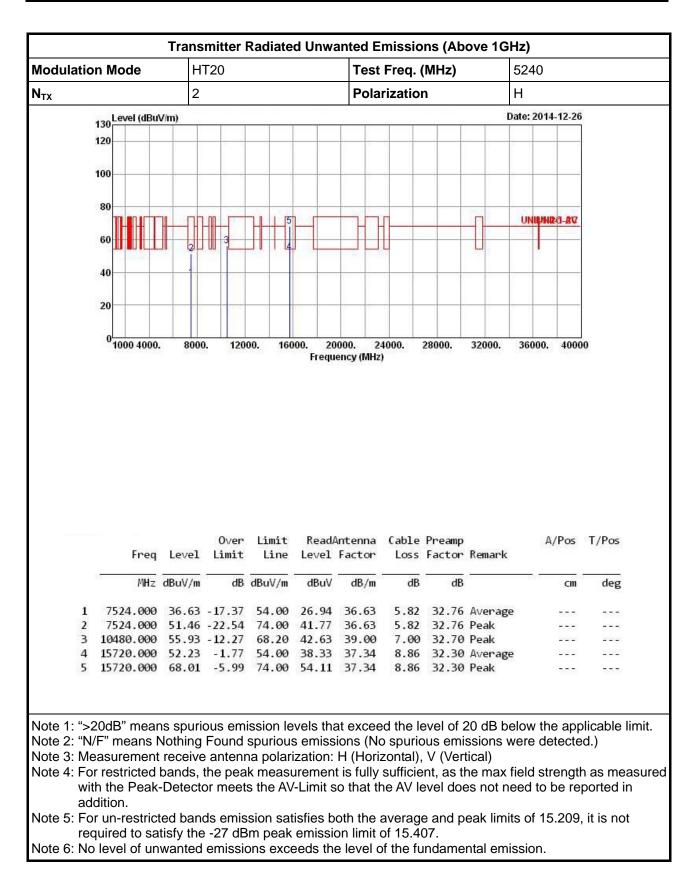


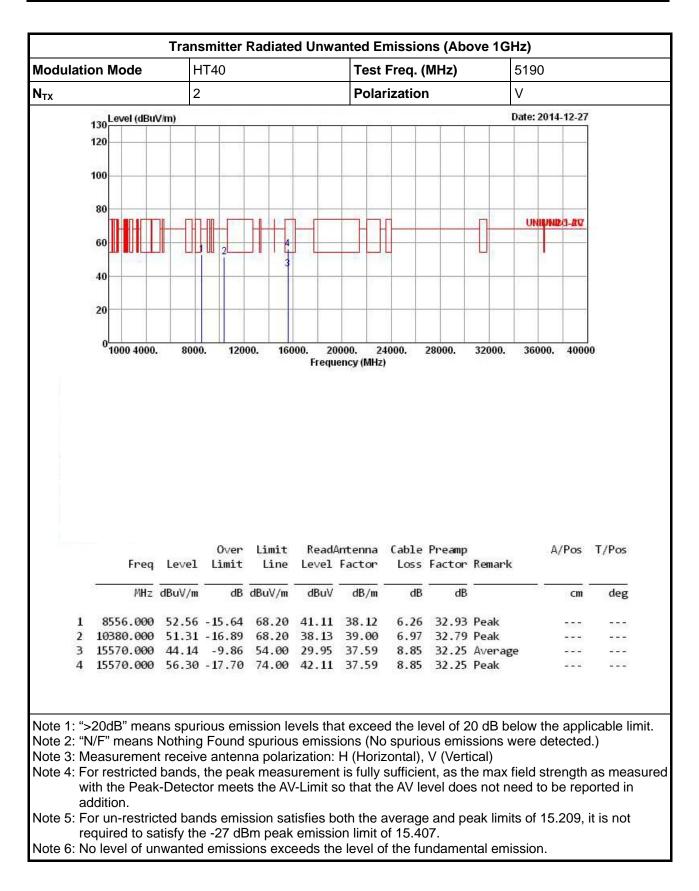


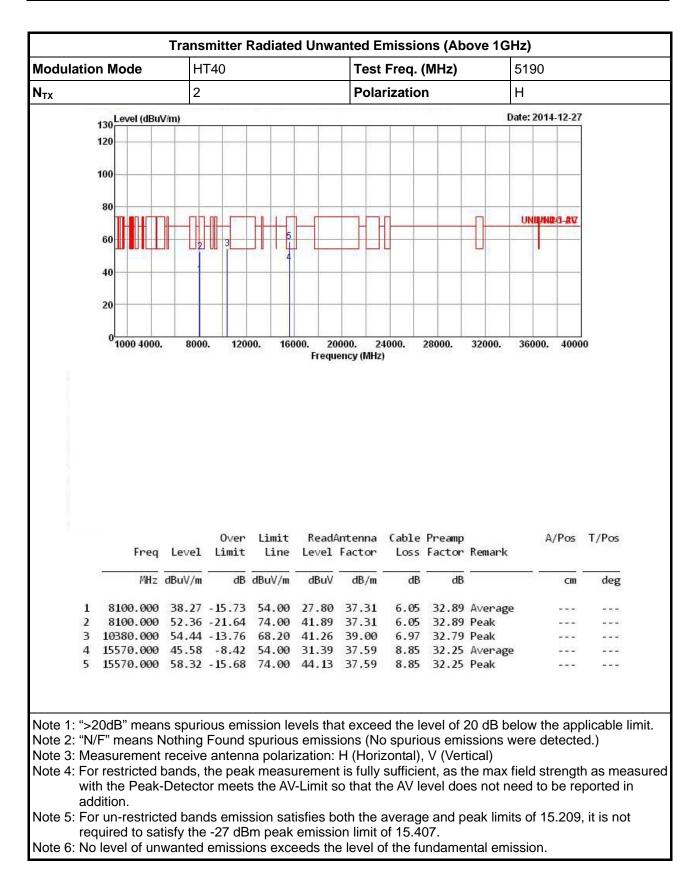


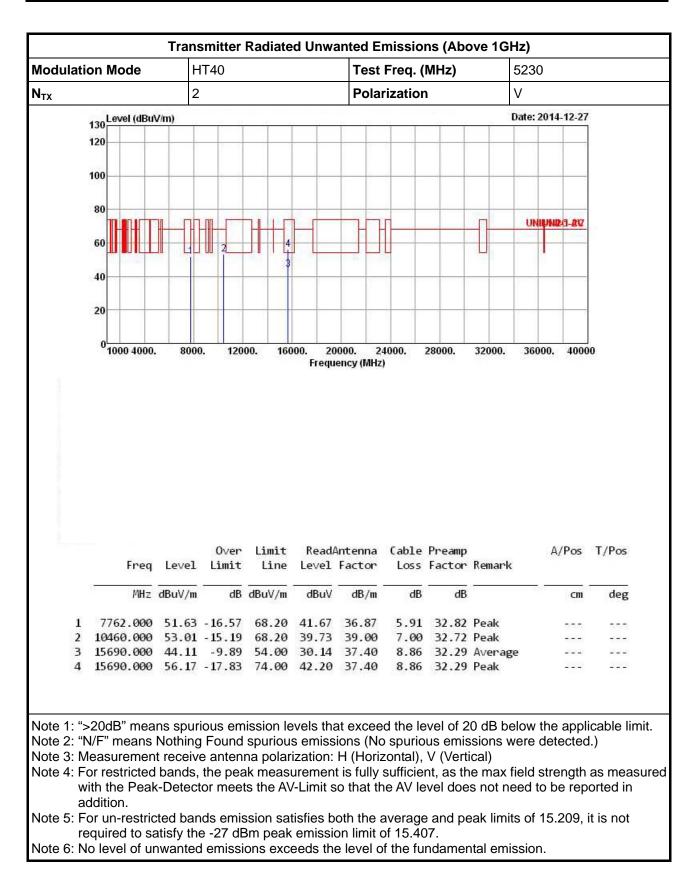


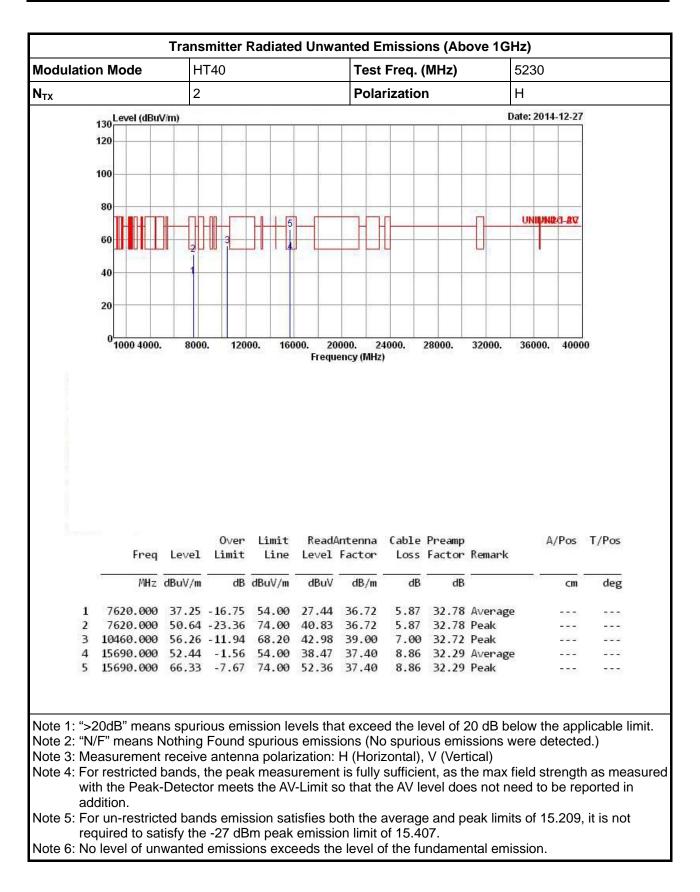


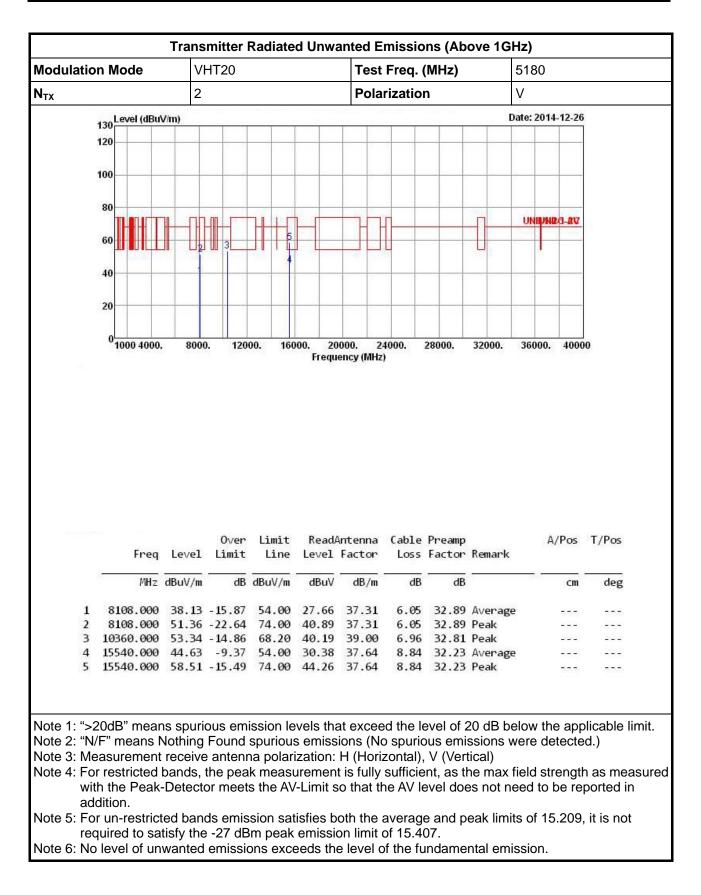


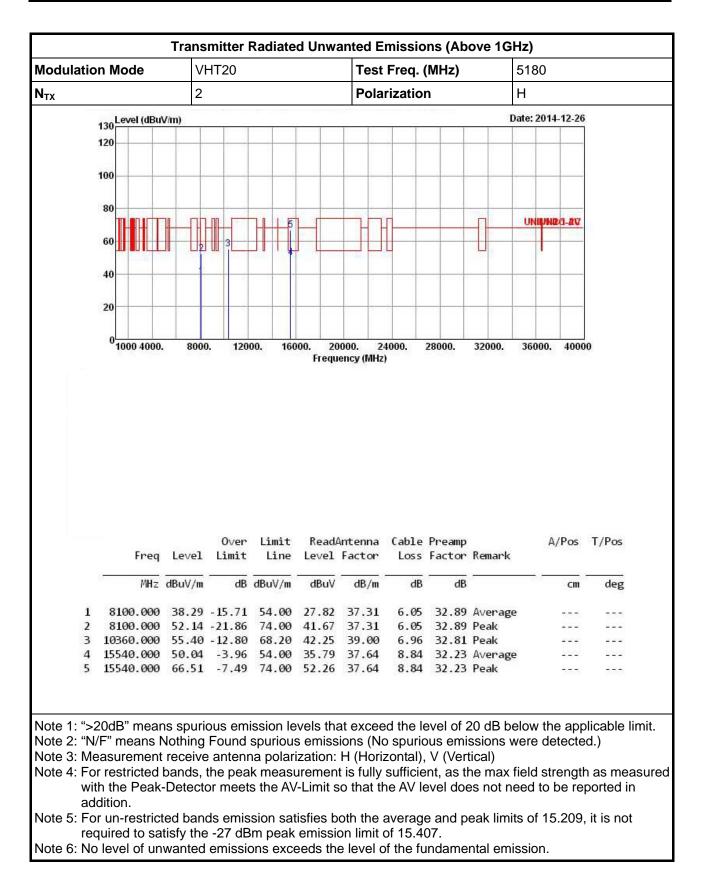


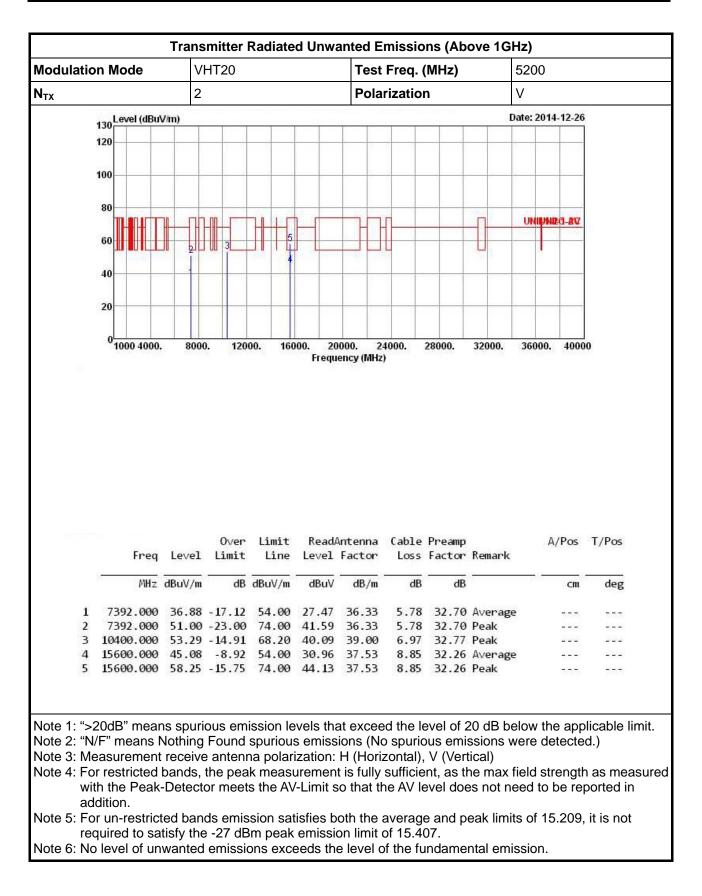


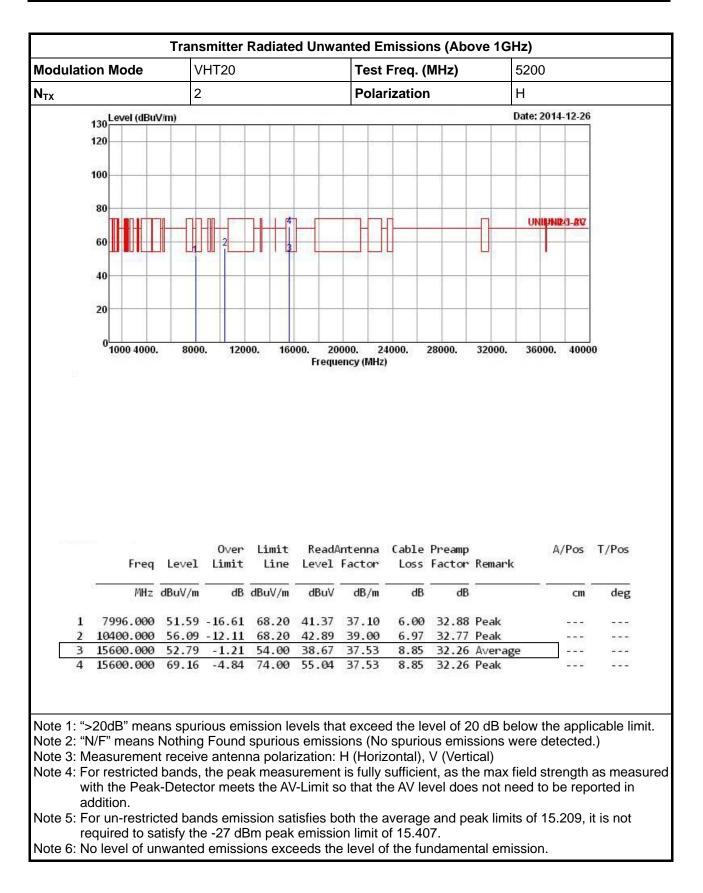


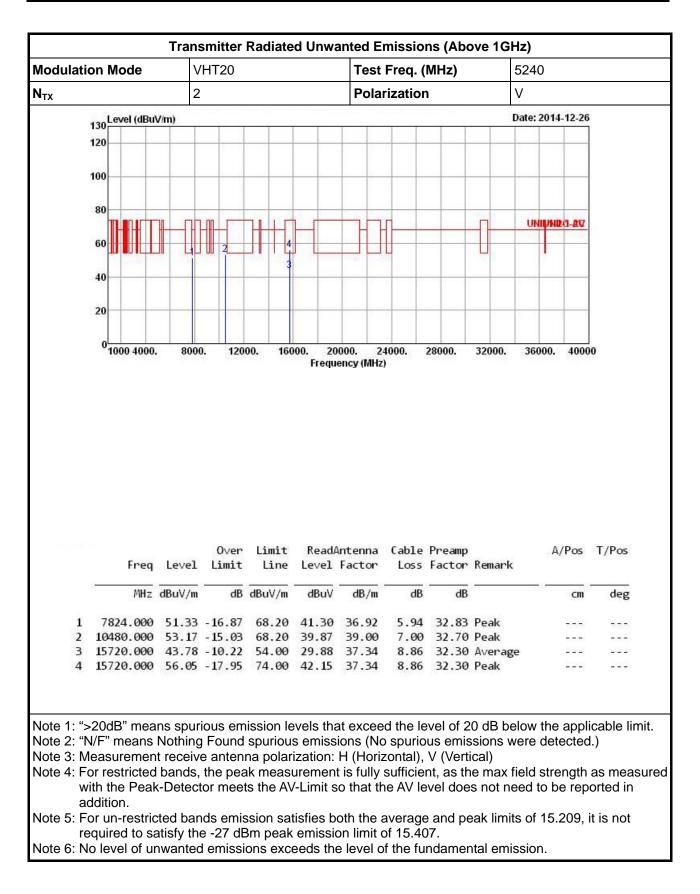


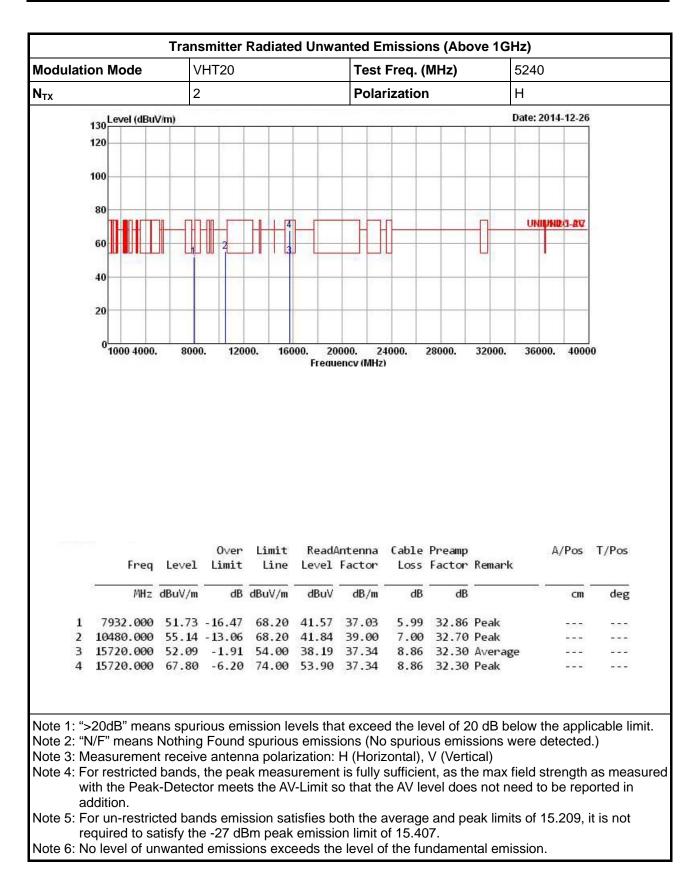


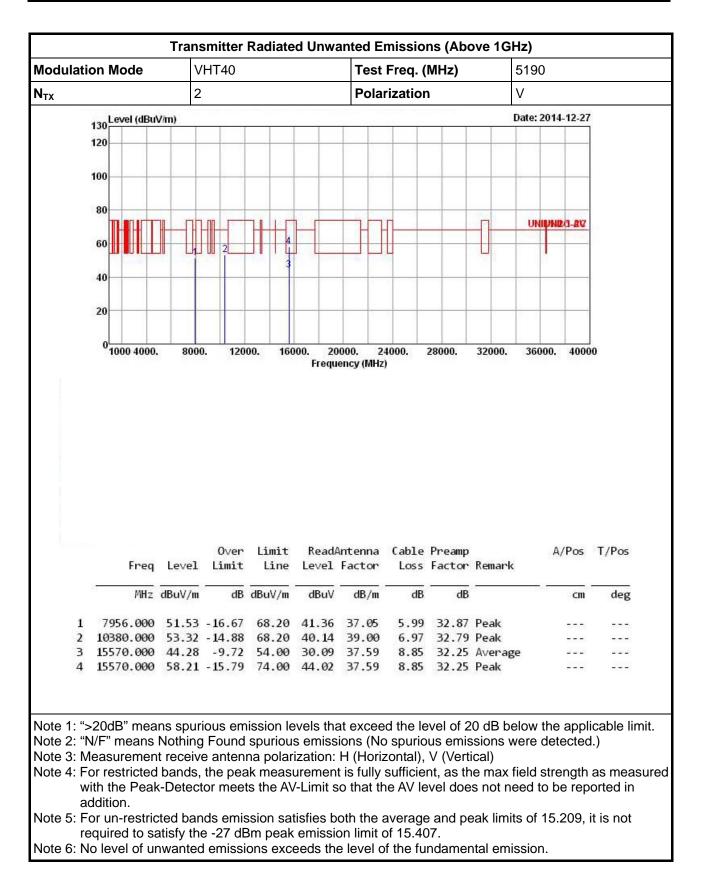


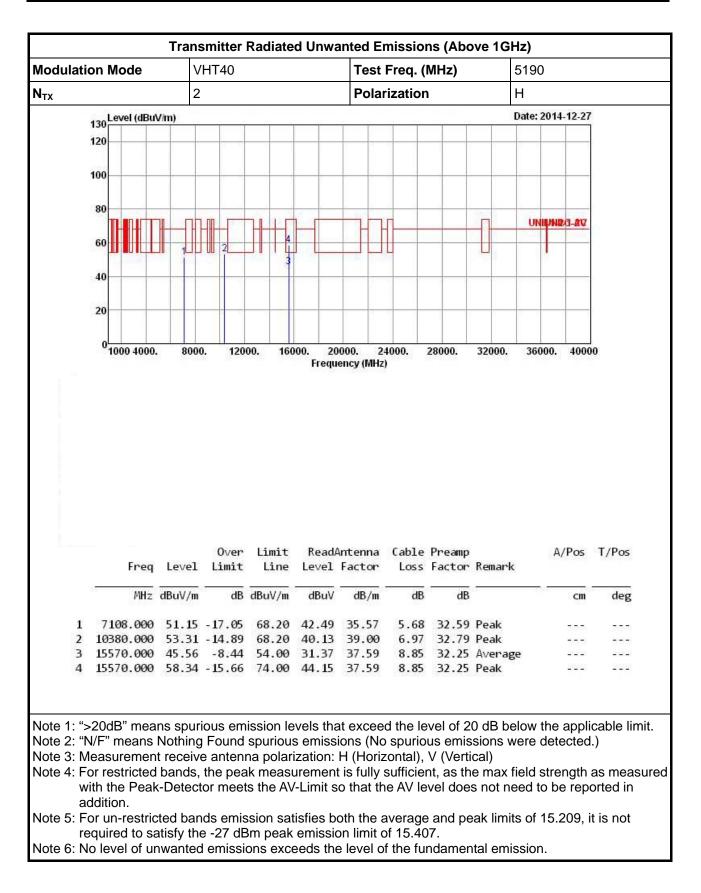






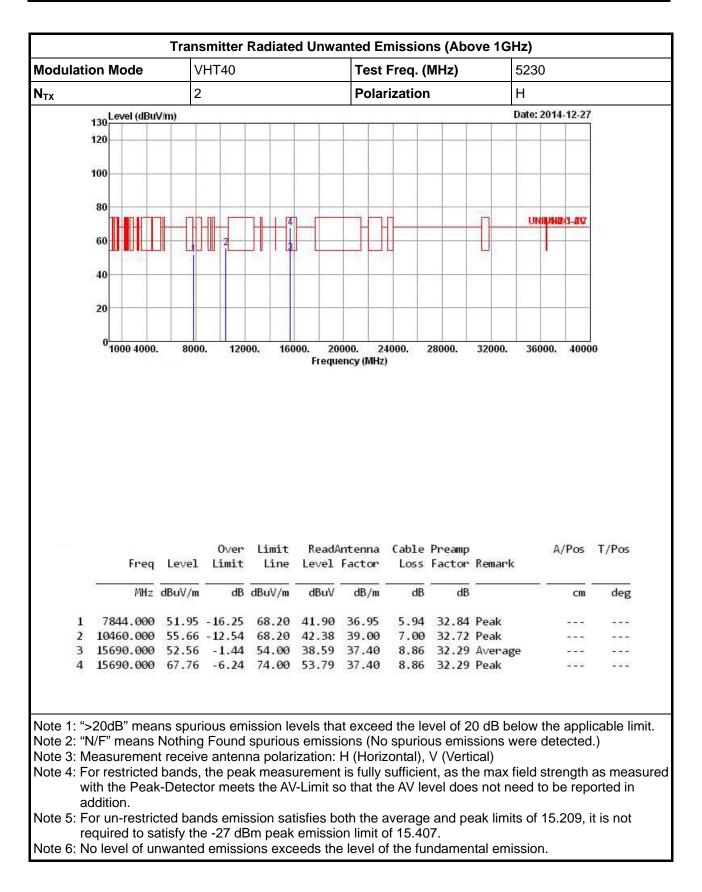





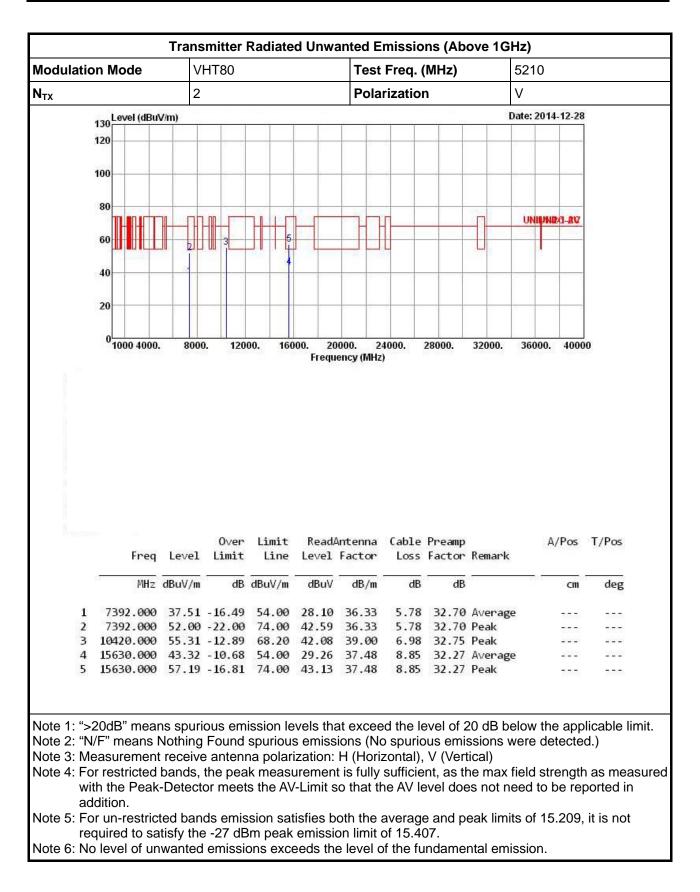




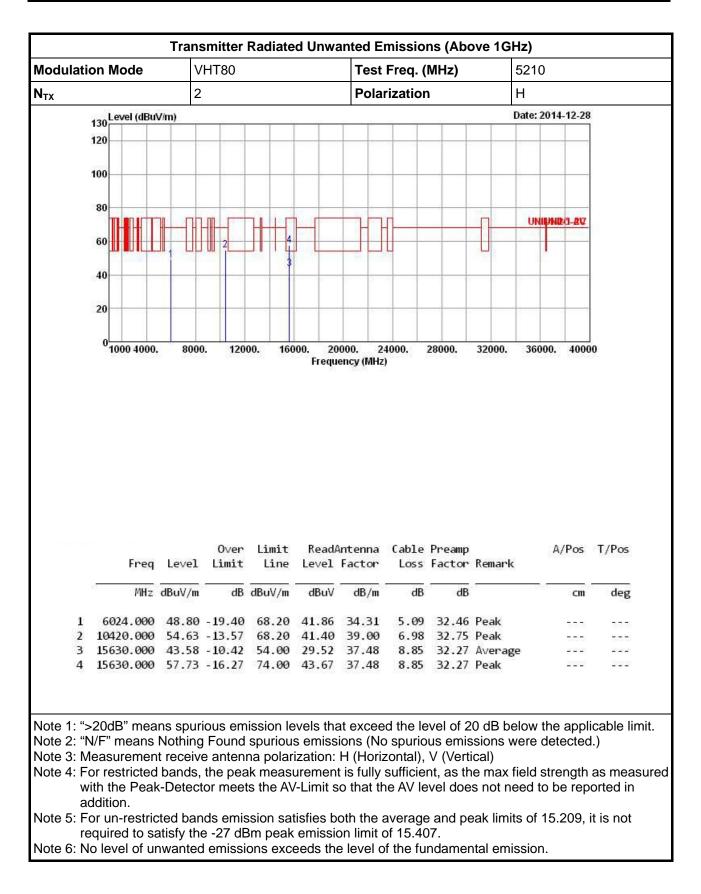








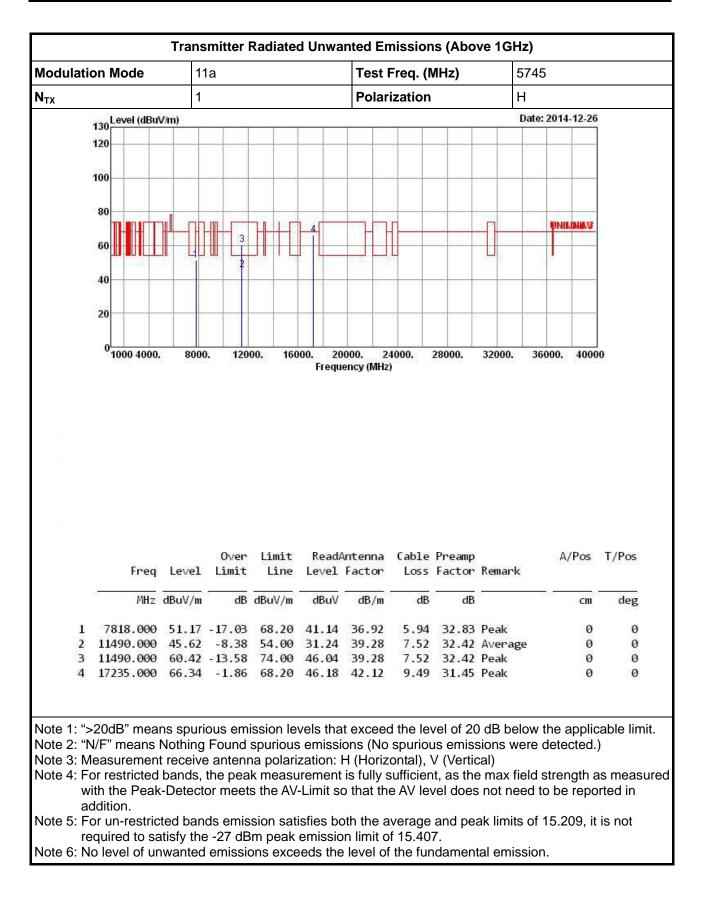





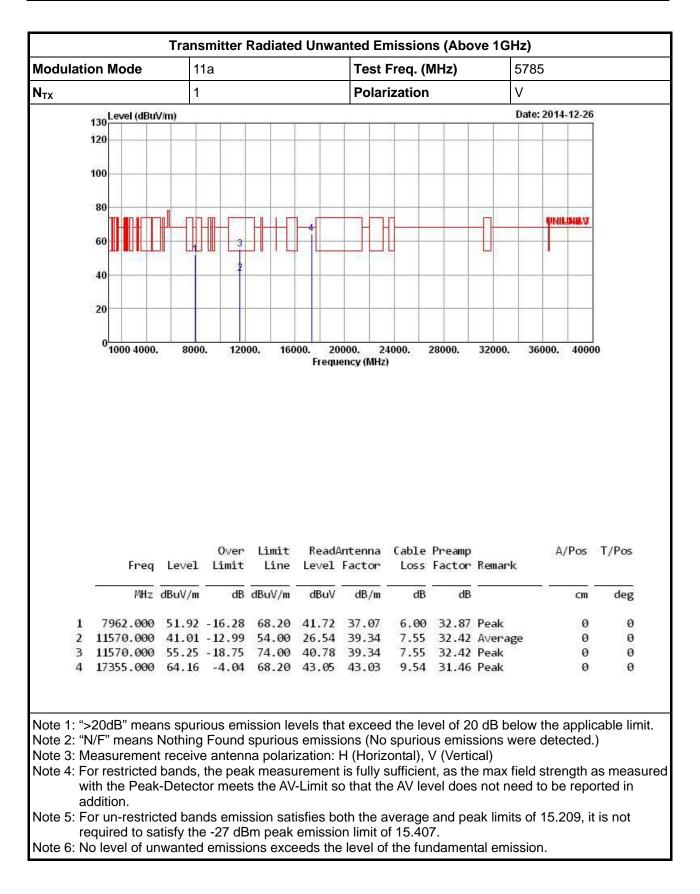




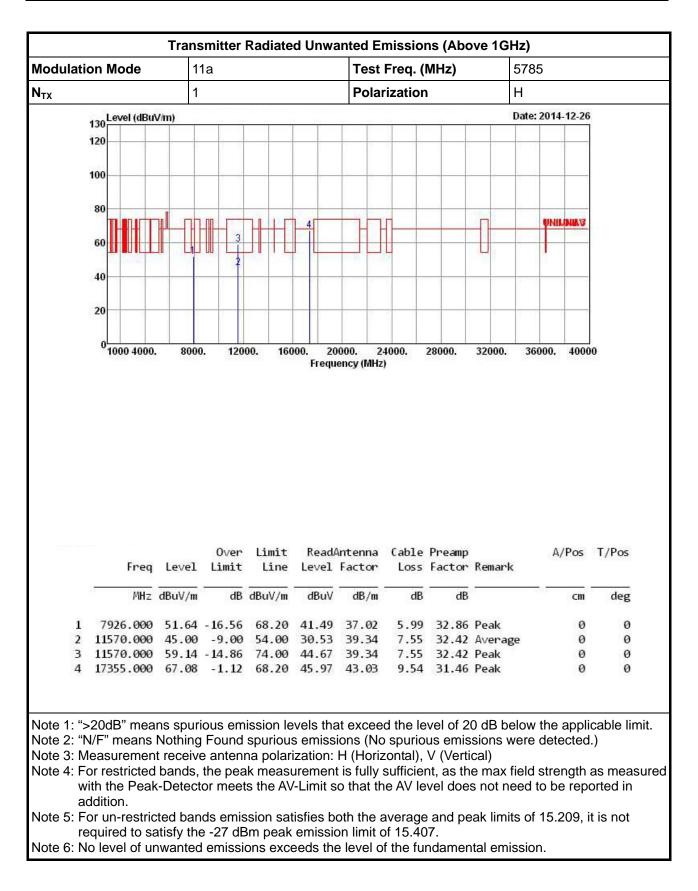


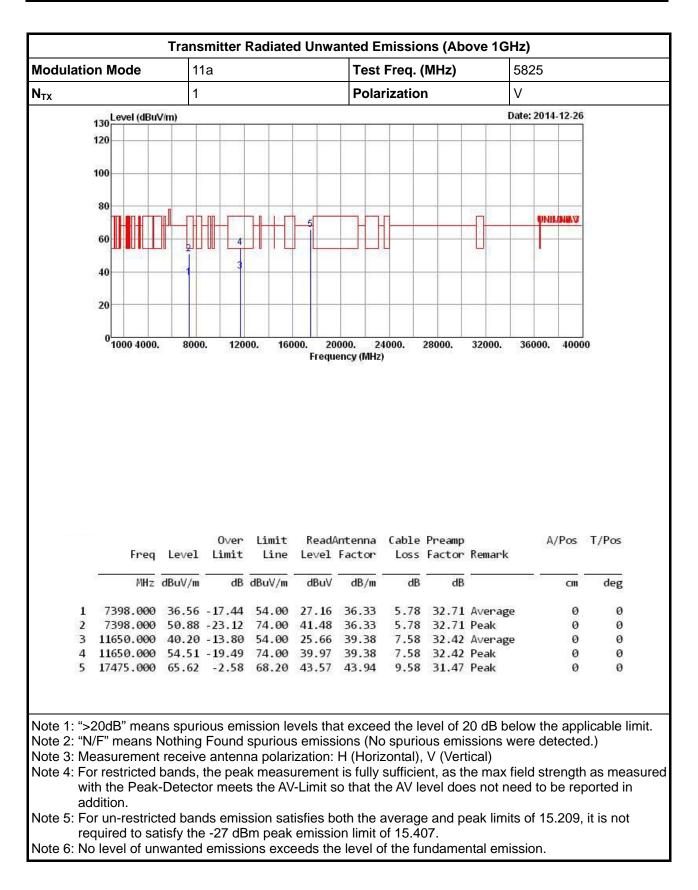




|                 | on Mode                                   | T                                          | 1a                                                |                                                    |                                                             | lest                                                 | Freq. (                                     | MHZ)                                     | 5                                 | 745      |                |                   |
|-----------------|-------------------------------------------|--------------------------------------------|---------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|---------------------------------------------|------------------------------------------|-----------------------------------|----------|----------------|-------------------|
| N <sub>TX</sub> |                                           | 1                                          |                                                   |                                                    |                                                             | Pola                                                 | ization                                     | )                                        | V                                 | ,        |                |                   |
|                 | 130 Level (dBu\                           | //m)                                       |                                                   |                                                    |                                                             | 131100 - 54                                          |                                             |                                          | D                                 | ate: 201 | 4-12-26        |                   |
|                 | 120                                       |                                            |                                                   |                                                    |                                                             |                                                      |                                             |                                          |                                   |          |                |                   |
|                 |                                           |                                            |                                                   |                                                    |                                                             |                                                      |                                             |                                          |                                   |          |                |                   |
|                 | 100                                       |                                            |                                                   |                                                    |                                                             | -                                                    | -                                           | -                                        | -                                 |          |                | 2                 |
|                 |                                           |                                            |                                                   |                                                    |                                                             |                                                      |                                             |                                          |                                   |          |                |                   |
|                 | 80                                        | Π                                          | -                                                 |                                                    | 3                                                           | 1                                                    | -                                           | -                                        |                                   | -        |                |                   |
|                 |                                           |                                            |                                                   | ٦₽₽₽                                               | 4                                                           | Н                                                    | 1                                           | _                                        |                                   | PN       | ITDHIY A       | 5                 |
|                 | 60                                        |                                            | 3                                                 |                                                    |                                                             |                                                      |                                             |                                          | -                                 |          | -              |                   |
|                 |                                           |                                            |                                                   |                                                    |                                                             |                                                      |                                             |                                          | -                                 | -        |                |                   |
|                 | 40                                        |                                            |                                                   |                                                    |                                                             |                                                      |                                             |                                          | -                                 |          | -              |                   |
|                 |                                           |                                            |                                                   |                                                    |                                                             |                                                      |                                             |                                          |                                   |          |                |                   |
|                 | 20                                        |                                            |                                                   |                                                    |                                                             |                                                      |                                             |                                          | -                                 |          | -              |                   |
|                 | 275                                       |                                            |                                                   |                                                    |                                                             |                                                      |                                             |                                          |                                   |          |                |                   |
|                 |                                           |                                            |                                                   |                                                    |                                                             |                                                      |                                             |                                          |                                   |          |                |                   |
|                 | 0 1000 4000.                              | 8000                                       | ). 120                                            | 00. 160                                            |                                                             | 000. 2<br>ency (MHz                                  |                                             | 28000.                                   | 32000.                            | 36000.   | 4000           | 0                 |
|                 | 0 1000 4000.                              | 8000<br>Level                              | 0ver                                              | Limit                                              | Frequ                                                       | ency (MHz                                            | )<br>Cable                                  | 28000.<br>Preamp<br>Factor               |                                   |          |                | 10<br>T/Pos       |
|                 | 00<br>1000 4000.<br>Freq                  |                                            | 0ver<br>Limit                                     | Limit                                              | Frequ                                                       | ency (MHz<br>Antenna                                 | )<br>Cable                                  | Preamp<br>Factor                         |                                   |          |                |                   |
| 1               | 0 <mark>-1000 4000.</mark><br>Freq<br>МНz | Level<br>dBuV/m                            | Over<br>Limit<br>dB                               | Limit<br>Line<br>dBuV/m                            | Frequ<br>ReadA<br>Level<br>dBuV                             | Antenna<br>Factor<br>                                | )<br>Cable<br>Loss<br>                      | Preamp<br>Factor                         | Remark                            |          | A/Pos<br>      | T/Pos             |
|                 | 0 <mark>-1000 4000.</mark><br>Freq<br>МНz | Level<br>dBuV/m<br>50.48                   | Over<br>Limit<br>dB<br>-17.72                     | Limit<br>Line<br>dBuV/m<br>68.20                   | ReadA<br>Level<br>dBuV<br>41.68                             | Antenna<br>Factor<br>dB/m<br>35.70                   | Cable<br>Loss<br>dB<br>5.70<br>7.52         | Preamp<br>Factor<br>dB<br>32.60<br>32.42 | Remark<br>Peak<br>Average         | A        | A/Pos          | T/Pos<br>deg      |
| 2<br>3          | 0_1000 4000.<br>Freq<br>MHz<br>7 154.000  | Level<br>dBuV/m<br>50.48<br>41.28<br>55.16 | 0ver<br>Limit<br>dB<br>-17.72<br>-12.72<br>-18.84 | Limit<br>Line<br>dBuV/m<br>68.20<br>54.00<br>74.00 | Freque<br>ReadA<br>Level<br>dBuV<br>41.68<br>26.90<br>40.78 | Antenna<br>Factor<br>dB/m<br>35.70<br>39.28<br>39.28 | Cable<br>Loss<br>dB<br>5.70<br>7.52<br>7.52 | Preamp<br>Factor<br>dB<br>32.60          | Remark<br>Peak<br>Average<br>Peak | A        | A/Pos<br><br>Ø | T/Pos<br>deg<br>Ø |

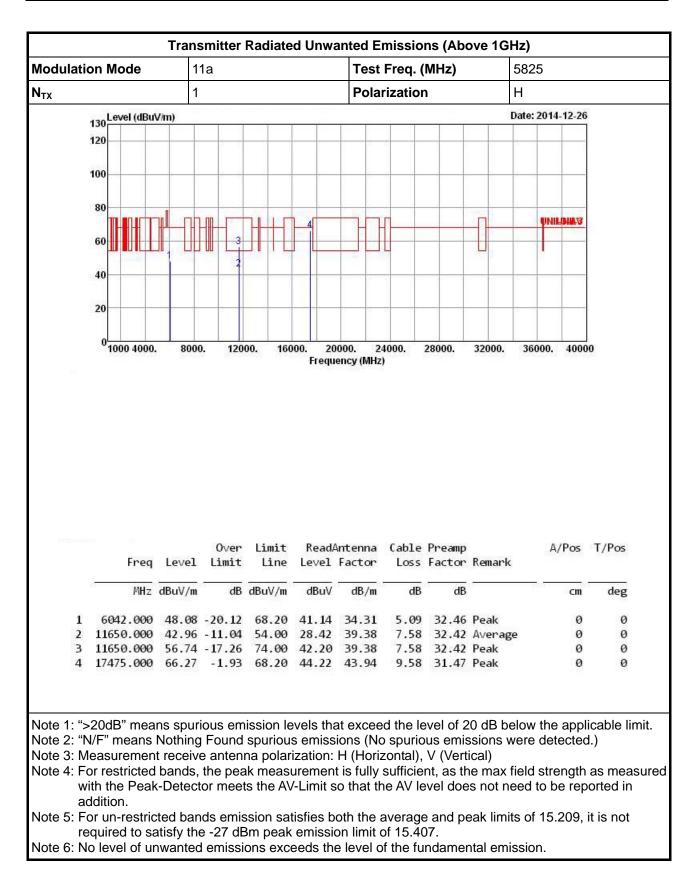
## 3.6.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 5725-5850MHz



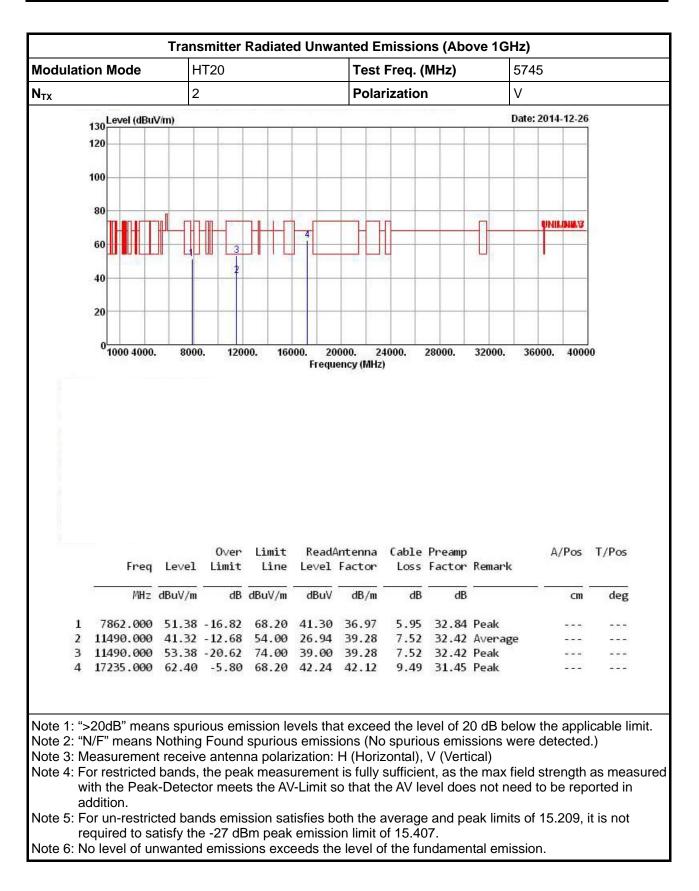


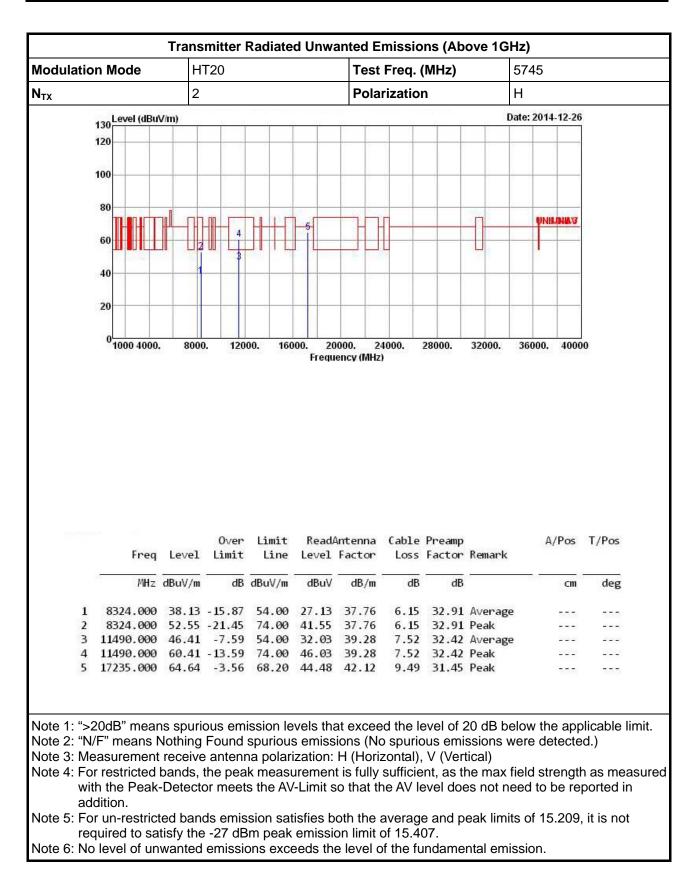


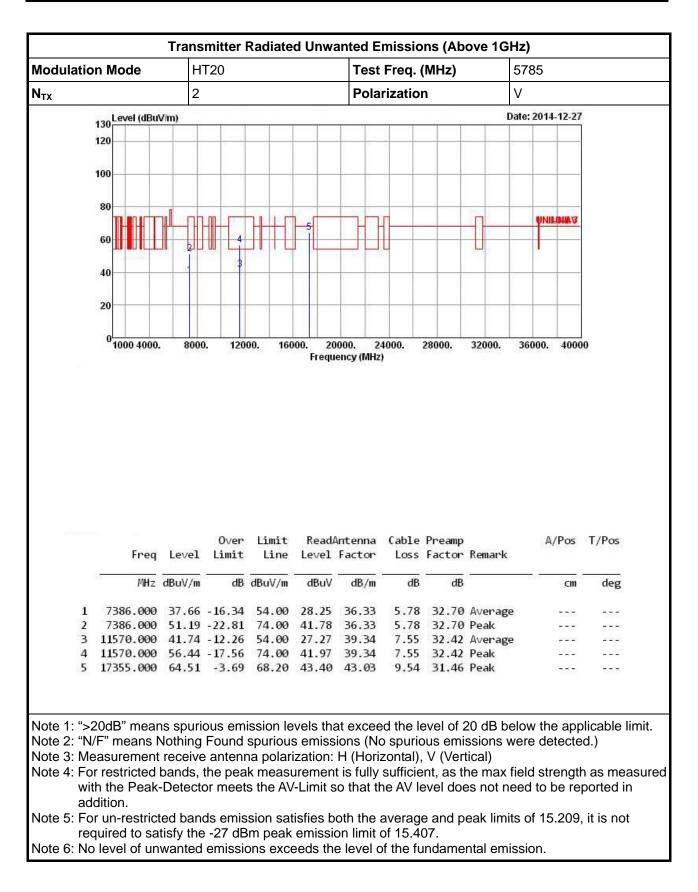


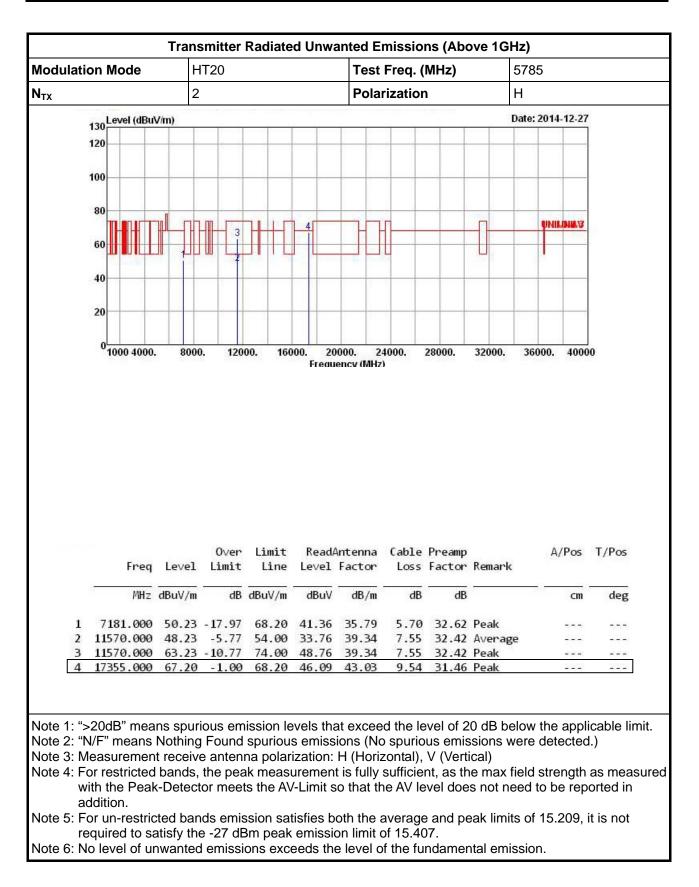


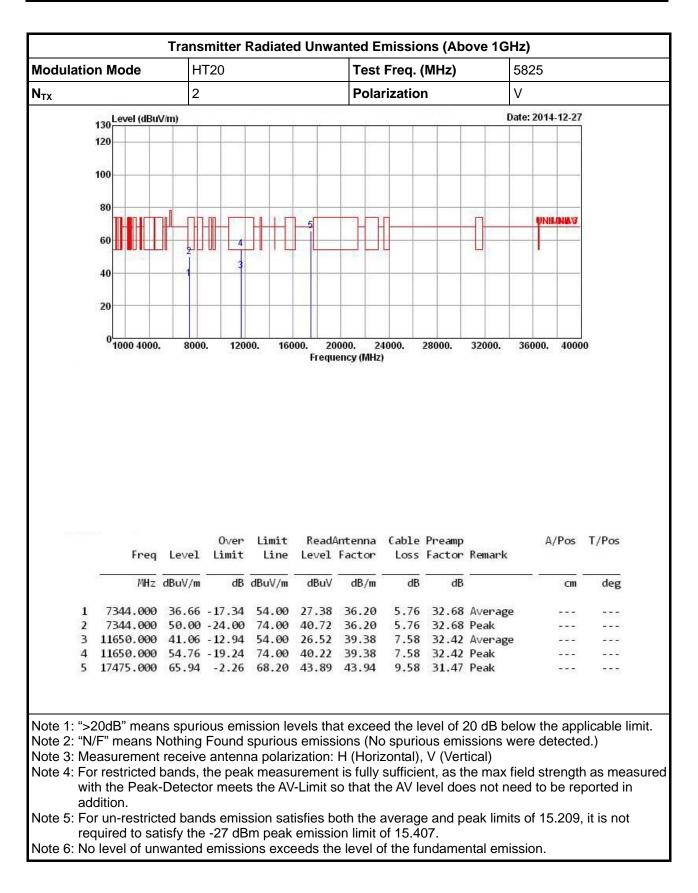


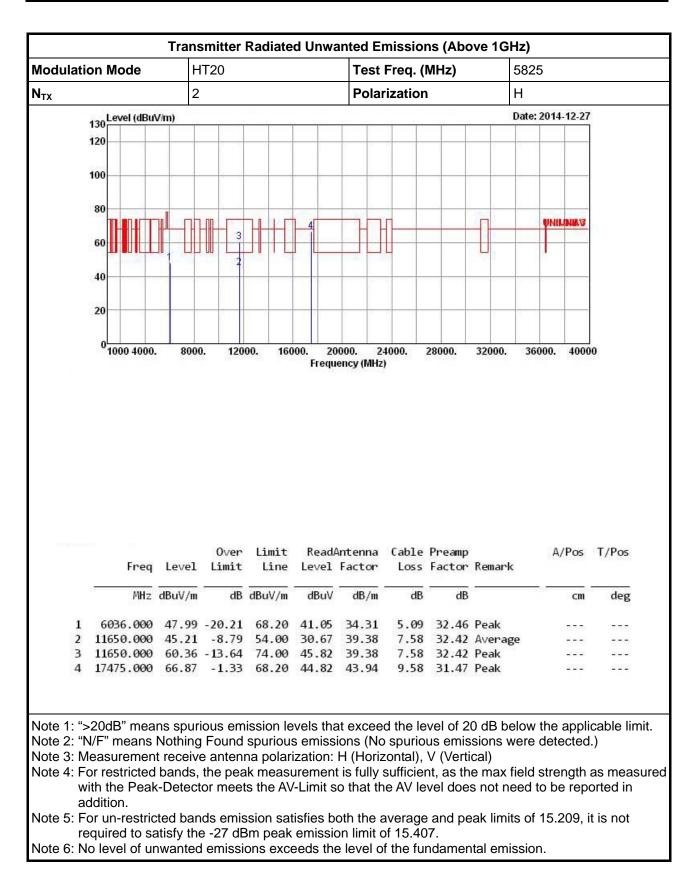


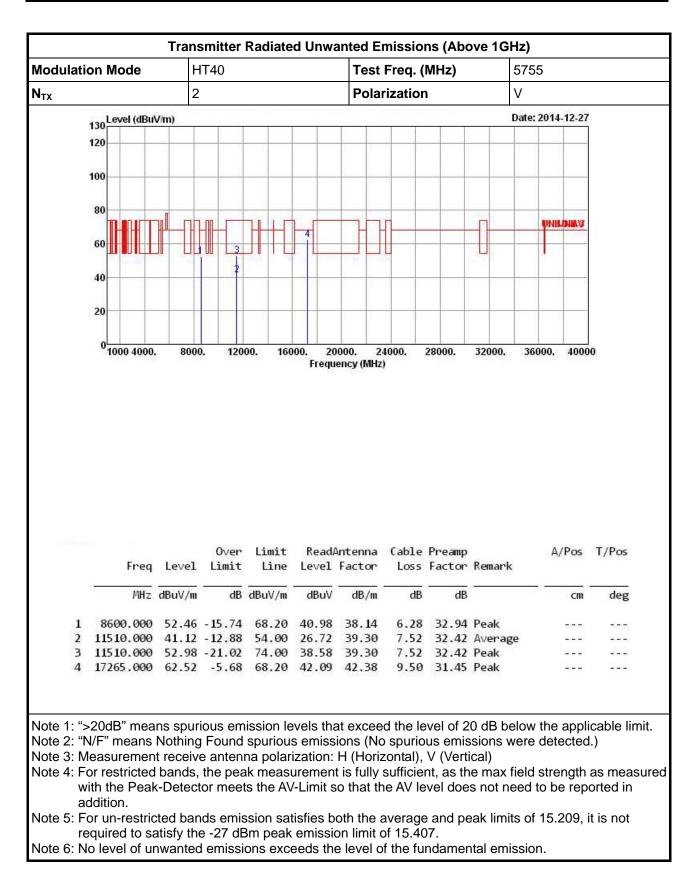


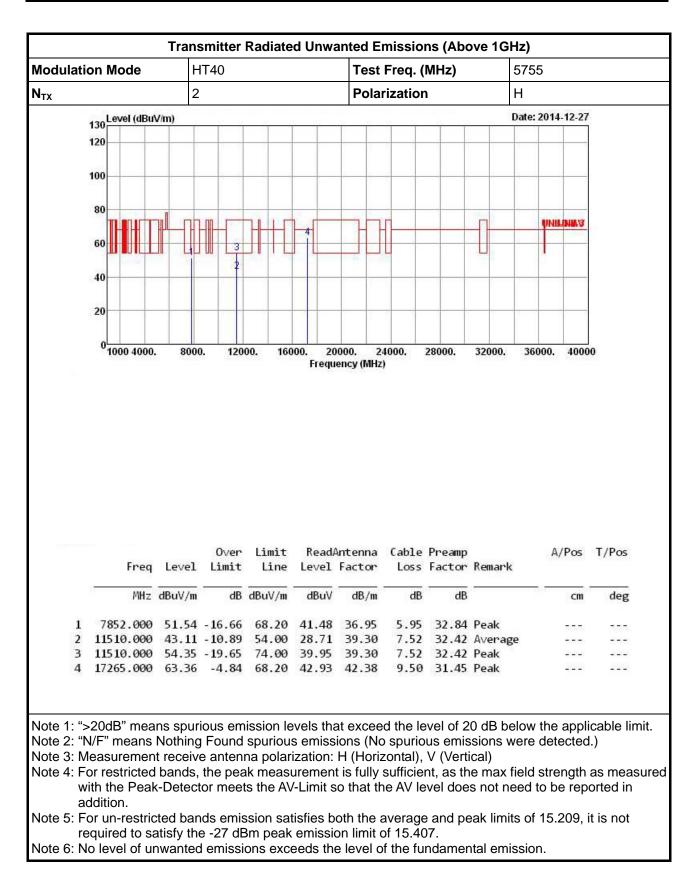


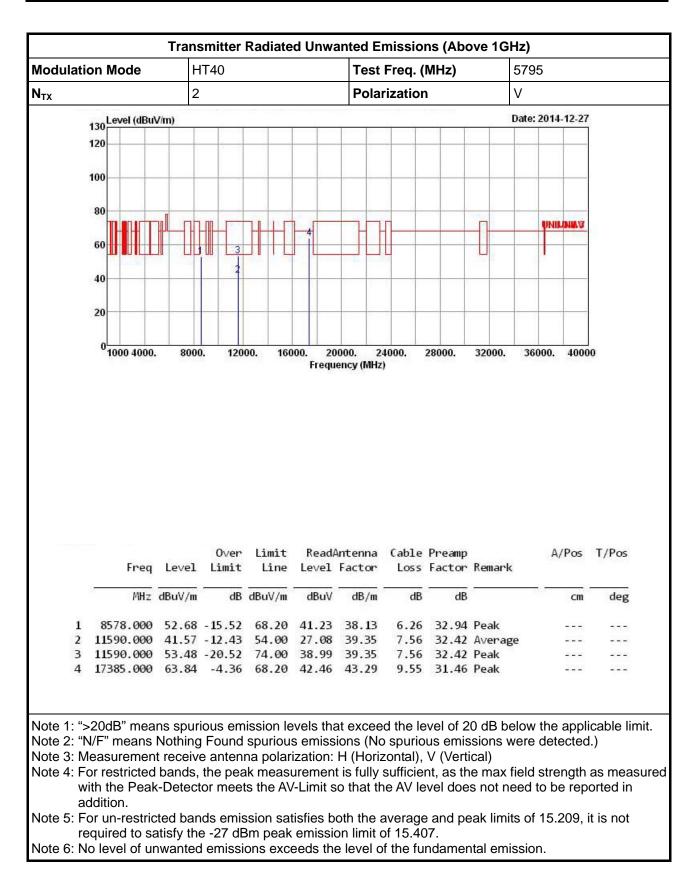


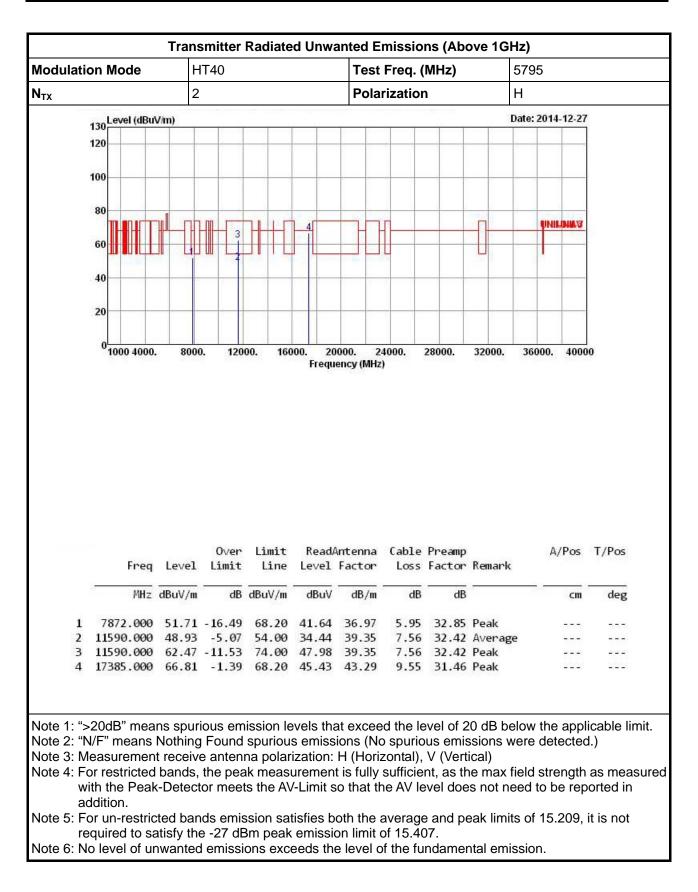


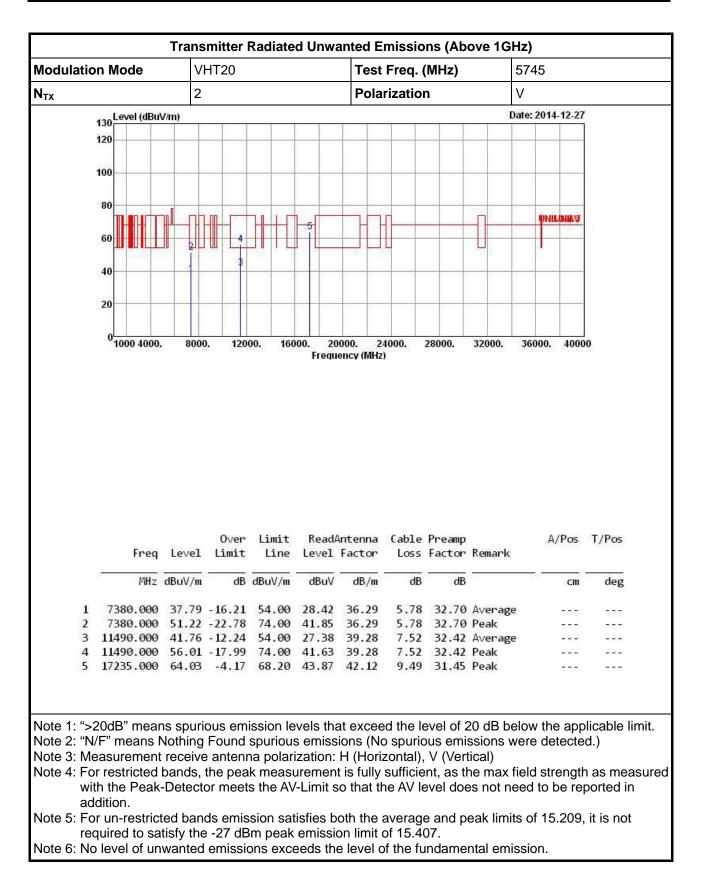


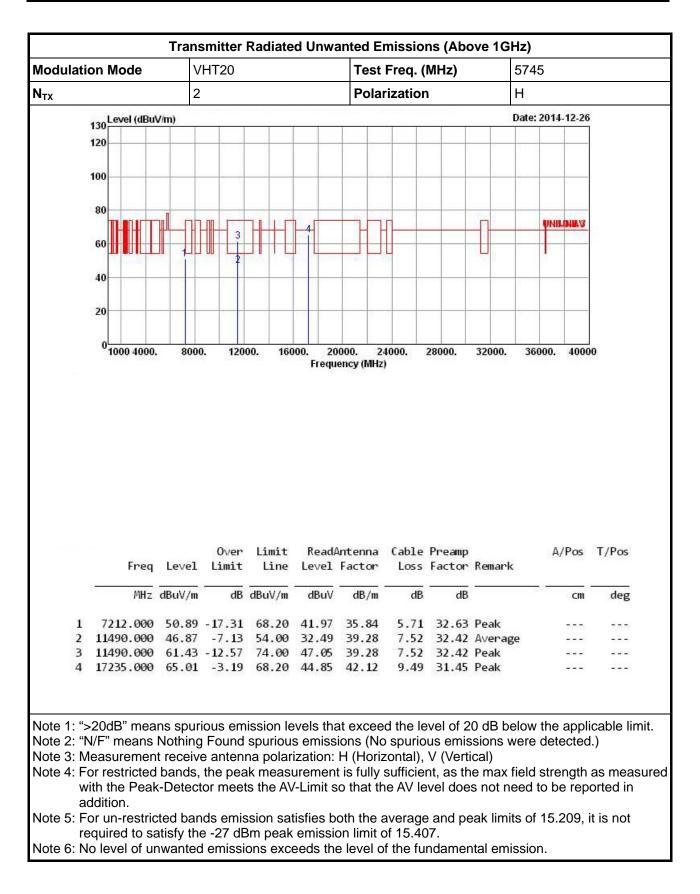


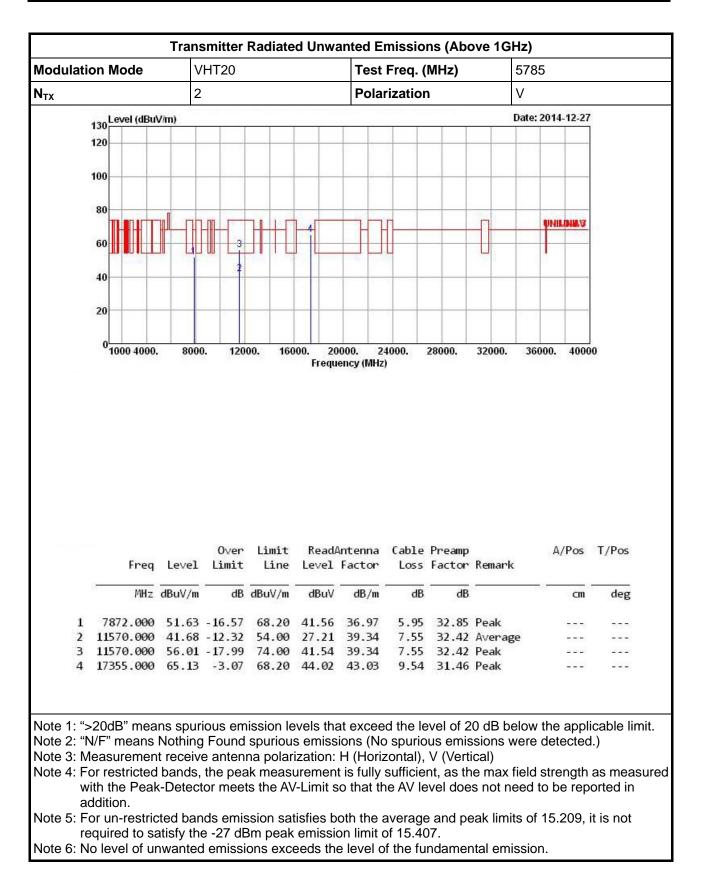


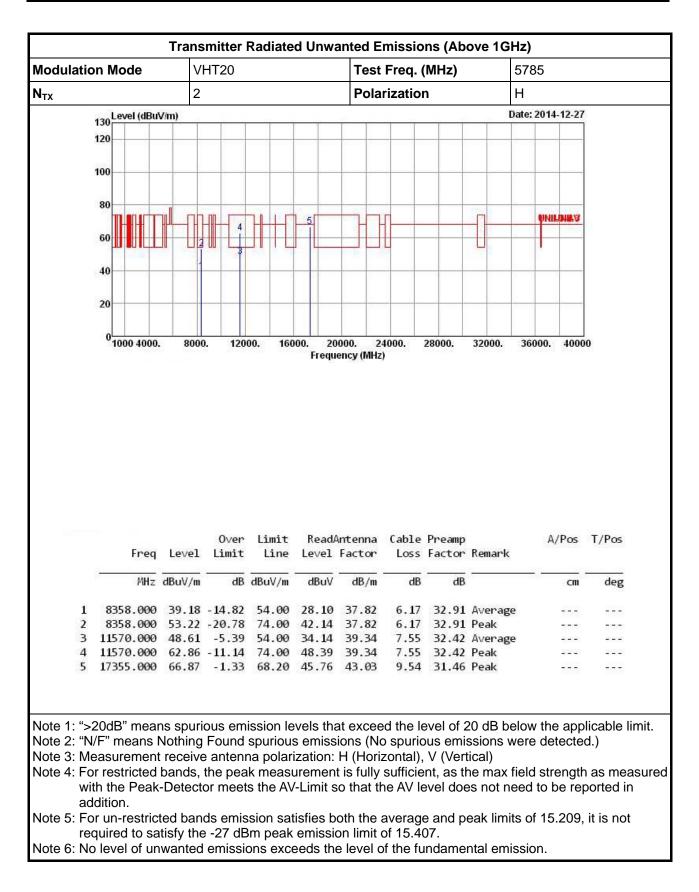


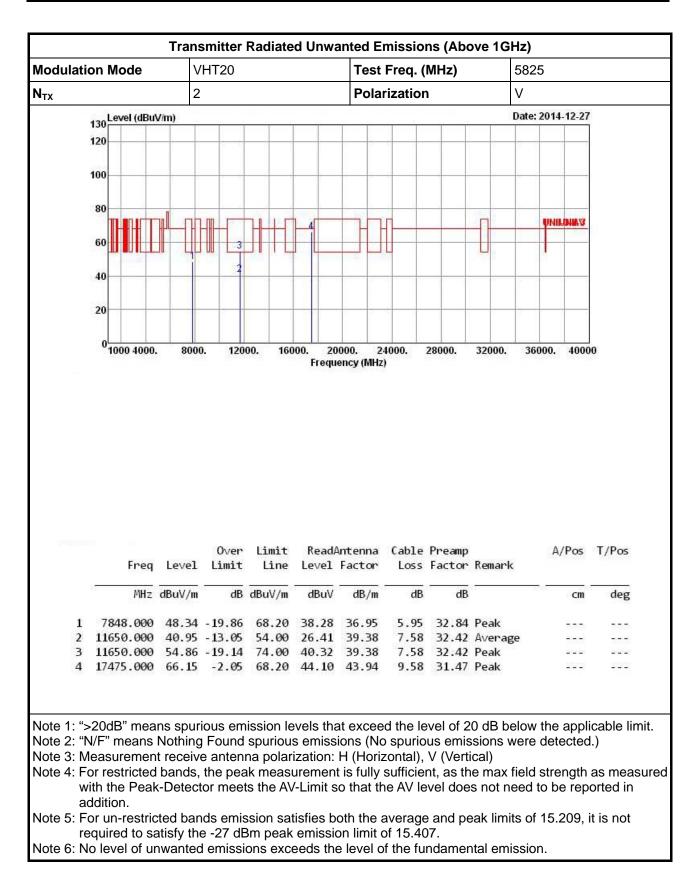


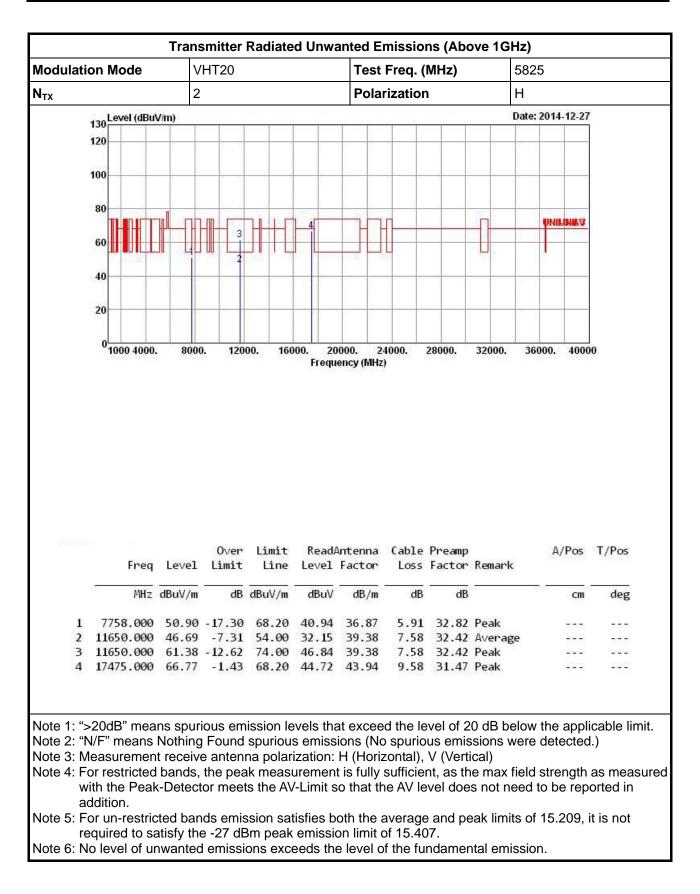


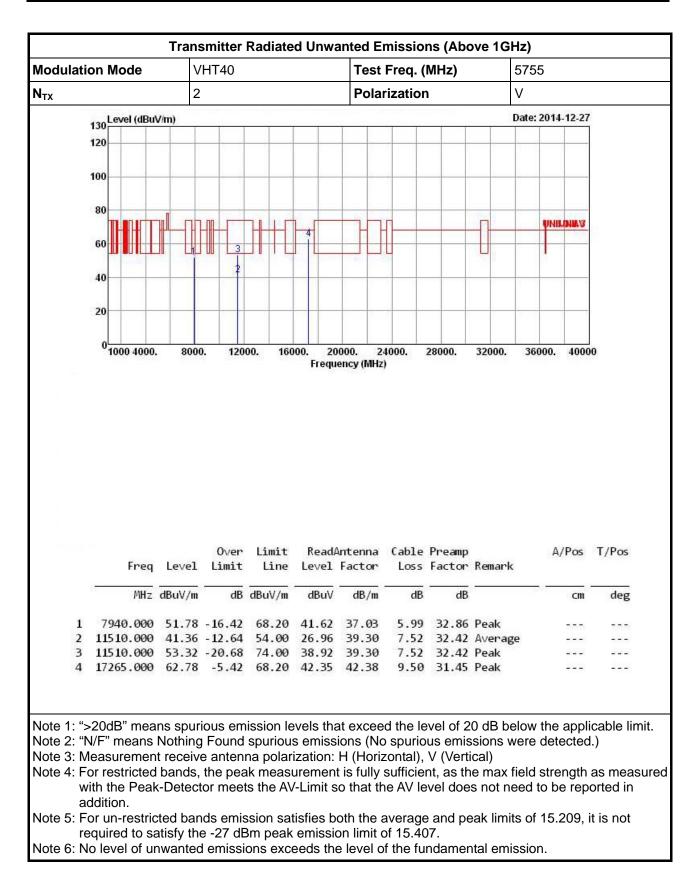


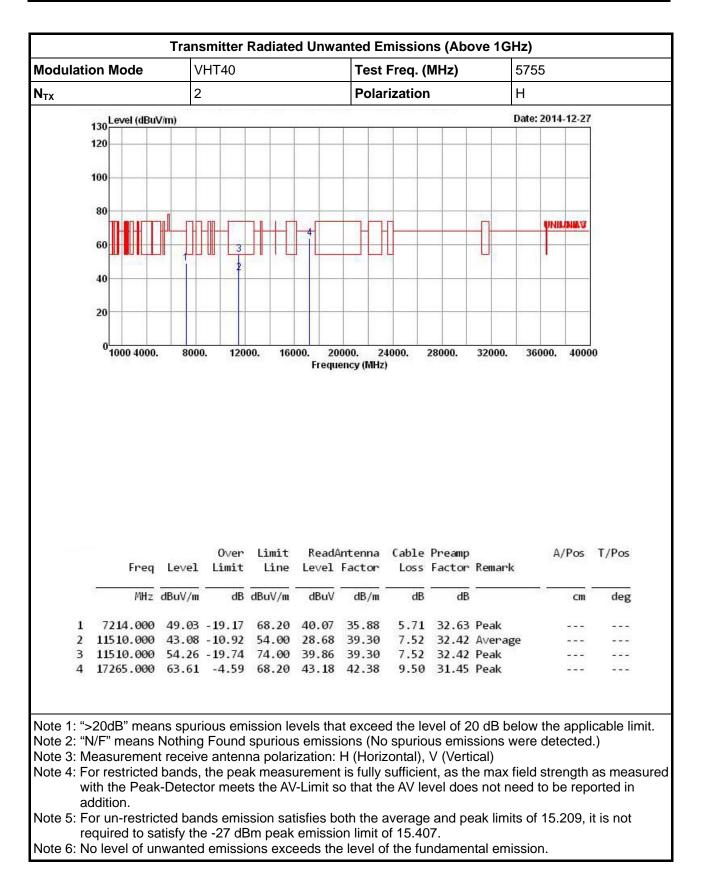


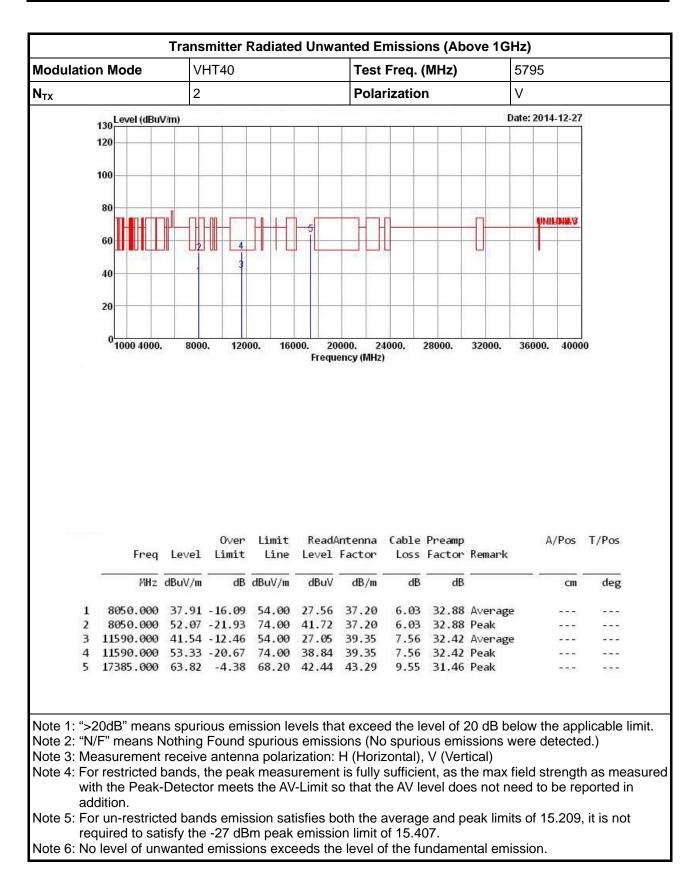


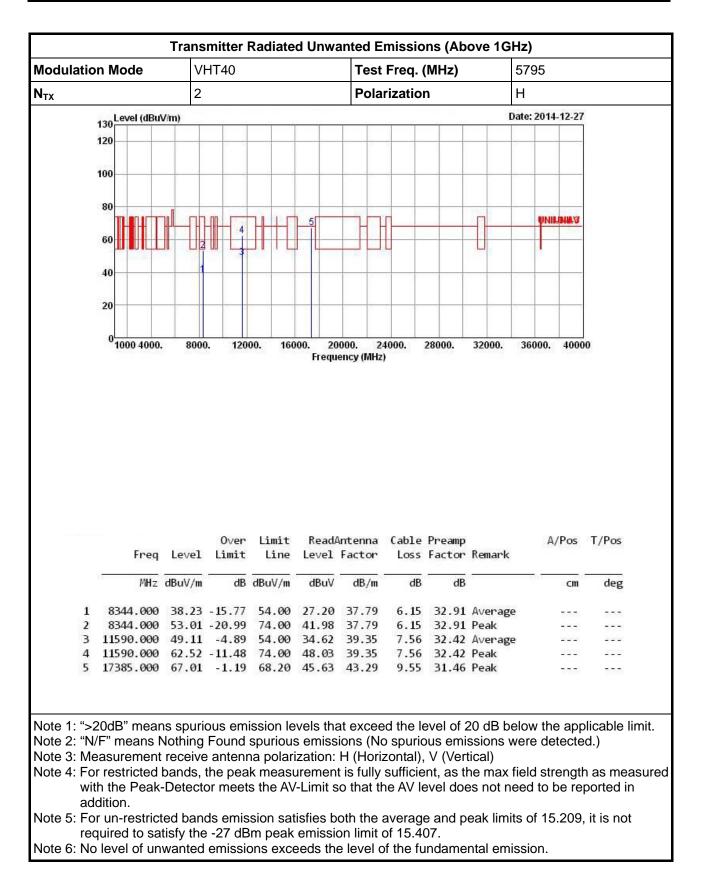


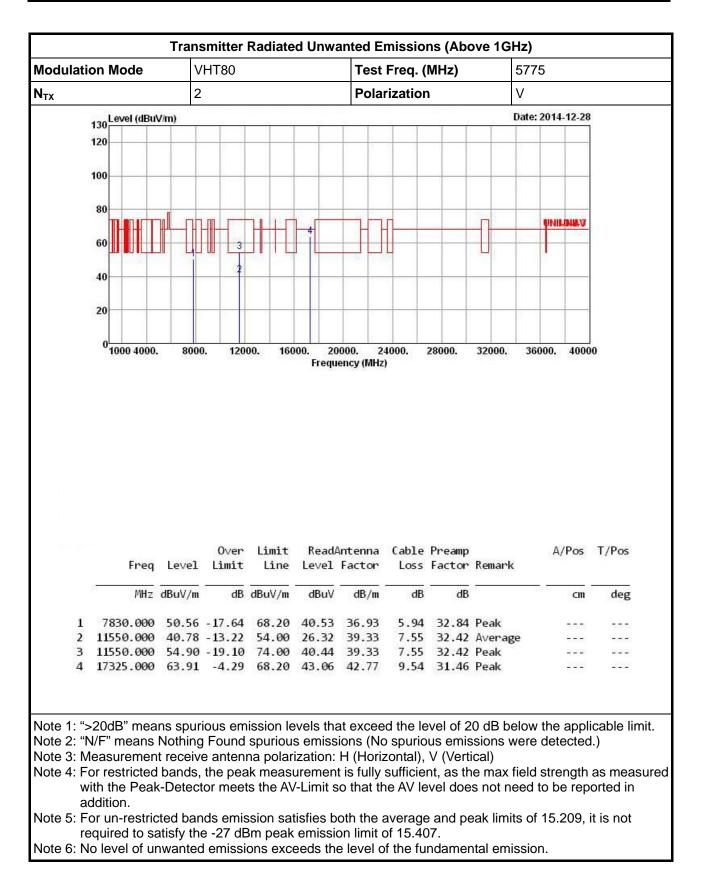


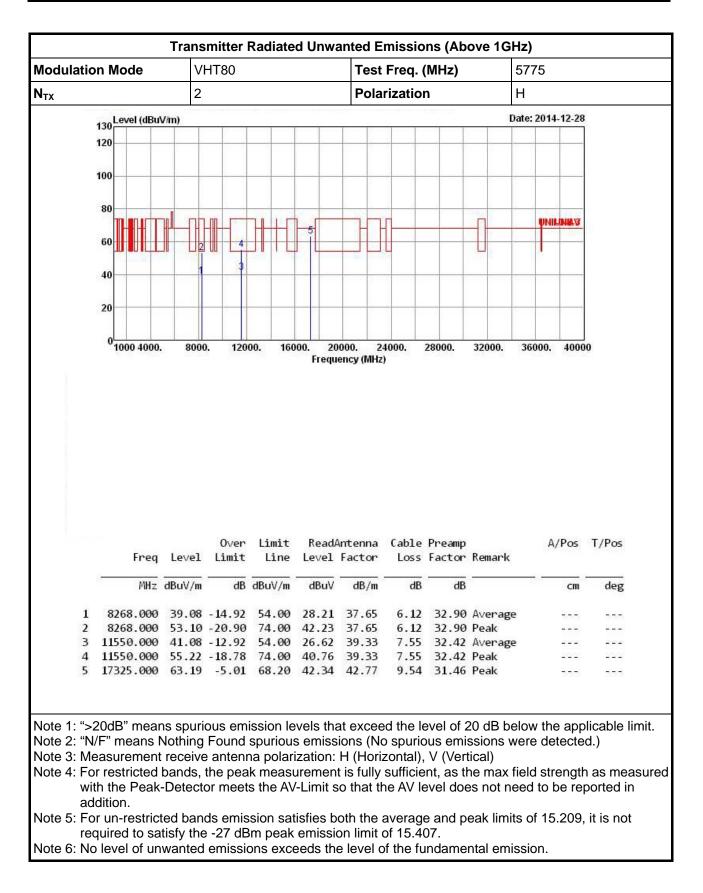












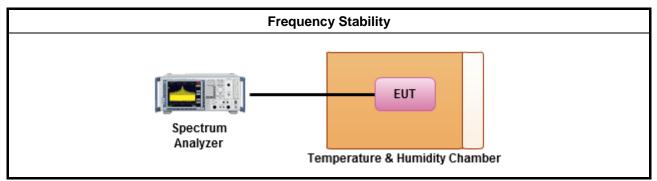







## 3.7 Frequency Stability

### 3.7.1 Frequency Stability Limit


| Frequency Stability Limit                                                                                                               |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| UNII Devices                                                                                                                            |  |  |  |  |  |
| In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual. |  |  |  |  |  |
| IEEE Std. 802.11n-2009                                                                                                                  |  |  |  |  |  |
| The transmitter center frequency tolerance shall be ± 20 ppm maximum for the 5 GHz band and ± 25 ppm maximum for the 2.4 GHz band.      |  |  |  |  |  |
| 3.7.2 Measuring Instruments                                                                                                             |  |  |  |  |  |

Refer a test equipment and calibration data table in this test report.

#### 3.7.3 Test Procedures

|             | Test Method |                                                                                                                                                                       |  |  |  |  |  |
|-------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| $\square$   | Refe        | er as ANSI C63.10, clause 6.8 for frequency stability tests                                                                                                           |  |  |  |  |  |
|             | $\boxtimes$ | Frequency stability with respect to ambient temperature                                                                                                               |  |  |  |  |  |
|             | $\boxtimes$ | Frequency stability when varying supply voltage                                                                                                                       |  |  |  |  |  |
| $\boxtimes$ | For         | conducted measurement.                                                                                                                                                |  |  |  |  |  |
|             | $\boxtimes$ | For conducted measurements on devices with multiple transmit chains:<br>Measurements need only to be performed on one of the active transmit chains (antenna outputs) |  |  |  |  |  |
|             |             | radiated measurement. The equipment to be measured and the test antenna shall be oriented to in the maximum emitted power level.                                      |  |  |  |  |  |

### 3.7.4 Test Setup





## 3.7.5 Test Result of Frequency Stability

|                         |             | Frequency Stability Result |                           |  |  |  |
|-------------------------|-------------|----------------------------|---------------------------|--|--|--|
| Мо                      | de          | Frequency Stability (ppm)  |                           |  |  |  |
| Condition               | Freq. (MHz) | Test Frequency (MHz)       | Frequency Stability (ppm) |  |  |  |
| T <sub>20°C</sub> Vmax  | 5200        | 5200.00868                 | 1.6692                    |  |  |  |
| $T_{20^\circ C}Vmin$    | 5200        | 5200.00732                 | 1.4077                    |  |  |  |
| T <sub>50°C</sub> Vnom  | 5200        | 5199.98137                 | -3.5827                   |  |  |  |
| T <sub>40°C</sub> Vnom  | 5200        | 5199.98354                 | -3.1654                   |  |  |  |
| T <sub>30°C</sub> Vnom  | 5200        | 5199.98915                 | -2.0865                   |  |  |  |
| $T_{20^{\circ}C}Vnom$   | 5200        | 5200.00955                 | 1.8365                    |  |  |  |
| T <sub>10°C</sub> Vnom  | 5200        | 5200.01259 2.4212          |                           |  |  |  |
| $T_{0^{\circ}C}Vnom$    | 5200        | 5200.03039                 | 5.8442                    |  |  |  |
| T <sub>-10°C</sub> Vnom | 5200        | 5200.03256                 | 6.2615                    |  |  |  |
| T <sub>-20°C</sub> Vnom | 5200        | 5200.04081                 | 7.8481                    |  |  |  |
| Limit (                 | ppm)        | 20                         |                           |  |  |  |
| Result                  |             | Complied                   |                           |  |  |  |



# 4 Test Equipment and Calibration Data

| Instrument   | Manufacturer                   | Model No. | Serial No.     | Characteristics | Calibration Date | Remark        |
|--------------|--------------------------------|-----------|----------------|-----------------|------------------|---------------|
| EMC Receiver | R&S                            | ESCS 30   | 100174         | 9kHz ~ 2.75GHz  | Apr. 14. 2014    | AC Conduction |
| LISN         | SCHWARZBECK<br>MESS-ELEKTRONIK | NSLK 8127 | 8127-477       | 9kHz ~ 30MHz    | Jan. 22, 2014    | AC Conduction |
| RF Cable-CON | HUBER+SUHNER                   | RG213/U   | 07611832020001 | 9kHz ~ 30MHz    | Oct. 31, 2014    | AC Conduction |
| EMI Filter   | LINDGREN                       | LRE-2030  | 2651           | < 450 Hz        | N/A              | AC Conduction |

Note: Calibration Interval of instruments listed above is one year.

| Instrument        | Manufacturer | Model No.    | Serial No.  | Characteristics | Calibration Date | Remark       |
|-------------------|--------------|--------------|-------------|-----------------|------------------|--------------|
| Spectrum Analyzer | R&S          | FSV 40       | 101500      | 9KHz~40GHz      | Apr. 28, 2014    | RF Conducted |
| Power Sensor      | Anritsu      | MA2411B      | 0917017     | 300MHz ~ 40GHz  | Jan. 28, 2014    | RF Conducted |
| Power Meter       | Anritsu      | ML2495A      | 0949003     | 300MHz ~ 40GHz  | Jan. 28, 2014    | RF Conducted |
| RF Cable-2m       | HUBER+SUHNER | SUCOFLEX_104 | SN 345675/4 | 30MHz ~ 26.5GHz | Dec. 01, 2014    | RF Conducted |

Note: Calibration Interval of instruments listed above is one year.



| Instrument                     | Manufacturer   | Model No.      | Serial No.  | Characteristics    | Calibration Date | Remark    |
|--------------------------------|----------------|----------------|-------------|--------------------|------------------|-----------|
| 3m Semi<br>Anechoic<br>Chamber | SIDT FRANKONIA | SAC-3M         | 03CH03-HY   | 30MHz ~ 1GHz<br>3m | Nov. 29, 2014    | Radiation |
| Amplifier                      | HP             | 8447D          | 2944A08033  | 10kHz ~ 1.3GHz     | May 05, 2014     | Radiation |
| Amplifier                      | Agilent        | 8449B          | 3008A02120  | 1GHz ~ 26.5GHz     | Sep. 01, 2014    | Radiation |
| Spectrum                       | R&S            | FSP40          | 100004      | 9kHz ~ 40GHz       | Mar. 27, 2014    | Radiation |
| Bilog Antenna                  | SCHAFFNER      | CBL 6112D      | 22237       | 30MHz ~ 1GHz       | Sep. 20, 2014    | Radiation |
| Horn Antenna                   | ETS · LINDGREN | 3115           | 6741        | 1GHz ~ 18GHz       | Jul. 11, 2014    | Radiation |
| Horn Antenna                   | SCHWARZBECK    | BBHA9170       | BBHA9170154 | 18GHz ~ 40GHz      | Jan. 10, 2014    | Radiation |
| RF Cable-R03m                  | Jye Bao        | RG142          | CB021       | 9kHz ~ 1GHz        | Nov. 15, 2014    | Radiation |
| RF Cable-high                  | SUHNER         | SUCOFLEX 106   | 03CH03-HY   | 1GHz ~ 40GHz       | Dec. 12, 2014    | Radiation |
| Turn Table                     | EM Electronics | EM Electronics | 060615      | 0 ~ 360 degree     | N/A              | Radiation |
| Antenna Mast                   | MF             | MF-7802        | MF780208179 | 1 ~ 4 m            | N/A              | Radiation |

Note: Calibration Interval of instruments listed above is one year.

| Instrument   | Manufacturer    | Model No. | Serial No. | Characteristics | Calibration Date | Remark    |
|--------------|-----------------|-----------|------------|-----------------|------------------|-----------|
| Amplifier    | EM              | EM18G40G  | 060604     | 18GHz ~ 40GHz   | Oct. 17.2013     | Radiation |
| Loop Antenna | Rohde & Schwarz | HFH2-Z2   | 100315     | 9kHz ~ 30MHz    | Jul. 28, 2014    | Radiation |

Note: Calibration Interval of instruments listed above is two year.