MRE report

Applicant: Zego Electronic Company Limited Product Description: Cpoter of Alpha Drone Pro

Model No.: 66222 FCC ID: 2ACS620RX

Frequency range: 2402MHz – 2475MHz

2412MHz - 2462MHz

According to FCC §15.247(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for General Population/Uncontrolled Exposure

Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm^2)	(minutes)
Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100000	/	/	1.0	30

f = frequency in MHz

MPE Calculation Method

The MPE was calculated at 20cm to show compliance with the power density limit. The following formula was used to calculate the Power Density:

$$E\left(\frac{V}{m}\right) = \frac{\sqrt{(30*P*G)}}{d}$$

Power Density:
$$Pd\left(\frac{W}{m^2}\right) = \frac{E^2}{377}$$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 * P * G}{377 * d^2}$$

Calculated Result and Limit

Frequency range 2402MHz – 2475MHz Maximum peak output power (dBm): -8.561 Maximum peak output power (mW): 0.1393

Distance (cm): 20

Frequency (MHz): 2402

^{* =} Plane-wave equivalent power density

Antenna Gain (dBi): -8.639 Antenna Gain (numeric): 0.1368 Power density of prediction frequency at 20 cm (mW/cm²): 3.791x10⁻⁶ MPE limit for uncontrolled exposure at prediction frequency (mW/cm²): 1.0

The device is compliant with the requirement MPE limit for uncontrolled exposure. The maximum power density at the distance of 20 cm is $3.791 \times 10^{-6} \, \text{mW/cm}^2$, limit is $1.0 \, \text{mW/cm}^2$.

Frequency range 2412MHz – 2462MHz Maximum peak output power (dBm): 6.927 Maximum peak output power (mW): 4.928 Distance (cm): 20

Frequency (MHz): 2412 Antenna Gain (dBi): -9.527 Antenna Gain (numeric): 0.1115

Power density of prediction frequency at 20 cm (mW/cm²): 0.0001093 MPE limit for uncontrolled exposure at prediction frequency (mW/cm²): 1.0

The device is compliant with the requirement MPE limit for uncontrolled exposure. The maximum power density at the distance of 20 cm is 0.0001093 mW/cm², limit is 1.0 mW/cm².