MRE report

Applicant: Zego Electronic Company Limited Product Description: Copter of Shunt Drone

Model No.: 317889 FCC ID: 2ACS619RX

Frequency range: 2402MHz – 2475MHz

According to FCC $\S15.247(i)$ and $\S1.1307(b)(1)$, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for General Population/Uncontrolled Exposure

Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm^2)	(minutes)
Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100000	/	/	1.0	30

f = frequency in MHz

MPE Calculation Method

The MPE was calculated at 20cm to show compliance with the power density limit. The following formula was used to calculate the Power Density:

$$\mathrm{E}\left(\frac{\mathrm{V}}{\mathrm{m}}\right) = \frac{\sqrt{(30*P*G)}}{d}$$
 Power Density: $\mathrm{Pd}\left(\frac{\mathrm{W}}{m^2}\right) = \frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 * P * G}{377 * d^2}$$

Calculated Result and Limit

Maximum peak output power (dBm): -2.821 Maximum peak output power (mW): 0.5223

Distance (cm): 20 Frequency (MHz): 2475 Antenna Gain (dBi): -16.179

^{* =} Plane-wave equivalent power density

Antenna Gain (numeric): 0.0241 Power density of prediction frequency at 20 cm (mW/cm²): 0.0000025 MPE limit for uncontrolled exposure at prediction frequency (mW/cm²): 1.0

The device is compliant with the requirement MPE limit for uncontrolled exposure. The maximum power density at the distance of 20 cm is $0.0000025~\text{mW/cm}^2$, limit is $1.0~\text{mW/cm}^2$.