

廠商會檢定中心

TEST REPORT

Report No.	:	AU0050957(4)		Date :	29 Aug 2016			
Application No.	:	LU0029366(4)						
Applicant	:	Zego Electronic Company Room 703, Kowloon Bui 555 Nathan Road, Kowlo	Zego Electronic Company Limited Room 703, Kowloon Building, 555 Nathan Road, Kowloon, HK					
Sample Description	:	One(1) item of submitted of Model No. <u>6001435</u> Sample registration No. Radio Frequency Rating	sample stated to be : RU0036128-003 : 2412MHz – 2462 : 2402MHz – 2475 : USB 5V charging : 3.7V rechargeabl	Copter of V MHz Transo MHz Transo g adaptor e battery	<u>ega Drone</u> ceiver ceiver			
Date Received	:	03 Aug 2016						
Test Period	:	15 Aug 2016 to 19 Aug 2016						
Test Requested	:	FCC Part 15 Certificate (15.247), FCC Part 15 Verification Procedure						
Test Method	:	47 CFR Part 15 (10-1-14 Edition), ANSI C63.4 – 2014, ANSI C63.10 – 2013 KDB 558074 D01 DTS Meas Guidance v03r03						
Test Engineer	:	Mr. LEUNG Shu-kan, Ken						
Test Result	:	See attached sheet(s) from page 2 to 61.						
Conclusion	:	The submitted sample was found to comply with requirement of FCC Part 15 Subpart B and C.						

For and on behalf of CMA Industrial Development Foundation Limited

Authorized Signature : Page 1 of 61 Mr. WONG Lap-pong Andrew Manager Electrical Division FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

-

Table of Contents

1 (General Information	
1.1	General Description	
1.2	2 Location of the test site	
1.3	3 List of measuring equipment	5
1.4	4 Measurement Uncertainty	6
2	Description of the radiated emission test	7
2.1	Test Procedure	7
2.2	2 Test Result	8
2.3	Radiated Emission Measurement Data	9
2.4	Data of Conducted Emission	17
3	Description of the Line-conducted Test	
3.1	Test Procedure	
3.2	2 Test Result	
3.3	Graph and Table of Conducted Emission Measurement Data	
4	Photograph	19
4.1	Photographs of the Test Setup for Radiated Emission and Conducted Emission	19
4.2	Photographs of the External and Internal Configurations of the EUT	19
5 3	Supplementary document	
5.1	Bandwidth	20
5.2	2 Power Spectral Density	
5.3	3 Antenna requirement	
6	Appendices	

FCC ID: 2ACS618RX

Page 2 of 61

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

1 General Information

1.1 General Description

The equipment under test (EUT) is a APP control drone. The EUT is power by 3.7V rechargeable battery. It operates at 2412MHz – 2462MHz. The EUT is connected with smart phone by WiFi (802.11b and 802.11g). When the user using the app, the EUT will take the corresponding action. User can also use the self-developed control protocol to control the drone. The self-develop control operates at 2402MHz – 2475MHz.

The brief circuit description is listed as follows:

- U2	and its associated circuit act as self-develop RF module
- U1 (WiFi)	and its associated circuit act as WiFi module
- U1, U2	and its associated circuit act as MCU
- Q1	and its associated circuit act as power regulator
- Y1	and its associated circuit act as oscillator
- U4, U5	and its associated circuit act as motor control

FCC ID: 2ACS618RX

Page 3 of 61

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

1.2 Location of the test site

FCC Registered Test Site Number: 552221

Radiated emissions measurements are investigated and taken pursuant to the procedures of ANSI C63.10 - 2013. A Semi-Anechoic Chamber Testing Site is set up for investigation and located at:

Ground Floor, Yan Hing Centre, 9 – 13 Wong Chuk Yeung Street, Fo Tan, Shatin, New Territories, Hong Kong.

Conducted emissions measurements are investigated and also taken pursuant to the procedures of ANSI C63.10 - 2013. A shielded room is located at :

Ground Floor, Yan Hing Centre, 9 – 13 Wong Chuk Yeung Street, Fo Tan, Shatin, New Territories, Hong Kong.

FCC ID: 2ACS618RX

Page 4 of 61

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

> CMA Industrial Development Foundation Limited Room 1302, Yan Hing Centre, 9-13 Wong Chuk Yeung St., Fo Tan, Shatin, N.T., Hong Kong.

Tel: (852) 2698 8198 Fax: (852) 2695 4177 E-mail: info@cmatcl.com Web Site: http://www.cmatcl.com

廠商會檢定中心

TEST REPORT

Report No. : AU0050957(4)

Date : 29

29 Aug 2016

1.3 List of measuring equipment

Equipment	Manufacturer	Model No.	Serial No.	Calibration Due Date	Calibration Period
EMI Test Receiver	R&S	ESCI	100152	27 Sep 2016	1Year
Spectrum Analyzer	R&S	FSV40	100628	09 Feb 2017	1Year
Broadband Antenna	Schaffner	CBL6112B	2718	15 Mar 2017	2Years
Loop Antenna	EMCO	6502	00056620	25 Jan 2018	2Years
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-531	24 Nov 2016	2Years
Broadband Pre-Amplifier	Schwarzbeck	BBV 9718	9718-119	24 Nov 2016	2Years
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170442	02 Aug 2017	2Years
Broadband Pre-Amplifier	Schwarzbeck	BBV 9719	9719-010	02 Aug 2017	2Years
Coaxial Cable	Schaffner	RG 213/U	N/A	18 May 2017	1Years
Coaxial Cable	Suhner	RG 214/U	N/A	18 May 2017	1Years
Coaxial Cable	Suhner	Sucoflex_104	N/A	13 Dec 2016	1Years
LISN	R&S	ENV216	101323	21 Oct 2016	1Year
Coaxial Cable	Tyco Electronics	RG 58C/U	N/A	01 Nov 2016	1Year

Support equipment:

Adaptor Model: A1299

Supply by CMA

FCC ID: 2ACS618RX

Page 5 of 61

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

廠商會檢定中心

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

1.4 Measurement Uncertainty

The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%.

Radiated emissions						
Frequency	Uncertainty (U _{lab})					
30MHz ~ 200MHz (Horizontal)	4.83dB					
30MHz ~ 200MHz (Vertical)	4.84dB					
200MHz ~1000MHz (Horizontal)	4.87dB					
200MHz ~1000MHz (Vertical)	5.94dB					
1GHz ~6GHz	4.41dB					
6GHz ~18GHz	4.64dB					

Conducted emissions

Frequency	Uncertainty (U _{lab})		
150kHz~30MHz	2.64dB		

FCC ID: 2ACS618RX

Page 6 of 61

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

2 Description of the radiated emission test

2.1 Test Procedure

Radiated emissions measurements are investigated and taken pursuant to the procedures of ANSI C63.10 - 2013.

The equipment under test (EUT) was placed on a non-conductive turntable with dimensions of 1.5m x 1m and 0.8m high above the ground for below 1GHz measurement and 1.5m high above the ground for above 1GHz measurement. 3m from the EUT, a broadband antenna mounting on the mast received the signal strength. The turntable was rotated to maximize the emission level. The antenna was then moving along the mast from 1m up to 4m until no more higher value was found. Both horizontal and vertical polarization of the antenna were placed and investigated.

For below 30MHz, a loop antenna with its vertical plane is placed 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1 m above the ground.

For 30MHz to 1GHz, broadband antenna with its vertical and horizontal plane is placed 3m from the EUT and rotated about its vertical and horizontal axis for maximum response at each azimuth about the EUT. And the reference point of antenna shall be 1 m above the ground.

For above 1GHz, horn antenna with its vertical and horizontal plane is placed 3m from the EUT and rotated about its vertical and horizontal axis for maximum response at each azimuth about the EUT. Preamplifier and High Pass filter was used for measurements. The reference point of antenna shall be 1 m above the ground.

The device was rotated through three orthogonal to determine which attitude and configuration produce the highest emission during measurement for Radiated Emission measurement.

FCC ID: 2ACS618RX

Page 7 of 61

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

2.2 Test Result

Subpart C:

Peak Detector data were measured unless otherwise stated.

"#" means emissions appear within the restricted bands shall follow the requirement of section 15.205.

The frequencies from fundamental up to that tenth harmonics were investigated, and emissions more 20dB below limit were not reported. Thus, those highest emissions were presented in next page (section 2.3).

It was found that the EUT meet the FCC requirement

<u>Subpart B:</u> Quasi-Peak Detector data were measured unless otherwise stated.

"#" means emissions appear within the restricted bands shall follow the requirement of section 15.205.

The emissions meet the requirement of section 15.109 are based on measurements employing the CISPR quasi-peak detector below 1000MHz and average detector for frequencies above 1000MHz.

The frequencies from 30MHz to 1000MHz were investigated, and emissions more 20dB below limit were not reported. Thus, those highest emissions were presented in next page (section 2.3).

It was found that the EUT meet the FCC requirement.

FCC ID: 2ACS618RX

Page 8 of 61

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

2.3 Radiated Emission Measurement Data

Radiated emission

pursuant to

the requirement of FCC Part 15 subpart C

Environmental conditions:

Parameter	Recorded value	
Ambient temperature:	26	°C
Relative humidity:	60	%

Measurement: Peak Testing frequency range: 91 RBW: 1MHz VBW: 3MHz

g frequency range: 9kHz to 25GHz Mode: Self-develop control protocol							
Frequency (MHz)	Polarity (H/V)	Reading at 3m (dBµV)	Transducer Factor (dB/m)	Field Strength at 3m (dBµV/m)	Limit at 3m (dBµV/m)	Margin (dB)	
2402.004	V	74.3	- 4.2	70.1	114.0	- 43.9	
#4803.440	V	39.9	3.7	43.6	74.0	- 30.4	
#4803.910	Н	42.2	3.7	45.9	74.0	- 28.1	
7205.225	V	40.4	11.5	51.9	74.0	- 22.1	
2433.118	Н	73.0	- 4.2	68.8	114.0	- 45.2	
#4865.345	Н	42.7	3.7	46.4	74.0	- 27.6	
#4865.526	V	42.5	3.7	46.2	74.0	- 27.8	
#7298.272	Н	40.7	11.5	52.2	74.0	- 21.8	
		-		•			
2475.123	V	74.0	- 4.3	69.7	114.0	- 44.3	
#4949.306	Н	40.9	4.0	44.9	74.0	- 29.1	
#4950.065	V	40.7	4.0	44.7	74.0	- 29.3	
#7425.137	V	39.5	11.5	51.0	74.0	- 23.0	

Remark: Other emissions more than 20dB below the limit are not reported.

Peak measurement values are lower than average limit, therefore average measurement is not necessary.

FCC ID: 2ACS618RX

Page 9 of 61

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited

Room 1302, Yan Hing Centre, 9-13 Wong Chuk Yeung St., Fo Tan, Shatin, N.T., Hong Kong.

Tel: (852) 2698 8198 Fax: (852) 2695 4177 E-mail: info@cmatcl.com Web Site: http://www.cmatcl.com

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

2.3 Radiated Emission Measurement Data

Radiated emission

pursuant to

the requirement of FCC Part 15 subpart C

Environmental conditions:

Parameter	Recorded value	
Ambient temperature:	26	° C
Relative humidity:	60	%

Measurement: PeakRBW: 1MHzVBW: 3MHzTesting frequency range: 9kHz to 25GHzMode: 802.11b

inge.)KHZ	to 250112	Mode: 002.1	10		
Polarity (H/V)	Reading at 3m (dBµV)	Transducer Factor (dB/m)	Field Strength at 3m (dBµV/m)	Limit at 3m (dBµV/m)	Margin (dB)
Н	109.8	- 4.2	105.6	114.0	- 8.4
V	40.0	3.7	43.7	74.0	- 30.3
Н	37.5	3.7	41.2	74.0	- 32.8
Н	108.5	- 4.2	104.3	114.0	- 9.7
Н	38.0	3.7	41.7	74.0	- 32.3
V	40.8	3.7	44.5	74.0	- 29.5
•	•		•		
Н	105.2	- 4.3	100.9	114.0	- 13.1
Н	38.8	4.0	42.8	74.0	- 31.2
V	38.6	4.0	42.6	74.0	- 31.4
	Polarity (H/V) H V H H H V H H V	Polarity (H/V) Reading at 3m (dBμV) H 109.8 V 40.0 H 37.5 H 108.5 H 38.0 V 40.8 H 105.2 H 38.8 V 38.6	Polarity (H/V) Reading at 3m (dBµV) Transducer Factor (dB/m) H 109.8 - 4.2 V 40.0 3.7 H 37.5 3.7 H 38.0 3.7 V 40.8 3.7 H 38.8 4.0 V 38.6 4.0	Polarity (H/V) Reading at 3m (dBμV) Transducer Factor (dB/m) Field Strength at 3m (dBμV/m) H 109.8 - 4.2 105.6 V 40.0 3.7 43.7 H 37.5 3.7 41.2 H 108.5 - 4.2 104.3 H 38.0 3.7 41.7 V 40.8 3.7 44.5 H 105.2 - 4.3 100.9 H 38.8 4.0 42.8 V 38.6 4.0 42.6	Polarity (H/V)Reading at 3m (dBμV)Transducer Factor (dB/m)Field Strength at 3m (dBμV/m)Limit at 3m (dBμV/m)H109.8- 4.2105.6114.0V40.03.743.774.0H37.53.741.274.0H108.5- 4.2104.3114.0H108.5- 4.2104.3114.0H38.03.741.774.0H38.03.744.574.0H105.2- 4.3100.9114.0H38.84.042.874.0V38.64.042.674.0

Remark: Other emissions more than 20dB below the limit are not reported.

FCC ID: 2ACS618RX

Page 10 of 61

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

2.3 Radiated Emission Measurement Data (Con't)

Radiated emission

pursuant to

the requirement of FCC Part 15 subpart C

Environmental conditions:

Parameter	Recorded value	
Ambient temperature:	25	°C
Relative humidity:	61	%

Measurement: AverageRBW: 1MHzVBW: 10HzTesting frequency range: 9kHz to 25GHzMode: 802.11b

Frequency (MHz)	Polarity (H/V)	Reading at 3m (dBµV)	Transducer Factor (dB/m)	Field Strength at 3m (dBµV/m)	Limit at 3m (dBµV/m)	Margin (dB)	
2412.328	Н	65.8	- 4.2	61.6	94.0	- 32.4	
#4823.995	Н	22.4	3.7	26.1	54.0	- 27.9	
#4823.998	V	23.3	3.7	27.0	54.0	- 27.0	
2436.090	Н	65.1	- 4.2	60.9	94.0	- 33.1	
#4873.943	V	24.0	3.7	27.7	54.0	- 26.3	
#4874.041	Н	22.6	3.7	26.3	54.0	- 27.7	
	•	•					
2463.540	Н	63.3	- 4.3	59.0	94.0	- 35.0	
#4923.947	V	22.1	4.0	26.1	54.0	- 27.9	
#4923.970	Н	22.3	4.0	26.3	54.0	- 27.7	

Remark: Other emissions more than 20dB below the limit are not reported.

FCC ID: 2ACS618RX

Page 11 of 61

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

2.3 Radiated Emission Measurement Data (Con't)

Radiated emission

pursuant to

the requirement of FCC Part 15 subpart C

Environmental	conditions:
---------------	-------------

Parameter	Recorded value	
Ambient temperature:	26	° C
Relative humidity:	60	%

Measurement: PeakRBW: 1MHzVBW: 3MHzTesting frequency range: 9kHz to 25GHzMode: 802.11g

<u>ig nequency ra</u>	inge. MIL	10 230HZ	Widde. 802.1	Ig		
Frequency (MHz)	Polarity (H/V)	Reading at 3m (dBµV)	Transducer Factor (dB/m)	Field Strength at 3m (dBµV/m)	Limit at 3m (dBµV/m)	Margin (dB)
2415.444	Н	108.7	- 4.2	104.5	114.0	- 9.5
#4824.132	V	37.5	3.7	41.2	74.0	- 32.8
#4824.177	Н	36.5	3.7	40.2	74.0	- 33.8
2440.725	Н	107.1	- 4.2	102.9	114.0	- 11.1
#4873.693	Н	37.0	3.7	40.7	74.0	- 33.3
#4873.951	V	37.5	3.7	41.2	74.0	- 32.8
2465.775	Н	104.2	- 4.3	99.9	114.0	- 14.1
#4923.947	V	35.8	4.0	39.8	74.0	- 34.2
#4923.369	Н	36.0	4.0	40.0	74.0	- 34.0

Remark: Other emissions more than 20dB below the limit are not reported.

FCC ID: 2ACS618RX

Page 12 of 61

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com. This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

2.3 Radiated Emission Measurement Data (Con't)

Radiated emission

pursuant to

the requirement of FCC Part 15 subpart C

Environmental conditions:

Parameter	Recorded value	
Ambient temperature:	26	°C
Relative humidity:	60	%

Measurement: AverageRBW: 1MHzVBW: 10HzTesting frequency range: 9kHz to 25GHzMode: 802.11g

Frequency (MHz)	Polarity (H/V)	Reading at 3m (dBµV)	Transducer Factor (dB/m)	Field Strength at 3m (dBµV/m)	Limit at 3m (dBµV/m)	Margin (dB)
2406.559	Н	54.1	- 4.2	49.9	94.0	- 44.1
#4823.932	V	21.7	3.7	25.4	54.0	- 28.6
#4823.990	Н	21.3	3.7	25.0	54.0	- 29.0
2438.725	Н	46.5	- 4.2	42.3	94.0	- 51.7
#4873.955	V	22.3	3.7	26.0	54.0	- 28.0
#4874.007	Н	21.9	3.7	25.6	54.0	- 28.4
2458.675	Н	45.6	- 4.3	41.3	94.0	- 52.7
#4923.901	V	20.6	4.0	24.6	54.0	- 29.4
#4924.057	Н	20.8	4.0	24.8	54.0	- 29.2

Remark: Other emissions more than 20dB below the limit are not reported.

FCC ID: 2ACS618RX

Page 13 of 61

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited

CMA and Labo

CMA Testing and Certification Laboratories

廠商會檢定中心

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

2.3 Radiated Emission Measurement Data (Con't)

Radiated emission

pursuant to

the requirement of FCC Part 15 subpart C

Recorded value	
26	°C
60	%
2	ecorded value 26 60

Detector: Quasi-peak RBW: 120kHz VBW: 300kHz

Testing frequency range: 9kHz to 25GHz Operation mode: Transmission

Frequency	Polarity	Reading	Antenna Factor	Field Strength	Limit at 3m	Margin
(MHZ)	(H/V)	at 3m	and Cable Loss (dB/m)	at 3m	$(dB\mu V/m)$	(dB)
		(ubµv)	(uD/III)	(ubµ v/III)		
#251.928	Н	18.5	15.4	33.9	46.0	- 12.1
288.006	Н	17.8	15.4	33.2	46.0	- 12.8
#324.003	Н	18.4	16.8	35.2	46.0	- 10.8
360.011	Н	17.1	16.8	33.9	46.0	- 12.1
397.006	Н	18.1	16.8	34.9	46.0	- 11.1
475.020	Н	20.6	20.6	41.2	46.0	- 4.8
502.006	Н	20.5	22.2	42.7	46.0	- 3.3

Remark: Other emissions more than 20dB below the limit are not reported.

FCC ID: 2ACS618RX

Page 14 of 61

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

MA

CMA Testing and Certification Laboratories

廠商會檢定中心

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

2.3 Radiated Emission Measurement Data (Con't)

Radiated emission

pursuant to

the requirement of FCC Part 15 subpart B

Recorded value	
26	°C
60	%
2	ecorded value 26 60

Detector: Quasi-peak RBW: 120kHz VBW: 300kHz

Testing frequency range: 9kHz to 25GHz Operation mode: Receiving

Frequency	Polarity	Reading	Antenna Factor	Field Strength	Limit at 3m	Margin
(MHz)	(H/V)	at 3m	and Cable Loss	at 3m	$(dB\mu V/m)$	(dB)
		(dBµV)	(dB/m)	(dBµV/m)		
#149.982	Н	12.8	14.1	26.9	43.5	- 16.6
200.012	Н	15.2	12.0	27.2	43.5	- 16.3
#252.008	Н	15.8	15.4	31.2	46.0	- 14.8
288.011	Н	14.2	15.4	29.6	46.0	- 16.4
397.033	Н	15.7	16.8	32.5	46.0	- 13.5
425.020	Н	16.5	20.0	36.5	46.0	- 9.5
475.010	Н	21.9	20.0	41.9	46.0	- 4.1

Remark: Other emissions more than 20dB below the limit are not reported.

FCC ID: 2ACS618RX

Page 15 of 61

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

廠商會檢定中心

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

2.3 Radiated Emission Measurement Data (Con't)

Radiated emission

pursuant to

the requirement of FCC Part 15 subpart B

Recorded value	
26	°C
60	%
2	ecorded value 26 60

Detector: Quasi-peak RBW: 120kHz VBW: 300kHz

Testing frequency range: 9kHz to 25GHz Operation mode: Charging

Frequency	Polarity	Reading	Antenna Factor	Field Strength	Limit at 3m	Margin
(MHz)	(H/V)	at 3m	and Cable Loss	at 3m	(dBµV/m)	(dB)
		(dBµV)	(dB/m)	(dBµV/m)		
47.712	Н	6.3	12.8	19.1	40.0	- 20.9
93.857	Н	9.9	10.1	20.0	43.5	- 23.5
151.966	Н	7.1	14.1	21.2	43.5	- 22.3
218.126	Н	8.5	11.8	20.3	43.5	- 23.2
#251.155	Н	8.3	15.4	23.7	46.0	- 22.3
296.292	Н	8.5	15.4	23.9	46.0	- 22.1
#331.552	Н	8.4	16.8	25.2	46.0	- 20.8

Remark: Other emissions more than 20dB below the limit are not reported.

FCC ID: 2ACS618RX

Page 16 of 61

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

廠商會檢定中心

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

2.4 Data of Conducted Emission

Environmental conditions:	_	
Parameter	Recorded value	
Ambient temperature:	26	°C
Relative humidity:	60	%
	-	

Measurement: Peak RBW: 1MHz VBW: 3MHz

Mode: Self-develop control

_	Frequency (MHz)	Reading (dBm)	Reading (mW)	Limit (mW)	Margin (mW)
	2402.154	- 5.00	0.316	1000.0	- 999.684
	2433.099	- 4.87	0.326	1000.0	- 999.674
	2475.154	- 4.78	0.333	1000.0	- 999.667

Mode: 802.11b

2412.050	1.89	1.545	398.1	- 396.555
2437.050	1.51	1.416	398.1	- 396.684
2462.100	1.19	1.315	398.1	- 396.785

Mode: 802.11g

2415.596	0.92	1.236	398.1	- 396.864
2440.696	0.62	1.154	398.1	- 396.946
2465.596	- 0.26	0.942	398.1	- 397.158

Remark:

Antenna gain for WiFi: 12dBi

The antenna gain of the WiFi of the EUT is greater than 6dBi. Following 15.247(c), the total conducted output power shall be reduced by 1 dB below the specified limits for each 3dB. Therefore the total conducted output power shall be reduced by 4dB.

1W = 30dBm, thus the limit is reduced to dB due to antenna gain is greater than 6dBi. 26dBm = 398.1mW

FCC ID: 2ACS618RX

Page 17 of 61

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

3 Description of the Line-conducted Test

3.1 Test Procedure

Conducted emissions measurements are investigated and also taken pursuant to the procedures of ANSI C63.10 - 2013. The EUT was setup as described in the procedures, and both lines were measured.

3.2 Test Result

The EUT connected to an adaptor for charging

3.3 Graph and Table of Conducted Emission Measurement Data

The plots in Appendices A6 show the graph and data of conducted emission.

FCC ID: 2ACS618RX

Page 18 of 61

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

4 Photograph

4.1 Photographs of the Test Setup for Radiated Emission and Conducted Emission

For electronic filing, the photos are saved with filename 2ACS618RX TSup.pdf.

4.2 Photographs of the External and Internal Configurations of the EUT

For electronic filing, the photos are saved with filename 2ACS618RX ExPho.pdf and 2ACS618RX InPho.pdf.

FCC ID: 2ACS618RX

Page 19 of 61

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

> CMA Industrial Development Foundation Limited Room 1302, Yan Hing Centre, 9-13 Wong Chuk Yeung St., Fo Tan, Shatin, N.T., Hong Kong.

Tel: (852) 2698 8198 Fax: (852) 2695 4177 E-mail: info@cmatcl.com Web Site: http://www.cmatcl.com

廠商會檢定中心

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

5 Supplementary document

The following document were submitted by applicant, and for electronic filing, the document are saved with the following filenames:

Document	Filename
ID Label/Location	LabelSmp.jpg
Block Diagram	BlkDia.pdf
Schematic Diagram	Schem.pdf
Users Manual	UserMan.pdf
Operational Description	OpDes.pdf

5.1 Bandwidth

The plot in Appendices A7 shows the band edge is fulfil 15.205 restricted band, 15.247(d) requirement.

The plot in Appendices A8 shows the 6dB bandwidth has minimum 500kHz for frequency channel 2402MHz, 2433MHz and 2475MHz. It fulfils the section 15.247(a)(2) requirement.

The plot in Appendices A8 shows the 6dB bandwidth has minimum 500kHz for frequency channel 2412MHz, 2437MHz and 2462MHz. It fulfils the section 15.247(a)(2) requirement.

5.2 **Power Spectral Density**

The plot in Appendices A9 shows the frequency channel 2402MHz, 2433MHz and 2475MHz were not excess 8dBm for 3kHz bandwidth. It fulfils the section 15.247(e) requirement.

The plot in Appendices A9 shows the frequency channel 2412MHz, 2437MHz and 2462MHz were not excess 8dBm for 3kHz bandwidth. It fulfils the section 15.247(e) requirement.

5.3 Antenna requirement

Appendices A4 shows the antenna is permanently attached and cannot be changed. Therefore it fulfils the section 15.203 requirement

FCC ID: 2ACS618RX

Page 20 of 61

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing

廠商會檢定中心

TEST REPORT

Repo	rt No.	: AU0050957(4)		Date :	29 Aug 2016
6 Appe		Appendices			
	A1	Photos of the set-up of Radiated Emissions	3	pages	
	A2 Photos of the set-up of Conducted Emis		1	pages	
	A3	Photos of External Configurations	4	pages	
	A4	Photos of Internal Configurations	5	pages	
	A5	ID Label/Location	1	page	
	A6	Conducted Emission Measurement Data	2	pages	
	A7	Band Edge	6	pages	
	A8	6dB Bandwidth Plot	6	pages	
	A9	Power Spectral Density	6	pages	
	A10	Transmission Power	6	pages	

FCC ID: 2ACS618RX

Page 21 of 61

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

TEST REPORT

Report No. :

AU0050957(4)

Date : 29 Aug 2016

A1. Photos of the set-up of Radiated Emissions

30Hz - 1GHz

9kHz - 30MHz

Tested by:

JON Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 22 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing.

TEST REPORT

Report No.

AU0050957(4)

:

Date : 29 Aug 2016

A1. Photos of the set-up of Radiated Emissions

1GHz-25GHz

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 23 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

TEST REPORT

Report No. :

AU0050957(4)

Date : 29 Aug 2016

A1. Photos of the set-up of Radiated Emissions

(Front view, charging)

(Back view, charging)

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 24 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

TEST REPORT

Report No. :

AU0050957(4)

Date: 29

29 Aug 2016

A2. Photos of the set-up of Conducted Emissions

(Front view)

(Side view)

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 25 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing.

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

A3 Photos of External Configurations

External Configuration 1

External Configuration 2

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 26 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

TEST REPORT

Report No. : AU

AU0050957(4)

A3

Date : 29 Aug 2016

Photos of External Configurations

External Configuration 3

External Configuration 4

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 27 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing.

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

A3 Photos of External Configurations

External Configuration 5

External Configuration 6

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 28 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

TEST REPORT

Report No. : AU

AU0050957(4)

Date : 29 Aug 2016

A3 Photos of External Configurations

External Configuration 7

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 29 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

A4 Photos of Internal Configurations

Internal Configuration 1

Internal Configuration 2

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 30 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

A4 Photos of Internal Configurations

Internal Configuration 3

Internal Configuration 4

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 31 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

A4 Photos of Internal Configurations

Internal Configuration 5

Internal Configuration 6

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 32 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

A4 Photos of Internal Configurations

Internal Configuration 7

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 33 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

TEST REPORT

Report No. : AU0050957(4)

Date : 29 Aug 2016

A4 Photos of Internal Configurations

EUT antenna 1 (Self-develop RF module)

EUT antenna 2 (WiFi)

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 34 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing

廠商會檢定中心

TEST REPORT

Report No.

AU0050957(4)

:

Date :

29 Aug 2016

A5 ID Label / Location

ID Label 1

ID Label2

Tested by:

JON Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 35 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited

TEST REPORT

MA

Report No.

AU0050957(4)

:

Date :

29 Aug 2016

A6 Conducted Emission Measurement Date

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 36 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

廠商會檢定中心

TEST REPORT

Report No. AU0050957(4) :

Date :

29 Aug 2016

A6 Conducted Emission Measurement Date

	EDIT	PEAK LIST (Final	Measurement Resul	ts)				
Tra	cel:	FCC-QP						
Trace2:		FCC-AV						
Tra	ce3:							
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB				
1	Quasi Peak	154.5 kHz	41.80 N gnd	-23.95				
2	Average	177 kHz	33.32 N gnd	-21.30				
1	Quasi Peak	271.5 kHz	40.68 N gnd	-20.39				
2	Average	271.5 kHz	27.99 N gnd	-23.08				
1	Quasi Peak	438 kHz	36.40 N gnd	-20.69				
2	Average	585.5 kHz	33.46 N gnd	-12.53				
1	Quasi Peak	873.5 kHz	30.58 N gnd	-25.41				
2	Average	1.166 MHz	29.92 N gnd	-16.08				
1	Quasi Peak	1.7375 MHz	33.20 L1 gnd	-22.79				
2	Average	1.8815 MHz	24.97 N gnd	-21.02				
1	Quasi Peak	2.318 MHz	32.21 L1 gnd	-23.78				
2	Average	2.3315 MHz	24.67 N gnd	-21.33				
2	Average	4.0685 MHz	21.64 N gnd	-24.35				
1	Quasi Peak	4.3745 MHz	26.84 N gnd	-29.15				
1	Quasi Peak	9.1085 MHz	30.03 N gnd	-29.96				
2	Average	10.1795 MHz	20.66 L1 gnd	-29.33				
2	Average	17.447 MHz	36.32 N gnd	-13.67				
1	Quasi Peak	17.51 MHz	48.79 N gnd	-11.20				
2	Average	17.663 MHz	36.92 N gnd	-13.07				
1	Quasi Peak	18.0185 MHz	48.64 N gnd	-11.35				

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 37 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

廠商會檢定中心

:

TEST REPORT

Report No.

AU0050957(4)

Date :

29 Aug 2016

A7. Band Edge

Self-develop RF lower edge (Peak measurement)

Self-develop RF lower edge (Average measurement)

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 38 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

廠商會檢定中心

:

TEST REPORT

Report No.

AU0050957(4)

Date :

29 Aug 2016

A7. Band Edge

802.11b lower edge (Peak measurement)

802.11b lower edge (Average measurement)

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 39 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

廠商會檢定中心

:

TEST REPORT

Report No.

AU0050957(4)

Date :

29 Aug 2016

A7. Band Edge

802.11g lower edge (Peak measurement)

802.11g lower edge (Average measurement)

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 40 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited

廠商會檢定中心

:

TEST REPORT

Report No.

AU0050957(4)

Date :

29 Aug 2016

A7. Band Edge

Self-develop RF higher edge (Peak measurement)

TDF	0 d8 🖷 S	WT 50 s 🖷 VBW	10 Hz Mode Au	to Sweep	
∋1Pk Max	1		1001-03		
90 dBµV/m			M2[1]		18.68 dBµV/r 2.4835000 GH 34.48 dBµV/r
80 dBµV/m			1	1 1	2.4748390 GH
70 dBµV/m-	-				
60 dBµV/m-					
50 dBµV/m					
40 dBµV/m				_	
30 dBµV/m					
29 dBµV/m	<u> </u>	M2		~	
10 dBµV/m-					
0 dBµV/m-	1				
Start 2.472 GH	z	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	1001 pts	36	Stop 2.5 GHz

Self-develop RF higher edge (Average measurement)

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by: P-R

Mr. WONG Lap-pong, Andrew

Page 41 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited

廠商會檢定中心

TEST REPORT

Report No.

AU0050957(4)

:

Date :

29 Aug 2016

A7. Band Edge

802.11b higher edge (Peak measurement)

802.11b higher edge (Average measurement)

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 42 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

廠商會檢定中心

TEST REPORT

Report No.

AU0050957(4)

:

Date :

29 Aug 2016

A7. Band Edge

802.11g higher edge (Peak measurement)

802.11g higher edge (Average measurement)

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 43 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

廠商會檢定中心

:

TEST REPORT

Report No.

AU0050957(4)

Date :

29 Aug 2016

Spectrum RefLevel 97.00 Att µV/m **● RBW** 100 kHz 0 dB **● SWT** 100 ms **● VBW** 300 kHz Mode Auto Sweep TD ●1Pk Ma M1[1] 90 dBµV ndB 30 dBuV 591.40 Q facto M1 50 dBuV 50 dBµV 40 dBuN 30 dBuV. 20 dBuW 10 dB 1001 pt: 2.0 MH CF 2.402 GH larke Type | Ref | Trc Function Stimulu Response ..4 kHz 6.00 dB 4061.3 2.4019121 2.4015924 2.4021838 63.64 ndi Q facto

A8. 6dB Bandwidth Plot

Self-develop RF lower channel

		0.10	WEW 100 KH2	2012/01/02/22		
Att		0 dB 👄 SWT 100 ms	😁 VBW 300 kHz	Mode Auto S	weep	
1Pk Max						
		1 1		M1[1]	68.	29 dBµV/r
90 dBµV/m-					2,432	291810 GH
				ndB		6.00 d
80 dBµV/m-				BW	599.400	300000 kH
70 dBustles			M1	Qfactor	1 1	4058.
/o upp//ill		T		~_13		
60 dBuV/m				- all		
5-5-2-5- MON				1		
50 dBµV/m	1					+
	and the second s				No.	
40-dBpV/m-					Construction of the second sec	The second
00.00.00						- Stephen
30 gBhA/w-						
20 dBi (V/m						
20 00014/11						
10 dBµV/m-						
0 d8µV/m				6		-
CF 2.433 GHz			1001 pt	5	Spa	m 2.0 MHz
Marker						
Type Ref	[rc	Stimulus	Response	Function	Function Result	Ł
M1	1	2.4329181 GHz	68.29 dBµV/m	ndB down		599.4 kHz
T2	1	2.4325904 GHZ	62.36 dBuV/m	0 factor		4058.9
		211002050 012	ocros appayin	2 Idetor		

Self-develop RF middle channel

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 44 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

廠商會檢定中心

:

TD ●1Pk Ma

TEST REPORT

Report No.

AU0050957(4)

A8.

Date :

29 Aug 2016

Spectrum RefLevel 97.0 Att µV/m **● RBW** 100 kHz 0 dB **● SWT** 100 ms **● VBW** 300 kHz Mode Auto Sweep

6dB Bandwidth Plot

90 dBµV/m- 80 dBµV/m-			MI	ndB Bw O factor	2.47491410 GH 6.00 dl 611.400000000 kH 4048.
70 dBµV/m-		TICO		- TR	1 1 1
60 dBµV/m-				-	
50 dBµV/m-				~	
40 dBµV/m	-		-		
30 dBµV/m-			_		
20 dBµV/m-					
10 dBµV/m-					
0 d8µV/m-					
CF 2.475 G	Hz		1001 pt:		Span 2.0 MHz
Marker					
Type Ref	Trc	Stimulus	Response	Function	Function Result
M1	1	2.4749141 GHz	69.31 dBµV/m	ndB down	611.4 kHz
T1	1	2.4745884 GHz	63.35 dBµV/m	ndB	6.00 dB
T2	1	2.4751998 GHz	63.21 dBµV/m	Q factor	4048.0
	T		11	Measuring	

Self-develop RF higher channel

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 45 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing

廠商會檢定中心

:

TEST REPORT

Report No.

AU0050957(4)

Date :

29 Aug 2016

A8. 6dB Bandwidth Plot

802.11b CH1

802.11b CH6

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by: P.R

Mr. WONG Lap-pong, Andrew

Page 46 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

廠商會檢定中心

:

TEST REPORT

Report No.

AU0050957(4)

Date : 2

29 Aug 2016

A8. 6dB Bandwidth Plot

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by: P.C.

Mr. WONG Lap-pong, Andrew

Page 47 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com. This document shall not be reproduced except in full or with written approval by CMA Testing

廠商會檢定中心

:

<u>TEST REPORT</u>

Report No.

AU0050957(4)

Date :

29 Aug 2016

A8. 6dB Bandwidth Plot

802.11g CH1

802.11g CH6

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 48 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

廠商會檢定中心

:

TEST REPORT

Report No.

AU0050957(4)

Date :

29 Aug 2016

A8. 6dB Bandwidth Plot

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 49 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com. This document shall not be reproduced except in full or with written approval by CMA Testing

廠商會檢定中心

:

TEST REPORT

Report No.

AU0050957(4)

Date :

29 Aug 2016

A9. Power Spectral Density

Self-develop RF middle channel

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 50 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

廠商會檢定中心

:

TEST REPORT

Report No.

AU0050957(4)

Date :

29 Aug 2016

A9. Power Spectral Density

Self-develop RF higher channel

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 51 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com. This document shall not be reproduced except in full or with written approval by CMA Testing

廠商會檢定中心

:

TEST REPORT

Report No.

AU0050957(4)

Date :

29 Aug 2016

A9. Power Spectral Density

802.11b CH6

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by: P-R

Mr. WONG Lap-pong, Andrew

Page 52 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com. This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited

廠商會檢定中心 **T** - - - - -

TEST REPORT

Report No.

AU0050957(4)

:

Date :

29 Aug 2016

A9. Power Spectral Density

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by: P.C.

Mr. WONG Lap-pong, Andrew

Page 53 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com. This document shall not be reproduced except in full or with written approval by CMA Testing

廠商會檢定中心

:

TEST REPORT

Report No.

AU0050957(4)

Date :

29 Aug 2016

A9. Power Spectral Density

802.11g CH6

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 54 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited

廠商會檢定中心

:

TEST REPORT

Report No.

AU0050957(4)

Date :

29 Aug 2016

A9. Power Spectral Density

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by: P.C.

Mr. WONG Lap-pong, Andrew

Page 55 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com. This document shall not be reproduced except in full or with written approval by CMA Testing

廠商會檢定中心

:

TEST REPORT

Report No.

AU0050957(4)

Date :

29 Aug 2016

A10. Transmission Power

Self-develop RF middle channel

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 56 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

廠商會檢定中心

:

TEST REPORT

Report No.

AU0050957(4)

Date :

29 Aug 2016

A10. Transmission Power

Self-develop RF higher channel

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 57 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com. This document shall not be reproduced except in full or with written approval by CMA Testing

廠商會檢定中心

:

TEST REPORT

Report No.

AU0050957(4)

Date :

29 Aug 2016

A10. Transmission Power

802.11b CH6

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 58 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited

TEST REPORT

Report No.

AU0050957(4)

:

Date :

29 Aug 2016

A10. Transmission Power

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by: P.C.

Mr. WONG Lap-pong, Andrew

Page 59 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

廠商會檢定中心

:

TEST REPORT

Report No.

AU0050957(4)

Date :

29 Aug 2016

A10. Transmission Power

802.11g CH6

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 60 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited

TEST REPORT

Report No.

AU0050957(4)

:

Date :

29 Aug 2016

A10. Transmission Power

***** End of Report *****

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 61 of 61

FCC ID: 2ACS618RX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com. This document shall not be reproduced except in full or with written approval by CMA Testing