

廠商會檢定中心

TEST REPORT

Report No.	:	AU0050510(0)		Date :	25 Aug 2016			
Application No.	:	LU027789(0)						
Applicant	:	Zego Electronic Company Limited Room 703, Kowloon Building, 555 Nathan Road, Kowloon, HK						
Sample Description	:	One(1) item of submitted of Model No. <u>2770422</u> Sample registration No. Radio Frequency Rating No. of submitted sample	sample stated to be : RU036405-001 : 2402MHz – 2475 : 2 x 1.5V AAA siz : Two (2) set (s)	<u>Controller o</u> MHz Transc ze batteries	<u>f DIY Drone</u> eiver			
Date Received	:	08 Aug 2016						
Test Period	:	15 Aug 2016 to 19 Aug 20	016					
Test Requested	:	FCC Part 15 Certification, FCC Part 15 Verification Procedure						
Test Method	:	47 CFR Part 15 (10-1-15 Edition) ANSI C63.4 – 2014, ANSI C63.10 – 2013						
Test Engineer	:	Mr. LEUNG Shu-kan, Ke	n					
Test Result	:	See attached sheet(s) from	n page 2 to 28.					
Conclusion	:	The submitted sample was Subpart B and C.	s found to comply w	vith requirem	ent of FCC Part 15			

For and on behalf of CMA Industrial Development Foundation Limited

Authorized Signature : Page 1 of 28 Mr. WONG Lap-pong Andrew Manager Electrical Division FCC ID: 2ACS617TX

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited Room 1302, Yan Hing Centre, 9-13 Wong Chuk Yeung St., Fo Tan, Shatin, N.T., Hong Kong. Tel: (852) 2698 8198 Fax: (852) 2695 4177 E-mail: info@cmatcl.com Web Site: http://www.cmatcl.com

TEST REPORT

Report No. : AU0050510(0)

Date : 25 .

25 Aug 2016

Table of Contents

1 Ge	eneral Information	
1.1	General Description	
1.2	Location of the test site	
1.3	List of measuring equipment	5
1.4	Measurement Uncertainty	6
2 De	escription of the radiated emission test	7
2.1	Test Procedure	7
2.2	Test Result	
2.3	Radiated Emission Measurement Data	9
3 De	escription of the Line-conducted Test	
3.1	Test Procedure	
3.2	Test Result	
3.3	Graph and Table of Conducted Emission Measurement Data	
4 Ph	otograph	
4.1	Photographs of the Test Setup for Radiated Emission and Conducted Emission	
4.2	Photographs of the External and Internal Configurations of the EUT	
5 Su	pplementary document	
5.1	Bandwidth	
5.2	Antenna requirement	
6 Ap	ppendices	

FCC ID: 2ACS617TX

Page 2 of 28

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

廠商會檢定中心

TEST REPORT

Report No. : AU0050510(0)

Date : 25 Aug 2016

1 General Information

1.1 General Description

The equipment under test (EUT) is a controller for Ninja Drone. The EUT is power by 2 x 1.5V AAA size batteries. It operates at 2402MHz – 2475MHz. There are buttons and joysticks on the EUT. When the buttons are pressed or the joysticks are moved, the EUT will transmit radio control signal to receiver.

The brief circuit description is listed as follows:

- U2	and its associated circuit act as MCU
- U1 (module)	and its associated circuit act as RF circuit
- Q2	and its associated circuit act as power supply circuit
- Y1	and its associated circuit act as oscillator
- S1, S2, S5, S6, S7, S8, VR1,	and its associated circuit act as copter control
VR2	_

FCC ID: 2ACS617TX

Page 3 of 28

This document is issued subject to the latest CMA Testing General Tenns and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited

TEST REPORT

Report No. : AU0050510(0)

Date : 25 Aug 2016

1.2 Location of the test site

FCC Registered Test Site Number: 552221

Radiated emissions measurements are investigated and taken pursuant to the procedures of ANSI C63.10 – 2013. A Semi-Anechoic Chamber Testing Site is set up for investigation and located at:

Ground Floor, Yan Hing Centre, 9 – 13 Wong Chuk Yeung Street, Fo Tan, Shatin, New Territories, Hong Kong.

Conducted emissions measurements are investigated and also taken pursuant to the procedures of ANSI C63.10 - 2013. A shielded room is located at :

Ground Floor, Yan Hing Centre, 9 – 13 Wong Chuk Yeung Street, Fo Tan, Shatin, New Territories, Hong Kong.

FCC ID: 2ACS617TX

Page 4 of 28

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing

> CMA Industrial Development Foundation Limited Room 1302, Yan Hing Centre, 9-13 Wong Chuk Yeung St., Fo Tan, Shatin, N.T., Hong Kong.

Tel: (852) 2698 8198 Fax: (852) 2695 4177 E-mail: info@cmatcl.com Web Site: http://www.cmatcl.com

廠商會檢定中心

TEST REPORT

Report No. : AU0050510(0)

Date : 25 A

25 Aug 2016

1.3 List of measuring equipment

Equipment	Manufacturer	Model No.	Serial No.	Calibration Due Date	Calibration Period
EMI Test Receiver	R&S	ESCI	100152	27 Sep 2016	1Year
Spectrum Analyzer	R&S	FSV40	100628	09 Feb 2017	1Year
Broadband Antenna	Schaffner	CBL6112B	2718	15 Mar 2017	2Years
Loop Antenna	EMCO	6502	00056620	25 Jan 2018	2Years
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-531	24 Nov 2016	2Years
Broadband Pre-Amplifier	Schwarzbeck	BBV 9718	9718-119	24 Nov 2016	2Years
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170442	02 Aug 2017	2Years
Broadband Pre-Amplifier	Schwarzbeck	BBV 9719	9719-010	02 Aug 2017	2Years
Coaxial Cable	Schaffner	RG 213/U	N/A	18 May 2017	1Years
Coaxial Cable	Suhner	RG 214/U	N/A	18 May 2017	1Years
Coaxial Cable	Suhner	Sucoflex_104	N/A	13 Dec 2016	1Years

FCC ID: 2ACS617TX

Page 5 of 28

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

廠商會檢定中心

TEST REPORT

Report No. : AU0050510(0)

Date : 25 Aug 2016

1.4 Measurement Uncertainty

The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%.

Radiated emissions						
Frequency	Uncertainty (U _{lab})					
30MHz ~ 200MHz (Horizontal)	4.83dB					
30MHz ~ 200MHz (Vertical)	4.84dB					
200MHz ~1000MHz (Horizontal)	4.87dB					
200MHz ~1000MHz (Vertical)	5.94dB					
1GHz ~6GHz	4.41dB					
6GHz ~18GHz	4.64dB					

Conducted emissions

Frequency	Uncertainty (U _{lab})	
150kHz~30MHz	2.64dB	

FCC ID: 2ACS617TX

Page 6 of 28

This document is issued subject to the latest CMA Testing General Tenns and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited

TEST REPORT

Report No. : AU0050510(0)

Date : 25 Aug 2016

2 Description of the radiated emission test

2.1 Test Procedure

Radiated emissions measurements are investigated and taken pursuant to the procedures of ANSI C63.10 - 2013.

The equipment under test (EUT) was placed on a non-conductive turntable with dimensions of 1.5m x 1m and 0.8m high above the ground. 3m from the EUT, a broadband antenna mounting on the mast received the signal strength. The turntable was rotated to maximize the emission level. The antenna was then moving along the mast from 1m up to 4m until no more higher value was found. Both horizontal and vertical polarization of the antenna were placed and investigated.

For below 30MHz, a loop antenna with its vertical plane is placed 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1 m above the ground.

For 30MHz to 1GHz, broadband antenna with its vertical and horizontal plane is placed 3m from the EUT and rotated about its vertical and horizontal axis for maximum response at each azimuth about the EUT. And the reference point of antenna shall be 1 m above the ground.

For above 1GHz, horn antenna with its vertical and horizontal plane is placed 3m from the EUT and rotated about its vertical and horizontal axis for maximum response at each azimuth about the EUT. Preamplifier and High Pass filter was used for measurements. The reference point of antenna shall be 1 m above the ground.

The device was rotated through three orthogonal to determine which attitude and configuration produce the highest emission during measurement for Radiated Emission measurement.

FCC ID: 2ACS617TX

Page 7 of 28

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing.

> CMA Industrial Development Foundation Limited Room 1302, Yan Hing Centre, 9-13 Wong Chuk Yeung St., Fo Tan, Shatin, N.T., Hong Kong. Tel: (852) 2698 8198 Fax: (852) 2695 4177 E-mail: info@cmatcl.com Web Site: http://www.cmatcl.com

TEST REPORT

Report No. : AU0050510(0)

Date : 25 Aug 2016

2.2 Test Result

Subpart C:

Peak Detector data were measured unless otherwise stated.

"#" means emissions appear within the restricted bands shall follow the requirement of section 15.205.

The Frequencies from fundamental up to tenth harmonics were investigated, and emissions more 20dB below limited were not reported. Thus, those higher emissions were presented in next page (section 2.3).

Subpart B:

Quasi-Peak Detector data were measured unless otherwise stated.

"#" means emissions appear within the restricted bands shall follow the requirement of section 15.205.

The emissions meet the requirement of section 15.109 are based on measurements employing the CISPR quasi-peak detector below 1000MHz and average detector for frequencies above 1000MHz.

The frequencies from 30MHz to 1000MHz were investigated, and emissions more 20dB below limit were not reported. Thus, those highest emissions were presented in next page (section 2.3).

It was found that the EUT meet the FCC requirement.

FCC ID: 2ACS617TX

Page 8 of 28

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing

> CMA Industrial Development Foundation Limited Room 1302, Yan Hing Centre, 9-13 Wong Chuk Yeung St., Fo Tan, Shatin, N.T., Hong Kong. Tel: (852) 2698 8198 Fax: (852) 2695 4177 E-mail: info@cmatcl.com Web Site: http://www.cmatcl.com

TEST REPORT

Report No. : AU0050510(0)

Date : 25 Aug 2016

2.3 Radiated Emission Measurement Data

Radiated emission

pursuant to

the requirement of FCC Part 15 subpart C

Environmental conditions: Parameter Recorded value

26	°C
75	%
	26 75

Measurement: Peak RBW: 1MHz VBW: 3MHz Operation mode: Transmission Testing frequency range: 9kHz to 25GHz

Frequency (MHz)	Polarity (H/V)	Reading at 3m (dBµV)	Transducer Factor (dB/m)	Field Strength at 3m (dBµV/m)	Limit at 3m (dBµV/m)	Margin (dB)
2402.161	Н	98.4	- 4.2	94.2	114.0	- 19.8
#4803.918	Н	52.7	3.7	56.4	74.0	- 17.6
7205.242	V	48.8	11.5	60.3	74.0	- 13.7
7206.599	Н	50.8	11.5	62.3	74.0	- 11.7
	-					
2432.678	Н	96.9	- 4.2	92.7	114.0	- 21.3
#4865.808	Н	53.7	3.7	57.4	74.0	- 16.6
#7299.588	Н	50.9	11.5	62.4	74.0	- 11.6
#7299.590	V	49.3	11.5	60.8	74.0	- 13.2
	-					
2475.175	Н	99.1	- 4.3	94.8	114.0	- 19.2
#4949.885	Н	52.9	4.0	56.9	74.0	- 17.1
#7424.099	Н	49.5	11.5	61.0	74.0	- 13.0
#7425.584	V	50.0	11.5	61.5	74.0	- 12.5

Remark: Other emissions more than 20dB below the limit are not reported.

FCC ID: 2ACS617TX

Page 9 of 28

This document is issued subject to the latest CMA Testing General Tenns and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited

TEST REPORT

Report No. : AU0050510(0)

Date : 25 Aug 2016

2.3 Radiated Emission Measurement Data (Con't)

Radiated emission

pursuant to

the requirement of FCC Part 15 subpart C

Environmental conditions:	_	
Parameter	Recorded value	
Ambient temperature:	26	°C
Relative humidity:	75	%

Measurement: Average RBW: 1MHz VBW: 10Hz Operation mode: Transmission Testing frequency range: 9kHz to 25GHz

Frequency (MHz)	Polarity (H/V)	Reading at 3m (dBµV)	Transducer Factor (dB/m)	Field Strength at 3m (dBµV/m)	Limit at 3m (dBµV/m)	Margin (dB)
2401.882	Н	30.3	- 4.2	26.1	94.0	- 67.9
#4803.878	Н	24.7	3.7	28.4	54.0	- 25.6
7205.753	V	21.6	11.5	33.1	54.0	- 20.9
7205.778	Н	21.8	11.5	33.3	54.0	- 20.7
	•	•		•	•	
2432.900	Н	30.4	- 4.2	26.2	94.0	- 67.8
#4865.818	Н	24.3	3.7	28.0	54.0	- 26.0
#7298.237	V	22.1	11.5	33.6	54.0	- 20.4
#7298.816	Н	22.5	11.5	34.0	54.0	- 20.0
	-			-		
2475.750	Н	30.3	- 4.3	26.0	94.0	- 68.0
#4949.795	Н	24.1	4.0	28.1	54.0	- 25.9
#7424.155	Н	22.2	11.5	33.7	54.0	- 20.3
#7424.734	V	22.2	11.5	33.7	54.0	- 20.3

Remark: Other emissions more than 20dB below the limit are not reported.

FCC ID: 2ACS617TX

Page 10 of 28

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited

Clinical Cli

CMA Testing and Certification Laboratories

廠商會檢定中心

TEST REPORT

Report No. : AU0050510(0)

Date : 25 Aug 2016

2.3 Radiated Emission Measurement Data (Con't)

Radiated emission

pursuant to

the requirement of FCC Part 15 subpart C

Environmental conditions:	_	
Parameter	Recorded value	
Ambient temperature:	26	° C
Relative humidity:	75	%

Detector: Quasi-peak RBW: 120kHz VBW: 300kHz

Testing frequency range: 9kHz to 25GHz Operation mode: Transmission

Frequency	Polarity	Reading	Antenna Factor	Field Strength	Limit at 3m	Margin
(MHz)	(H/V)	at 3m	and Cable Loss	at 3m	(dBµV/m)	(dB)
		(dBµV)	(dB/m)	(dBµV/m)		
51.955	Н	6.1	10.6	16.7	40.0	- 23.3
83.413	Н	9.0	8.5	17.5	40.0	- 22.5
113.980	Н	9.8	12.2	22.0	43.5	- 21.5
157.722	Н	6.3	14.1	20.4	43.5	- 23.1
195.886	Н	10.2	11.2	21.4	43.5	- 22.1
235.659	Н	8.7	13.2	21.9	46.0	- 24.1
254.275	Н	8.7	15.4	24.1	46.0	- 21.9

Remark: Other emissions more than 20dB below the limit are not reported.

FCC ID: 2ACS617TX

Page 11 of 28

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com. This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

CMA and C Labor

CMA Testing and Certification Laboratories

廠商會檢定中心

TEST REPORT

Report No. : AU0050510(0)

Date : 25 Aug 2016

2.3 Radiated Emission Measurement Data (Con't)

Radiated emission

pursuant to

the requirement of FCC Part 15 subpart B

Environmental conditions:	_	
Parameter	Recorded value	
Ambient temperature:	26	°C
Relative humidity:	75	%

Detector: Quasi-peak RBW: 120kHz VBW: 300kHz

Testing frequency range: 9kHz to 25GHz Operation mode: Receiving

Frequency	Polarity	Reading	Antenna Factor	Field Strength	Limit at 3m	Margin
(MHz)	(H/V)	at 3m	and Cable Loss	at 3m	(dBµV/m)	(dB)
		(dBµV)	(dB/m)	(dBµV/m)		
72.730	Н	10.4	8.0	18.4	40.0	- 21.6
126.860	Н	8.7	14.4	23.1	43.5	- 20.4
174.541	Н	7.7	11.9	19.6	43.5	- 23.9
208.452	Н	8.4	12.0	20.4	43.5	- 23.1
270.232	Н	8.3	15.4	23.7	46.0	- 22.3
314.270	Н	8.3	16.8	25.1	46.0	- 20.9
345.660	Н	9.6	16.8	26.4	46.0	- 19.6

Remark: Other emissions more than 20dB below the limit are not reported.

FCC ID: 2ACS617TX

Page 12 of 28

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com. This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

Report No. : AU0050510(0)

Date : 25 Aug 2016

3 Description of the Line-conducted Test

3.1 Test Procedure

Conducted emissions measurements are investigated and also taken pursuant to the procedures of ANSI C63.10 - 2013. The EUT was setup as described in the procedures, and both lines were measured.

3.2 Test Result

No measurement is required as the EUT is a battery-operated product.

3.3 Graph and Table of Conducted Emission Measurement Data

Not Applicable

FCC ID: 2ACS617TX

Page 13 of 28

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing.

> CMA Industrial Development Foundation Limited Room 1302, Yan Hing Centre, 9-13 Wong Chuk Yeung St., Fo Tan, Shatin, N.T., Hong Kong. Tel: (852) 2698 8198 Fax: (852) 2695 4177 E-mail: info@cmatcl.com Web Site: http://www.cmatcl.com

TEST REPORT

Report No. : AU0050510(0)

Date : 25 Aug 2016

4 Photograph

4.1 Photographs of the Test Setup for Radiated Emission and Conducted Emission

For electronic filing, the photos are saved with filename 2ACS617TX TSup.pdf.

4.2 Photographs of the External and Internal Configurations of the EUT

For electronic filing, the photos are saved with filename 2ACS617TX ExPho.pdf and 2ACS617TX InPho.pdf.

FCC ID: 2ACS617TX

Page 14 of 28

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing.

> CMA Industrial Development Foundation Limited Room 1302, Yan Hing Centre, 9-13 Wong Chuk Yeung St., Fo Tan, Shatin, N.T., Hong Kong.

Tel: (852) 2698 8198 Fax: (852) 2695 4177 E-mail: info@cmatcl.com Web Site: http://www.cmatcl.com

廠商會檢定中心

TEST REPORT

Report No. : AU0050510(0)

Date : 25 Aug 2016

5 Supplementary document

The following document were submitted by applicant, and for electronic filing, the document are saved with the following filenames:

Document	Filename
ID Label/Location	LabelSmp.jpg
Block Diagram	BlkDia.pdf
Schematic Diagram	Schem.pdf
Users Manual	UserMan.pdf
Operational Description	OpDes.pdf

5.1 Bandwidth

The plot in Appendices A6 shows the fundamental emission is confined in the specified band. It shows the 20dB bandwidth met the 15.215 requirement for frequency band 2400 to 2483.5 MHz.

The plot in Appendices A5 shows the band edge is fulfil 15.209 requirement.

5.2 Antenna requirement

Appendices A3 shows the antenna is permanently attached and cannot be changed. Therefore it fulfils the section 15.203 requirement

FCC ID: 2ACS617TX

Page 15 of 28

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing

> CMA Industrial Development Foundation Limited Room 1302, Yan Hing Centre, 9-13 Wong Chuk Yeung St., Fo Tan, Shatin, N.T., Hong Kong. Tel: (852) 2698 8198 Fax: (852) 2695 4177 E-mail: info@cmatcl.com Web Site: http://www.cmatcl.com

廠商會檢定中心

TEST REPORT

Repo	rt No.	: AU0050510(0)		Date :	25 Aug 2016
6	Арре	endices			
	A1	Photos of the set-up of Radiated Emissions	2	pages	
	A2	Photos of External Configurations	2	pages	
	A3	Photos of Internal Configurations	3	pages	
	A4	ID Label/Location	1	page	
	A5	Band Edge	2	pages	
	A6	20dB Bandwidth Plot	2	pages	

FCC ID: 2ACS617TX

Page 16 of 28

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited

TEST REPORT

Report No. AU0050510(0) :

Date : 25 Aug 2016

Photos of the set-up of Radiated Emissions A1.

30MHz - 1GHz

9KHz – 30MHz

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 17 of 28

TEST REPORT

Report No. :

AU0050510(0)

Date : 25 Aug 2016

Photos of the set-up of Radiated Emissions A1.

1GHz - 25GHz

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 18 of 28

TEST REPORT

Report No. AU0050510(0) :

Date : 25 Aug 2016

Photos of External Configuration A2.

External Configuration 1

External Configuration 2

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 19 of 28

TEST REPORT

Report No. AU0050510(0) :

Date :

25 Aug 2016

Photos of External Configuration A2.

External Configuration 3

External Configuration 4

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 20 of 28

TEST REPORT

Report No. AU0050510(0) :

Date : 25 Aug 2016

Photos of Internal Configuration A3.

Internal Configuration 1

Internal Configuration 2

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 21 of 28

TEST REPORT

Report No. AU0050510(0) :

Date :

25 Aug 2016

Photos of Internal Configuration A3.

Internal Configuration 3

Internal Configuration 4

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 22 of 28

TEST REPORT

Report No. : AU0050510(0)

Date : 25 Aug 2016

A3. Photos of Internal Configuration

EUT antenna

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by: P.C.

Mr. WONG Lap-pong, Andrew

Page 23 of 28

廠商會檢定中心

TEST REPORT

Report No. AU0050510(0) :

Date : 25 Aug 2016

ID Label/Location A4.

ID Label 1

ID Label 2

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 24 of 28

廠商會檢定中心

:

TEST REPORT

Report No.

AU0050510(0)

Date :

25 Aug 2016

Spectrum Spectrum 2 Ref Level 117. Att TDF Mode Auto Sweep 1Pk M M2[1] 75.07 d8µV/ 2.4000000 GF 110 dB M1[1] 94.25 dBµV/ 2.4022000 GH 100 dBµ 90 dBuV 80 dBuV 70 dBL 60 dBµ\ 50 dBuV/ archeld startes al dia 20 dBuV Stop Start 2.31 GH 1001 pts 2.405 GHz

A5. Band Edge

Lower edge (Peak measurement)

Ref Level 97	00 dBµV/m		😁 RE	W (CISP	 1 MHz 10 Hz 	No. d	Curren		
TDF	0 00	- 3WI 1	00 S 🖷 🕫	144	10 112	HOUE AULO	2weeh		
1Pk Max									
					N	12[1]		21.80 dBµV	
An ashAw		-	8		M1[1]			26.07 dBµV/r	
80 dBu//m						i.	i i	2.40	19160 GH
oo oop yym					3				
70 dBµV/m					-				
60 dBµV/m			-			-			
- 6 . 6									
50 dBµV/m									
40 dBuV/m									
is applyin									
30 dBµV/m						-			Mi
								_	M2
20 dBµV/m					-				
10 db V/m									
10 000//11									
0 dBµV/m						-			
Start 2.31 GHz	8			1001	pts	Ľ.	1 1	Stop 2	2.405 GHz
1					1	Measur	ing		

Lower edge (Average measurement)

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by: V.

Mr. WONG Lap-pong, Andrew

FCC ID: 2ACS617TX

Page 25 of 28

廠商會檢定中心

:

TEST REPORT

Report No.

AU0050510(0)

Date :

25 Aug 2016

A5. Band Edge

Upper edge (Peak measurement)

Ref Level 97	.00 dBµ∨/m		RBW (CIS	PR) 1 MHz						
TDF	0 dB	● SWT 50 s ●	VBW	10 Hz M	Mode Auto Sw	reep				
1Pk Max	-		(C)							
				N	M2[1]			19.38 dBµV/n		
An ashAlw				N	41[1]		26.00 dBt			
en deux/m						7	2.474	7830 GH		
do doprym			· ·							
70 dBµV/m				_						
10.100										
60 dBµV/m-			2	-	+ +					
50 dBµV/m			-							
10 10 11/1										
40 dBµV/m-										
30 dBuV/m			5		-					
1	-									
20 dBµV/m			N/2		-	-				
10 dBµV/m			2							
0 d0 d (m										
Start 2 472 CH	12	5	1	001 nts	1		Ston	2.5.042		
Store 21772 dr	-		1	oox pro	Managerela		otup	2.0 012		

Upper edge (Average measurement)

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by: V.

Mr. WONG Lap-pong, Andrew

FCC ID: 2ACS617TX

Page 26 of 28

廠商會檢定中心

TEST REPORT

Report No.

AU0050510(0)

:

Date : 25 Aug 2016

Spectrum Ref Level 107. Att Mode Auto Sweep TDF 1Pk M M1[1] 94.33 dBµV/r 2.40169030 GH 100 dB 20.00 d 90 dBuV. 1.28870 00 M 1863. 80 dBuly ah n 50 dBµʻ 50 dBµ\ 40 dBµ' 30 dBµ\ 20 dBuV/ CF 2.402 GHz 1001 pts Span 5.0 MHz 1ark Type Ref Trc Stimulus Response Function Function Result 2887 MHz 20.00 dB 1863.6 94.33 74.47 74.29 401300

A6. 20dB Bandwidth Plot

Bandwidth 1 (2402MHz)

Ref Level Att	107.00 di	ВµV/m 10 dB ⊜ SWT	100 m	 RBW 100 kH VBW 300 kH 	iz iz Mode Aut	o Sweep	
TDF						37	
100 dBµV/m-				M1	M1[1] ndB		92.69 dBµV/r 2.43268530 GH 20.00 d
90 dBµV/m-				- Common	BW		1,293700000 MH
80 dBµV/m-		-	T1/	~	V Tactu		1880.
70 dBµV/m-			and a		at a	misura	
60 dBµV/m	and the second days of the second days	and and		-		Jander	Verener
50 dBµV/m-							
40 dBµV/m-		-					
30 dBµV/m-				_			
20 dBµV/m-		2 10					
10 dBuV/m-							
CF 2.433 G	Ηz	· · ·		1001 pt	s		Span 5.0 MHz
Marker			14				
Type Ref	Trc	Stimulus		Response	Function	Fu	nction Result
M1	1	2.4326853 GHz		92.69 dBµV/m	ndB down	<u></u>	1.2937 MHz
11	1	2,4322957	GH2	72.87 dBµV/m	nd8		20.00 dB

Bandwidth 2 (2433MHz)

Reviewed by:

Tested by:

Mr. LEUNG Shu-kan, Ken

Mr. WONG Lap-pong, Andrew

Page 27 of 28

TEST REPORT

Report No.

AU0050510(0)

:

Date : 25 Aug 2016

Definuel	107 00 4	Duilling	DDW 300 k	L far		1.
Att	107.00 0		- KBW 100 K	Hz Mode Auto	Cureen	
TOF		10 00 - 3WI 100	115 - 4044 300 Ki	nz Moue Auto	oweeh	
1Pk Max						
			1	M1[1]		94.69 dBuV/n
100 dBµV/m-			1911			2.47468530 GH
			X	nd8		20.00 d
90 dBµV/m-			Jun	BW		1.313700000 MH
2012/2017/11/2017			m	Q factor		1883.
80 dBµV/m-		1	V	172	-	in the second
BOADT MOTO D 1450 A				Y		
70 dBµV/m-		proved	× *	must		
		road			www	
60 dBuV/m	and and a second second				1. And	torally the set of the
Provident of the second of the						
50 dBµV/m-					-	
40 dBµV/m-						
an dr. aller						
30 06µv/m						
20 dBu\//m-						1
Lo apprim						
10 dBuV/m-		<u></u>				
CF 2.475 G	Hz		1001 p	ts		Span 5.0 MHz
Marker						
Type Ref	Trc	Stimulus	Response	Function	Fund	tion Result
M1	1	2.4746853 GHz	94.69 dBµV/m	ndB down	110000	1.3137 MHz
T1	1	2.4742857 GHz	74.67 dBµV/m	ndB		20.00 dB
T2	1	2.4755994 GHz	74.77 dBµV/m	Q factor		1883.8

A6. **20dB Bandwidth Plot**

Bandwidth 3 (2475MHz)

***** End of Report *****

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 28 of 28