

CALIBRATION REPORT

F.1 E-Field Probe (EX3DV4-SN:7340)

TI	In Collaborat	e a g	中国认可国际互认
	CALIBRATIC	N LABORATORY	CALIBRATIO
Add: No.51 Xueyua Tel: +86-10-623046 E-mail: cttl@chinat	33-2218 Fax: +86	ct, Beijing, 100191, China 5-10-62304633-2209 ww.chinattl.cn	CNAS L0570
	intek		97002
CALIBRATION CE			
CALIBRATION	EKTIFICATE		
Object	EX3DV4	- SN:7340	
Calibration Procedure(s)	FF-Z11-0 Calibratio	04-01 on Procedures for Dosimetric E-field Probes	
Calibration date:	January	11, 2018	1000
measurements(SI). The mea pages and are part of the ce All calibrations have been	asurements and th rtificate.	aceability to national standards, which reali le uncertainties with confidence probability a e closed laboratory facility: environment t	re given on the following
humidity<70%. Calibration Equipment used	(M&TE critical for	calibration)	
Primary Standards	ID# (Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	27-Jun-17 (CTTL, No.J17X05857)	Jun-18
Power sensor NRP-Z91	101547	27-Jun-17 (CTTL, No.J17X05857)	Jun-18
Power sensor NRP-Z91	101548	27-Jun-17 (CTTL, No.J17X05857)	Jun-18
Reference10dBAttenuator	18N50W-10dB	13-Mar-16(CTTL,No.J16X01547)	Mar-18
Reference20dBAttenuator	18N50W-20dB	13-Mar-16(CTTL, No.J16X01548)	Mar-18
Reference Probe EX3DV4	SN 7464	12-Sep-17(SPEAG,No.EX3-7464 Sep17)	Sep-18
DAE4	SN 1524	13-Sep-17(SPEAG, No.DAE4-1524_Sep17) Sep -18
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	27-Jun-17 (CTTL, No.J17X05858)	Jun-18
Network Analyzer E5071C	MY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan -18
	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	And
Reviewed by:	Lin Hao	SAR Test Engineer	AR AS
Approved by:	Qi Dianyuan	SAR Project Leader	>>~~
This calibration certificate sh	all not be reprodu	Issued: Januai ced except in full without written approval of	

Certificate No: Z18-97002

Page 1 of 11

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

Glossary:

TSL	tissue simulating liquid
	9 1
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i
	$\theta=0$ is pormal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z18-97002

Page 2 of 11

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

Probe EX3DV4

SN: 7340

Calibrated: January 11, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: Z18-97002

Page 3 of 11

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7340

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.49	0.43	0.46	±10.0%
DCP(mV) ^B	101.6	98.7	105.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	165.0	±3.0%
		Υ	0.0	0.0	1.0		147.5	
		Z	0.0	0.0	1.0		157.5	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: Z18-97002

Page 4 of 11

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7340

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
1450	40.5	1.20	8.71	8.71	8.71	0.16	1.11	±12.1%
5250	35.9	4.71	5.65	5.65	5.65	0.40	1.45	±13.3%
5600	35.5	5.07	4.87	4.87	4.87	0.40	1.35	±13.3%
5750	35.4	5.22	4.95	4.95	4.95	0.62	1.04	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z18-97002

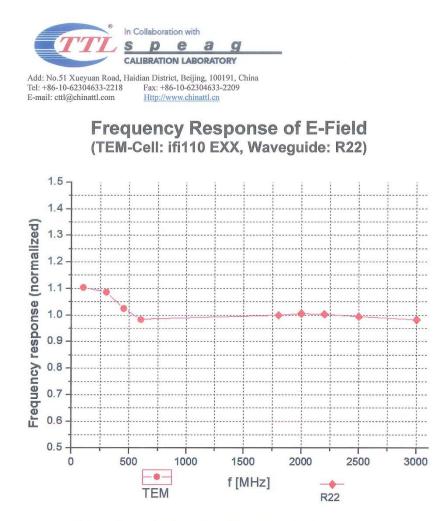
Page 5 of 11

Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7340

Calibration Parameter Determined in Body Tissue Simulating Media

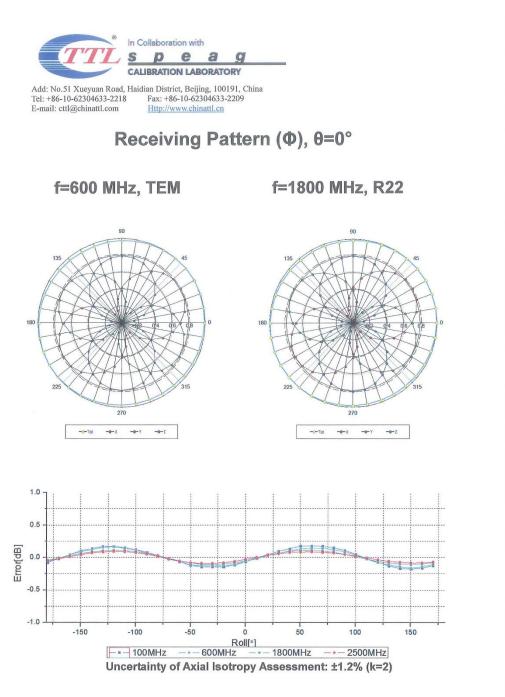
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
5250	48.9	5.36	5.16	5.16	5.16	0.45	1.50	±13.3%
5600	48.5	5.77	4.35	4.35	4.35	0.50	1.70	±13.3%
5750	48.3	5.94	4.58	4.58	4.58	0.55	1.30	±13.3%


^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

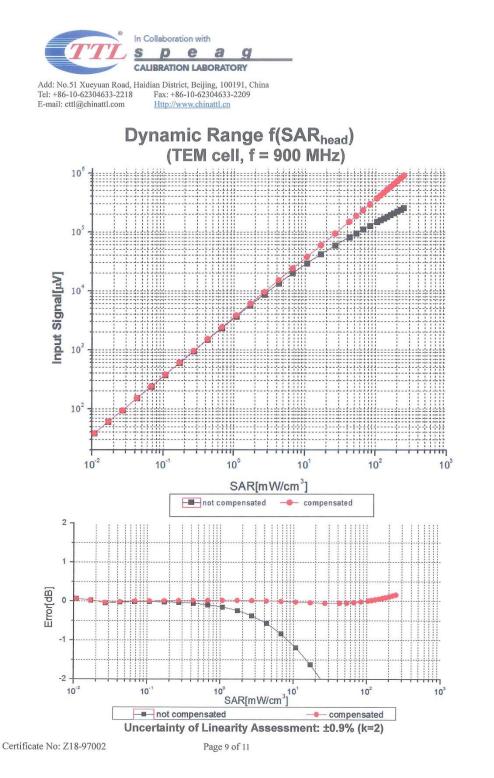
Certificate No: Z18-97002

Page 6 of 11



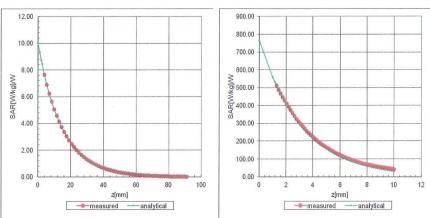
Certificate No: Z18-97002

Page 7 of 11

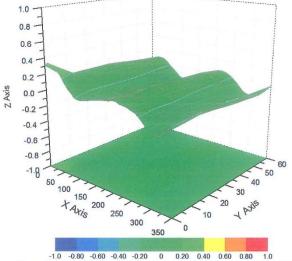


Certificate No: Z18-97002

Page 8 of 11



E-mail: cttl@chinattl.com


Conversion Factor Assessment

f=1450 MHz, WGLS R14(H_convF)

f=5750 MHz, WGLS R58(H_convF)

Deviation from Isotropy in Liquid

-1.0 -0.80 -0.60 -0.40 -0.20 0 0.20 0.40 0.60 0.80 1.0 Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2)

Certificate No: Z18-97002

Page 10 of 11

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7340

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	128.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No: Z18-97002

Page 11 of 11

F.2 Data Acquisition Electronics

Ţ	TLS	Doration with		CNA	中国认可 国际互认 校准
Tel: +86-10-62 E-mail: cttl@c	304633-2218 Fax	District, Beijing, 100191, Chi <: +86-10-62304633-2209 p://www.chinattl.cn	.autore.	No: Z17-97105	CALIBRATIO
CALIBRATION		TE			
Object	DAE	4 - SN: 685			
Calibration Procedure(s	FF-Z	11-002-01 ration Procedure for x)	the Data Acquis	ition Electronics	
Calibration date:	Augu	st 02, 2017			
measurements(SI). The pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us Primary Standards	e certificate. een conducted in sed (M&TE critical	the closed laborator	y facility: environ		'22±3)℃ and
Process Calibrator 753	1971018	27-Jun-17 (CTTL, No	o.J17X05859)	June-18	3
	Name	Function		Signature	
Calibrated by:	Yu Zongying	SAR Test Engin	eer	AND	
Reviewed by:	Lin Hao	SAR Test Engin	eer	THE	2
Approved by:	Qi Dianyuan	SAR Project Le	ader 🤇	20 Pr	1
This calibration certificate	shall not be repro	oduced except in full w		sued: August 03, 20 oval of the laborato	

Certificate No: Z17-97105

Page 1 of 3

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tcl: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary:

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle:* The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z17-97105

Page 2 of 3

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn
 E-mail: cttl@chinattl.com

DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	Х	Y	Z
High Range	403.797 ± 0.15% (k=2)	405.048 ± 0.15% (k=2)	404.598 ± 0.15% (k=2)
Low Range	3.98747 ± 0.7% (k=2)	3.94065 ± 0.7% (k=2)	3.93713 ± 0.7% (k=2)

Connector Angle

-

Connector Angle to be used in DASY system	161.5°±1°

Certificate No: Z17-97105

Page 3 of 3

F.3 5GHz Dipole

Tel: +86-10-623046	n Road, Haidian Dis	-86-10-62304633-2504	CALIBR
E-mail: cttl@chinatt		www.chinattl.cn	
Client balu	ntek	Certificate No: Z1	7-97083
CALIBRATION CE	RTIFICAT	E	
Object	D5GHz	2V2 - SN: 1200	
Calibration Procedure(s)	ED 711	-003-01	
		tion Procedures for dipole validation kits	
Oslibestice dat	Such and Net Contractor		
Calibration date:	June 2	9, 2017	
All sufficient have been	and states of the	the stand takantan facility and same	to
All calibrations have been humidity<70%. Calibration Equipment used		the closed laboratory facility: environment or calibration)	temperature(22±3)℃
humidity<70%.		-	temperature(22±3) ^{*C} Scheduled Calibra
humidity<70%. Calibration Equipment used	(M&TE critical f	or calibration)	
humidity≺70%. Calibration Equipment used Primary Standards	(M&TE critical f	or calibration) Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809)	Scheduled Calibra
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 ReferenceProbe EX3DV4	(M&TE critical fr ID # 102083 100595 SN 7433	or calibration) Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 26-Sep-16(SPEAG,No.EX3-7433_Sep16)	Scheduled Calibra Sep-17 Sep-17 Sep-17
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5	(M&TE critical fr ID # 102083 100595	or calibration) Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809)	Scheduled Calibra Sep-17 Sep-17
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 ReferenceProbe EX3DV4	(M&TE critical fr ID # 102083 100595 SN 7433	or calibration) Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 26-Sep-16(SPEAG,No.EX3-7433_Sep16)	Scheduled Calibra Sep-17 Sep-17 Sep-17
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 ReferenceProbe EX3DV4 DAE4	(M&TE critical fo ID # 102083 100595 SN 7433 SN 1331	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 26-Sep-16(SPEAG,No.EX3-7433_Sep16) 19-Jan-17(CTTL-SPEAG,No.Z17-97015)	Scheduled Calibra Sep-17 Sep-17 Sep-17 Jan-18
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 ReferenceProbe EX3DV4 DAE4 Secondary Standards	(M&TE critical fo ID # 102083 100595 SN 7433 SN 1331 ID #	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 26-Sep-16(SPEAG,No.EX3-7433_Sep16) 19-Jan-17(CTTL-SPEAG,No.Z17-97015) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibra Sep-17 Sep-17 Sep-17 Jan-18 Scheduled Calibra
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fo ID # 102083 100595 SN 7433 SN 1331 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 26-Sep-16 (SPEAG,No.EX3-7433_Sep16) 19-Jan-17(CTTL-SPEAG,No.Z17-97015) Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286)	Scheduled Calibra Sep-17 Sep-17 Sep-17 Jan-18 Scheduled Calibra Jan-18
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fo ID # 102083 100595 SN 7433 SN 1331 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 26-Sep-16 (SPEAG,No.EX3-7433_Sep16) 19-Jan-17(CTTL-SPEAG,No.Z17-97015) Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286) 13-Jan-17 (CTTL, No.J17X00285)	Scheduled Calibra Sep-17 Sep-17 Jan-18 Scheduled Calibra Jan-18 Jan-18
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C Calibrated by:	(M&TE critical fi 10 # 102083 100595 SN 7433 SN 1331 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 26-Sep-16 (SPEAG,No.EX3-7433_Sep16) 19-Jan-17 (CTTL-SPEAG,No.Z17-97015) Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286) 13-Jan-17 (CTTL, No.J17X00285) Function	Scheduled Calibra Sep-17 Sep-17 Jan-18 Scheduled Calibra Jan-18 Jan-18
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	(M&TE critical fi 10 # 102083 100595 SN 7433 SN 1331 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 26-Sep-16 (SPEAG,No.EX3-7433_Sep16) 19-Jan-17 (CTTL-SPEAG,No.Z17-97015) Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286) 13-Jan-17 (CTTL, No.J17X00285) Function	Scheduled Calibra Sep-17 Sep-17 Jan-18 Scheduled Calibra Jan-18 Jan-18
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C Calibrated by:	(M&TE critical fi 102083 100595 SN 7433 SN 1331 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) 22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 26-Sep-16 (SPEAG,No.EX3-7433_Sep16) 19-Jan-17(CTTL-SPEAG,No.Z17-97015) Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286) 13-Jan-17 (CTTL, No.J17X00285) Function SAR Test Engineer	Scheduled Calibra Sep-17 Sep-17 Jan-18 Scheduled Calibra Jan-18 Jan-18

Certificate No: Z17-97083

Page 1 of 14

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.cn

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97083

Page 2 of 14

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.8 ± 6 %	4.63 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.63 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	76.2 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.18 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.8 mW /g ± 24.2 % (k=2)

Certificate No: Z17-97083

Page 3 of 14

Head TSL parameters at 5600 MHz The followin

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.96 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.23 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	82.6 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.35 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.6 mW /g ± 24.2 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	5.11 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.05 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	80.8 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.28 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.9 mW /g ± 24.2 % (k=2)

Certificate No: Z17-97083

Page 4 of 14

Body TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.1 ± 6 %	5.42 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.54 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	75.2 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.13 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.2 mW /g ± 24.2 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.6 ± 6 %	5.77 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.82 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	77.9 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.20 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.9 mW /g ± 24.2 % (k=2)

Certificate No: Z17-97083

Page 5 of 14

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.cn

Body TSL parameters at 5750 MHz The following parameters and calculations w

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.5 ± 6 %	5.84 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		


SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.53 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	75.0 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.12 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.1 mW /g ± 24.2 % (k=2)

Certificate No: Z17-97083

Page 6 of 14

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	48.2Ω - 4.57jΩ	
Return Loss	- 26.0dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	55.2Ω + 2.14jΩ	
Return Loss	- 25.4dB	

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	50.6Ω - 3.25jΩ	
Return Loss	- 29.7dB	

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	47.9Ω - 2.79jΩ	
Return Loss	- 29.0dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	55.3Ω + 3.88jΩ	
Return Loss	- 24.1dB	

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	51.9Ω - 2.20jΩ	
Return Loss	- 30.9dB	

Certificate No: Z17-97083

Page 7 of 14

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tcl: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

General Antenna Parameters and Design

Electrical Delay (one direction)	1.315 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

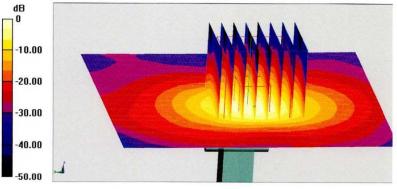
Manufactured by	SPEAG
-----------------	-------

Certificate No: Z17-97083

Page 8 of 14

Certificate No: Z17-97083

Page 9 of 14



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

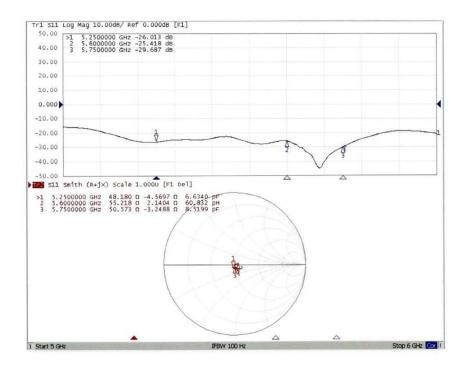
 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.85 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 33.6 W/kg SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 19.7 W/kg

0 dB = 19.7 W/kg = 12.94 dBW/kg

Certificate No: Z17-97083

Page 10 of 14



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

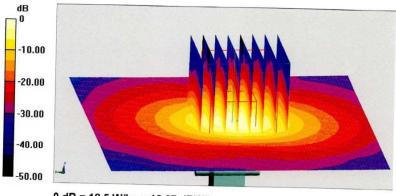
Certificate No: Z17-97083

Page 11 of 14

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.62 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.2 W/kg Maximum value of SAR (measured) = 18.7 W/kg

Certificate No: Z17-97083

Page 12 of 14



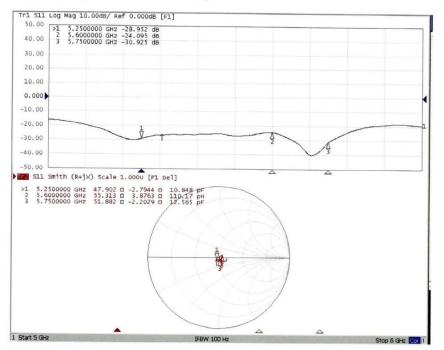
 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.40 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 7.53 W/kg; SAR(10 g) = 2.12 W/kg Maximum value of SAR (measured) = 18.5 W/kg

0 dB = 18.5 W/kg = 12.67 dBW/kg


Certificate No: Z17-97083

Page 13 of 14

Impedance Measurement Plot for Body TSL

Certificate No: Z17-97083

Page 14 of 14

--END OF REPORT--